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Abstract: The determination of the bearing capacity prediction model of concrete-filled steel tubular
columns is a key issue in the structural design of prefabricated buildings, which directly relates to
the stability and safety of prefabricated buildings. The purpose of this paper is to study the bearing
capacity model of concrete-filled steel tubular columns, and propose an explicit formula based on
the Gaussian process regression algorithm to calculate the bearing capacity. In order to solve the
problem of low accuracy of the traditional empirical bearing capacity model, this paper first proposes
a more accurate bearing capacity prediction model based on Gaussian process regression algorithm
to automatically learn and capture the characteristics of 122 groups of test data; the paper then
determines the function of high sensitivity parameters and section influence parameters through the
established bearing capacity prediction model, and this process gives the display formula. Compared
with the implicit formula given by a machine learning model, the explicit formula proposed in this
paper is more suitable for practical engineering design. In order to verify the validity of the formula,
we generated the bearing capacity data through the proposed formula based on the test data and used
the descriptive statistical method to verify. The results show that the proposed formula is superior to
other existing methods, the error between the data generated by the proposed formula and the test
data is smaller, and its accuracy reaches 93.73%, which is more suitable for calculating the bearing
capacity of concrete-filled steel tubes with different cross sections.

Keywords: machine learning; GPR; concrete-filled steel tube column; bearing capacity; prediction

1. Introduction

Concrete-filled steel tubular columns are the key components in prefabricated build-
ings and are related to their stability and safety. The reason why concrete-filled steel tubular
columns have high bearing capacity is that they make full use of the advantages of steel and
concrete [1-3]. Concrete has a higher compressive strength and better deformation capacity
due to the three-dimensional constraint of steel pipes [4,5]. For steel pipes, because most of
them are thin-walled members, which are prone to out-of-plane instability failure under
pressure, their material strength cannot be fully developed [6-9], but when filled with
concrete, the lateral stiffness of the pipe wall is greatly increased so that their compression
potential can be fully developed [10,11]. Therefore, concrete-filled steel tubular columns
have better bearing capacity than single concrete columns or steel tubular columns [12-16].

Research on bearing capacity models of concrete-filled steel tubular columns has
attracted much attention. At present, the empirical models used to calculate the bearing
capacity of concrete-filled steel tubular columns are obtained by linear or nonlinear re-
gression methods [17-19]. Developing these models using linear regression or nonlinear
regression requires a large amount of test data, but tests are often limited by funding and
the test data obtained are limited [20-23]. Shen [24] noted that the data samples obtained
by traditional test methods are small, so the accuracy of the calculation model derived
by linear regression is not high. Nikbin’s [25] research shows that nonlinear regression is
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greatly affected by test parameters and is prone to overfitting. Le [20] noted that under the
condition of a small sample size, the accuracy of the prediction model obtained by using
nonlinear regression or linear regression is not high.

In recent years, machine learning methods have demonstrated prominent advantages
in predicting the bearing capacity of structural members [26-29]. The results obtained
by researchers in concrete strength prediction [30,31], concrete fatigue strength predic-
tion [32], flexural strength prediction of reinforced concrete beams [33], maximum bearing
capacity prediction [34], and bearing capacity prediction of reinforced concrete beams and
columns [26] using machine learning show that it can be used to predict the bearing capac-
ity of structural members. As the key component of prefabricated structures, concrete-filled
steel tubular columns are directly related to the safety of the structure. Therefore, using
machine learning to quickly determine the appropriate model to predict its bearing capacity
is conducive to structural design, evaluation, and other engineering purposes. Gao [35]
obtained a bearing capacity calculation model of square steel tube columns based on a
neural network. Cakiroglu [36] proposed using the support vector machine method to
predict the bearing capacity of concrete-filled rectangular steel tubular columns. Ahmadi
et al. [37] applied an artificial neural network to predict the bearing capacity of circular
concrete-filled steel tubular short columns. Hou [38] noted that using a Gaussian regres-
sion process model to predict the bearing capacity of circular concrete-filled steel tubular
columns has higher accuracy. In addition, Liu [39] proposed a calculation model for the
bearing capacity of concrete-filled steel tubular columns with elliptical sections. However,
the formulas given by the machine learning method are all implicit formulas [15,40,41],
which is not conducive to design and use by engineers in projects. In addition, the above
models do not consider the influence of the section shape of the model on the bearing
capacity, resulting in the low accuracy of the results of the model when calculating the
bearing capacity of concrete-filled steel tubular columns with different sections [25,42].

To solve the problems mentioned above, this paper proposes a bearing capacity
prediction model suitable for concrete-filled steel tubular columns with different cross
sections based on Gaussian process regression and provides a display formula to meet
the design requirements of concrete-filled steel tubular columns in practical production
projects. In this paper, we propose a bearing capacity prediction model. By considering
the section shape parameters, we use the Gaussian process regression algorithm to grasp
the inherent law of the test data and give the display formula. The rest of this paper is
summarised as follows.

Section 2 describes the Gaussian process regression algorithm in detail. Section 3
describes the proposed bearing capacity prediction model and its verification method.
Section 4 explains the results and validation of the traditional model and the proposed
prediction model. Section 5 discusses the advantages and disadvantages of the bearing
capacity prediction model as well as prospects for future work. The last section summarises
the full text.

2. Background: GPR

The traditional experimental method is too expensive to produce enough samples for
the basic data of the prediction model. Moreover, in recent years, the accuracy of the finite
element analysis method and traditional test method analysis in the prediction model has
shown problems [20,24,33]. Therefore, this paper applies the machine learning method to
structural engineering. BP neural networks [26], support vector machines [20], Gaussian
process regression [43], random forests [44], radial basis function neural networks [45] and
other methods in the application of concrete strength prediction [46], beam shear strength
prediction [47], column bearing capacity prediction [48], bridge damage detection [49], and
frame structure damage prediction [50] all show that machine learning can not only predict
the damage of the structure in the macro-aspect but also predict the bearing capacity of
structural components.
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Among many machine learning algorithms, the Gaussian process regression method
has advantages in dealing with regression problems such as small sample size, multiple
influencing factors, and nonlinearity [51-53]. Compared with other machine learning
algorithms, such as artificial neural networks and support vector machines, Gaussian
process regression is easy to implement, with fewer parameters and strong model inter-
pretability [54-58]. Therefore, this paper uses the Gaussian process regression algorithm to
establish a bearing capacity prediction model of concrete-filled steel tubular columns with
different sections.

The basic idea of Gaussian process regression is to learn the mapping relationship
between independent variables and dependent variables in the dataset and use this map-
ping relationship to predict a new independent variable x, and the corresponding value of
the dependent variable y.. To achieve this goal, the following four covariance matrices
are established:

K(x1,x1) K(x1,x2) -+ K(x1,xn)
P K(x2,%1) K(x.z‘,xz) o K(xz,xn) O
K(xp,x1) K(xn,x2) -+ K(xn, xz)
K(xe,%) = [(K(x0, 1), - K22, %) @
K(x,x4) = [(K(x1,%),- - K(xp, x)] (3)
Kix = K(x*/ x*) 4)

In the Gaussian process regression model, each sample y can be expressed as:

y=flx)+e ®)

where ¢ ~ N(0,07).

The superparameters in the kernel function control the specific shape of the implicit
function, such as whether the function changes rapidly or is relatively stable [57]. At
present, the most commonly used kernel function is the square exponential kernel function.
Therefore, this paper also uses this kernel function to construct the Gaussian process
regression model. The square exponential kernel function formula is as follows [56,58]:

/ 2 12 (x; — x;)z
K(x,x") = opexp _EZT (6)
i=1 i

where (TJ% is the signal variance of the covariance function, D is the given training sample set,
and / is called correlation measurement hyperparameter, which measures the relationship
between sample input and correlation of output.

Since the regression model of Gaussian algorithm is used in this paper, the likelihood
function surface can be calculated from Formula (5) is shown in Formula (7):

pIf(x)) ~ N(f(x),02) )

When training the model, the preset training set D is generally used to solve the
optimal hyperparameter by maximizing the logarithmic marginal likelihood function
0= {(73, ¢}, where 02 is covariance of kernel function and ¢ is the variance of the residuals.

The function is as follows:

n K+021)""
tog p(yl,0) = —2tog(zm) = EFED Y pogic i 21 ®)
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At this point, we can obtain the hyperparameter by training the model 6. Given input

parameter x., the Gaussian algorithm can obtain the average value y. of its predicted
output value and its variance formula:

Ve = K(x*,x)(KJrUzI)Ay )

-1
02 = Ky — K(xs, %) (K+ 021) K(x, x.) (10)

where [ is the unit matrix of the response scale, o2 is covariance of database data.

When using the Gaussian regression process to build a model, the following steps are

involved, which are also shown in Figure 1:

@
@)

®)

4)
©)

Collect data and build datasets.

Determine input and output values. Set the input data matrix X = [x1, x5, ..., x4/ and
output matrix Y = [y, ¥, ... , y»] based on the dataset, and treat them as the input
and output values of the model.

Select the kernel function. An appropriate kernel function transforms the vector inner
product operation in high-dimensional space into function calculation in the original
low-dimensional space, thus greatly reducing the calculation amount.

A Gaussian process regression model is constructed. Based on the input value, the
output value is calculated by Gaussian process regression.

Judge whether the calculated output value meets the requirements. The calculated
output value is compared with the output value in the dataset, and if the error is
less than 5%, it meets the requirements. Otherwise, return to the kernel function and
choose to reconstruct the Gaussian process regression model.

Data Data
— : _ )
Start Collection processing

}

Kernel function selection and

initialization of hyper parameters
Feature extraction and GPR model
establishment
No

l

The error is less than the
accuracy requirement ?

l Yes

Predict the new output value according
to the determined parameters

.

End

Figure 1. Regression structure of the Gaussian process.
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3. Materials and Methods
3.1. Overview

In this section, we propose a prediction model based on the Gaussian process re-

gression algorithm considering section shape parameters. The proposed bearing capacity
prediction model uses a Gaussian process regression algorithm to learn the probability
distribution of the test data of concrete-filled steel tubular columns with different sections
and automatically captures the internal law of the test data. The construction of the bearing
capacity prediction model has three main steps, as shown in Figure 2 and summarized
as follows:

@

Collect data and randomly divide the data into training and test sets. The training set
is used to learn and train the model and the test set is used to evaluate the performance
of the model. We set 80% of the whole experimental data as the training set and the
remaining 20% as the test set.

(2) Use the training set to train and build the model.
(3) Use the test set to verify the generated model.
Training Phase g <
Input | 1rain the model Mo
Input set s
p
Output set Input set feature
extraction
Determine if
Output Bearing capacity the data
data value » distribution
is similar
Testing Phase Output set feature
Inpu extraction
Input set e
Output set Yes

Model evaluation

Bearing capacity
prediction mode|
Statistical law

evaluation L J
Bearing capacity
calculation formula
Similarity measure  J
Trace maps

v

Original data & Generated data

Figure 2. Flow chart of the bearing capacity prediction model.

3.2. Step 1: Data Collection

)

Main section form of the concrete-filled steel tube column

The section shape of the steel tube affects the restraint of the steel tube on the concrete,

thus affecting the bearing capacity of the concrete-filled steel tube. At present, the most
studied section forms of concrete-filled steel tubes at home and abroad are mainly circular,
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rectangular, and elliptical, as shown in Figure 3. The slenderness ratio of concrete-filled
steel tubular columns is generally between 1.5 and 8.0.

Steel pipe Steel pipe

Concrete

(a) (b) (c)

Figure 3. Common section forms of concrete-filled steel tube columns. (a) Rectangular section.
(b) Circular section. (c) Elliptical section.

(2) Data description

This paper collects 122 groups of test data of the bearing capacity of concrete-filled
steel tubes at home and abroad [59-66]. The tests carried out in the relevant documents
are all axial compression of the concrete-filled steel tube by a hydraulic press to obtain the
bearing capacity data of the concrete-filled steel tube. Before the test load, the concrete-
filled steel tube column is guaranteed not to be subjected to eccentric pressure by fixing the
column base. After sorting out the test data in the above documents, the factors affecting
the bearing capacity of three types of concrete-filled steel tubular columns are obtained
as follows: 1. The section area of the steel tubular columns (A); 2. section length (aj) and
width (bg) of rectangular steel tube column; 3. section diameter of the circular steel pipe
column (D); 4. the major axis (a;) and minor axis (bp) of the section of the elliptical steel
tube column; 5. height of the steel pipe column (I); 6. wall thickness of the steel pipe
column (t); 7. concrete cube strength (f.); and 8. steel strength (fy). Tables 1-3 list the
minimum, maximum, average, and standard deviation of the bearing capacity test data of
concrete-filled steel tubes with different sections.

Table 1. Test parameters of the rectangular concrete-filled steel tube column.

Parameter Unit Minimum Maximum Average Standard Deviation
A mm? 3600.00 62,500.00 20,793.06 17,895.56
ag mm 60.00 250.00 133.33 56.67
bo mm 60.00 250.00 131.67 57.28
1 mm 300.00 430.00 396.67 50.21
t mm 1.87 2.93 227 0.46
fe MPa 44.40 81.00 60.93 14.94
fy MPa 228.00 404.00 326.07 64.82

Table 2. Test parameters of the circular concrete-filled steel tube column.

Parameter Unit Minimum Maximum Average Standard Deviation
A mm? 2826.00 49,062.50 15,530.44 13,060.87
D mm 60.00 250.00 131.17 50.78
1 mm 296.00 604.00 441.03 85.62
t mm 1.87 5.00 3.08 1.26
fe MPa 20.70 90.00 52.31 30.78

fy MPa 231.00 404.00 316.76 65.44
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Table 3. Test parameters of the elliptical concrete-filled steel tube column.

Parameter Unit Minimum Maximum Average Standard Deviation
A mm? 4945.50 15,896.25 10,106.88 3099.22
aj mm 90.00 160.00 129.29 19.44
by mm 70.00 135.00 97.50 17.50
1 mm 156.00 480.00 334.82 96.64
t mm 1.20 3.00 2.20 0.68
fe MPa 36.00 59.30 40.37 10.18
fy MPa 194.00 228.00 207.41 8.73

(8) Sensitivity analysis

To confirm the impact of the influencing factors on the bearing capacity, sensitivity
analysis of these parameters is needed. By analysing the sensitivity of these parameters, we
can reduce the number of parameters to simplify the model and improve the calculation
speed. At present, the cosine amplitude method [51,52] is commonly used to analyse the
radial sensitivity of influencing factors. Therefore, this paper also uses the relationship
strength formula in the cosine amplitude method to calculate the sensitivity value of each
influencing factor. The relationship strength formula is as follows:

- Yi—1 XikY1k _ Ty (11)
Vit v Ty
In Formula (11), xj = [xin X2 - X, Y1k = V11 Y12 -+ Y1n). The letter i

represents the number of vectors, and n represents the length of the vectors.

The above test data summarise 8 factors affecting the bearing capacity. To simplify
the model, the ratio method is adopted to reduce the number of influencing factors of the
model to five, which are as follows:: 1. the section area of the steel tube column (A), 2. the
width-thickness ratio (b/t), 3. the slenderness ratio (1/d), 4. concrete strength (f.), and 5.
steel strength (fy).

The r value between each influencing factor and the bearing capacity is shown in
Figure 4. The figure shows that 1/d has the greatest impact on output parameters, followed
by b/t. A ranks third, followed by f, and f..

1.0
0.87
0.8} 0.76
= 0.69
S 06}
Qo 0.49
= 0.41
204}
(@]
&
17
0.2}F
0.0 fc fy A b/t I/d
Parameters

Figure 4. Sensitivity analysis of influencing factors.
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3.3. Step 2: Model Construction

(1) Bearing capacity prediction model

To calculate the bearing capacity of concrete-filled steel tubular columns, researchers
from different countries have proposed different calculation formulas. Among them, the
formulas proposed by the Chinese code [67], the American ACI code [68], the European
code EC4 [69], and the Japanese AlIJ code [70] are the most widely used.

The formula proposed by the Chinese code is as follows:

N =% fAc(1+pu+ /1) (12)
_ fyAs
.u - fCAC (13)

In the above formula, ¢ and ¢, refer to the influencing factors affecting the bearing
capacity value, whose specific value is referred to in [65]. f; is the concrete strength value,
A is the concrete section area, fy is the steel strength value, and Aj is the cross-sectional
area of the steel pipe.

The formula proposed by the American ACI specification is as follows:

N = 0.95fAc + fy As (14)

where f. represents the compressive strength of the concrete cylinder.
The formula proposed by European Regulation EC4 is as follows:

/
N = fLAC + &As (15)
Ye Vs

In the above formula, 7. is the material partial coefficient of concrete, which is 1.1, and
7s is the material partial coefficient of steel, which is 1.5.
The formula proposed by the Japanese AlJ specification is as follows:

N = ’)/cfc/Ac + (1 +T])fyAs (16)

where 1, is the reduction coefficient of the compressive strength of the concrete cylin-
der, taken as 0.85, and 1 represents the steel pipe strength improvement coefficient,
taken as 0.27.

Relevant research [24,36,62] show that the accuracy of the bearing capacity prediction
model derived using the Gaussian regression process algorithm is significantly improved.
Among them, Le [20] and Nikbin [26] further pointed out that, through the analysis and
control of highly sensitive parameters, the predicted value of the model is closer to the test
value of concrete-filled steel tubular columns. Therefore, to accurately calculate the bearing
capacity of concrete-filled steel tubular columns, we characterise the two most sensitive
parameters, 1/d and b/t, in the sensitivity analysis in Section 3.3 as the influence parameters
C;/q and Cp /4, and propose the following formula based on the Chinese standard formula:

N = BxCryax Cosp X fo X Acx (14 p+ /1) (17)
where § is the shape correction parameter. When the section shape of the concrete-filled
steel tube column is rectangular, B is 1.

(2) Parameter determination

To determine the influence coefficients C;,; and Cp /4 of Formula (17), based on the
rectangular concrete-filled steel tube column, we obtained Formula (18) and confirmed the
influence coefficients C; ;4 and Cp,/; through the Gaussian process regression algorithm.

NICl/dXCb/tXfCXACX(1+]4+\/ﬁ> (18)
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To confirm the combination of two functions that affect the parameters, we adopted
10-layer cross-validation [37,44]. That is, for each combination, we repeated the training ten
times in the Gaussian process regression model. In each iteration, a subset is selected as the
validation set to evaluate the model trained by the remaining nine subsets. Then, we output
the average accuracy of the ten prediction results. Finally, through grid search [45,52], the
combination with the highest average accuracy is selected as the function of the influence
parameters, as shown below:

i 0.61
Clra=1- 0.07<d) (19)

—0.03
Cpy = 091 <t> +0.16 (20)

The literature [57,58] shows that the bearing capacity of concrete-filled steel tubular
columns is most affected by the short side of its section, so we define the ratio of the
length of the elliptical short axis (by) to the width of the rectangle (by) under the same
cross-sectional area as «1. The ratio of circular diameter (D) to rectangular width (by) is
ay.The section shape correction coefficients of the elliptical section (31) and the coefficients
of circular section (,) obtained by fitting the least square method [39,42] are, respectively,
given in Formulas (21) and (22):

B = —0.08(0%)2 +021(g7) +079 1
By = —0.10(1‘%)2 +2.14( 15 ) — 046 (22)

3.4. Step 3: Effectiveness Evaluation

To evaluate the accuracy of the model, the following three indicators [25,39] are used
to evaluate the performance of each model: (1) coefficient of determination (R?), (2) root
mean square error (RMSE), and (3) mean absolute error (MAE). The mathematical formulas
are as follows:

“ 2
2 (W — )

RE=1- R (23)
j=1 (i —7)
Yt (yv]' - yj)z
RMSE = f‘* (24)
MAE — Z]’:l‘ (Z; _]/j>| (25)

where 7/; and y; represent the predicted value and experimental value, respectively. m
represents the total number of data points, and ¥ is the average of the test values. Theoreti-
cally, the lower the RMSE and MAE are, the more accurate the evaluation. The R? value is
between 0 and 1. When the model is close to 1, the prediction ability is better, and when it
is close to 0, the prediction performance is worse. These performance indicators are good
measures of overall prediction accuracy.

4. Results and Analysis

To obtain the bearing capacity model of concrete-filled steel tubular columns with
various cross sections, this paper uses the Gaussian process regression algorithm to study
the 122 groups of data collected, captures the characteristics of the data, and proposes a
prediction model for the bearing capacity of concrete-filled steel tubular columns with
different cross sections.
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4.1. Results of the Traditional Model

The traditional empirical model uses 122 sets of test data collected in this paper as
samples, calculates parameters after determining their respective probability distribution,
and then generates data. To reflect the distribution characteristics of the test data and the
data generated by the traditional empirical model, the two groups of data distribution
characteristics are compared. In this paper, a box diagram of the bearing capacity of the test
data and the traditional empirical model is drawn. The Y-axis shows the values obtained
from the data, as shown in Figure 5. Figure 5 shows that the median, maximum, and data
dispersion calculated by the traditional empirical model are close to those of the test data.

I Test [0 Normative empirical formula

1 il  iBE e
4000 -

3000 4

2000 -

Range(kN)

1000 1

Test Normative empirical
formula

Figure 5. Box plots of bearing capacity calculated by Chinese empirical formula compared with
test data.

To compare the overall distribution of the two groups of data, the cumulative distribu-
tion function curve of the bearing capacity of the test data and the data generated by the
traditional empirical model is drawn in Figure 6. The parameter value is displayed on the
horizontal axis and the cumulative probability is displayed on the vertical axis. As shown
in Figure 6, the 122 cumulative distribution function curves of the data generated by the
traditional empirical model are not consistent with the 122 original data curves.

4.2. Results of the Bearing Capacity Prediction Model

The proposed bearing capacity prediction model also uses the generated prediction
value of the test data. Figure 7 shows the results compared with the 122 original data
points, where the Y-axis shows the values obtained from the data. The results of the bearing
capacity prediction model are very close to those of the original data.
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e
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N

i—i—Test

:—e— Normiative empirical formula;

Cumulative Frequency

.
N
T

1000 2000 3000 4000 5000
Bearing Capacity/kN

Figure 6. Cumulative distribution function curve of the bearing capacity calculated by the Chinese
empirical formula compared with the test data.

5000

I Test ] Prediction Model

%0530 I R AL A

3000 4 - R W —

Range(kN)

2000 - SR -

1000 4

1

Test Prediction Model

Figure 7. Box plots for calculating the bearing capacity of the modified formula compared with the
test data.

Figure 8 shows the cumulative distribution function curve of the bearing capacity of
the bearing capacity prediction model compared with the original data. The parameter
value is displayed on the horizontal axis, while the cumulative probability is displayed on
the vertical axis. As shown in Figure 8, the cumulative 122 distribution function curves of
the data generated by the bearing capacity prediction model are basically consistent with
the 122 original data curves.
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1.0

Cumulative Frequency

04 ‘ |
—=—Test | | |
§ i—e— Prediction Model §
] R e R
00 i ;

1000 2000 3000 4000 5000
Bearing Capacity/kN

Figure 8. Cumulative distribution function curve of the bearing capacity calculated by the modified
formula compared with the test data.

4.3. Comparison of Results and Analysis

To visually observe the accuracy of the proposed bearing capacity prediction model
and the traditional empirical model, Figures 9 and 10 show the regression diagrams of the
calculated values and test values of different models. Figures 9 and 10 show that the data
value calculated by the proposed bearing capacity prediction model is the most consistent
with the experimental value. In other words, the data points of the ratio of the calculated
value to the actual value are all located around the line y = x, and the error is controlled

within £10%.

¢ data +10% line

Perfect Prediction - -10% line
5000
P
° 4 d
4000 _ o ‘e |
z o .
% Wyl oz Y
E= -7 &
2 3000 .z e | o o |
g -7 b
® & e
8 g
= o / .7
S 2000 g * o
E L7 > °
{== 7 i
@ O e
o e Y e [ ]
< s ‘o
W 1000 - -
R N
o®
. P
0 1000 2000 3000 4000 5000

Calculated strength/kN

Figure 9. Regression between the calculated value and actual value of the traditional model.
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¢ data ... +10% line
Perfect Prediction - -10% line
5000
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R} )
4000 - e
z .
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£ . <
© 3000 7 ~o®
o 7 .
S -
& 2000 " ®
g 7 [} -8
2 y e
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W 1000 — >
P 1,0
0 5
0 1000 2000 3000 4000 5000

Calculated strength/kN

Figure 10. Regression diagram of the calculated value and actual value of the bearing capacity
prediction model.

The evaluation coefficient of the model is shown in Table 4. The determination
coefficient R2 of the bearing capacity prediction model is greater than that calculated by
the traditional empirical model. The average absolute error value and the root mean
square error value of the bearing capacity prediction model are smaller than the error value
calculated by the traditional empirical model. Therefore, compared with the traditional
empirical model, the bearing capacity prediction model is more suitable for calculating the
bearing capacity of concrete-filled steel tubular columns with different sections.

Table 4. Evaluation index results of the bearing capacity prediction model and traditional model.

Dataset
Model
R? RMSE (kN) MAE (kN)
Normative empirical 0.7949 613.41 471.01
formula
Modifier formula 0.9373 300.03 248.05

5. Discussion

In this paper, based on the Gaussian process regression algorithm, we propose a
bearing capacity prediction model considering shape parameters. This section analyses the
advantages and disadvantages of the model and prospects for future work in this field.

The advantage of the bearing capacity prediction model is that it uses the Gaussian
process regression algorithm to learn the law under the condition of small sample size,
automatically discover the internal relationship of the data, and determine the relevant
parameters of the model. The traditional empirical model does not consider the influence
of different section forms on the bearing capacity of concrete-filled steel tubular columns.
Therefore, in the proposed bearing capacity prediction model, we characterised the above
effects as shape parameters and determined them. Based on the results in Section 3, the
accuracy and regularity of the data generated by the proposed bearing capacity prediction
model have been verified by the box diagram and cumulative distribution function.
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It can be seen from the results in Figure 11 that the data points calculated by the
proposed bearing capacity prediction model are concentrated within the error line of
£10%, while the errors calculated by different empirical formulas around the world are
significantly larger, which is reflected in the discrete data points, and the data points
are essentially distributed to the left and right of the error line of +20%. Therefore, the
accuracy of the bearing capacity prediction model based on the Gaussian process regression
algorithm in this paper is better than that of the traditional empirical formula.

® China Europe Modifier formula ----- +10% line ----- +20% line
® America Japan Perfect Prediction ----- -10% line  ----- -20% line
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Figure 11. Regression chart of calculated value and actual value of formulas and revised formulas in
different countries.

In order to verify that the proposed bearing capacity model can predict data outside
the database, this article collected an additional 60 sets of data [71-74] as test sets to verify
the accuracy of the formula. From the results in Figure 12, it can be seen that the data
points calculated by the proposed calculation formula are concentrated within an error
line of +£10%, with an accuracy of 93.73%. Therefore, the proposed formula can be used
to calculate the bearing capacity of concrete filled steel tubular columns with different
cross sections.

The advantages of the bearing capacity model proposed in this paper are three-fold:
(1) The bearing capacity prediction model based on the Gaussian process regression algo-
rithm does not require a complex mechanical or theoretical derivation but uses Gaussian
process regression to give a displayed formula, which is used by structural engineers
and researchers. (2) Different from the empirical models of other countries, which are
usually only applicable to single section calculations, the bearing capacity prediction model
considers the influence of section shape on the bearing capacity and obtains a more ac-
curate calculation formula. (3) The accuracy of the bearing capacity prediction model
based on the Gaussian process regression algorithm is higher than that of the traditional
empirical model.

The main problem of the bearing capacity model proposed in this paper is the quality
of data, which is also the key to the accuracy of the model. The validity of the model
depends on the quality of the data to a large extent, and invalid data will greatly reduce
the accuracy of the model output. If the experimental data are too few, it is difficult to
train the model and verify the accuracy of the model. At the same time, if the collected
data of concrete-filled steel tubular columns with different cross sections are not uniform,
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it is difficult to ensure the reliability of the model in predicting the bearing capacity of
concrete-filled steel tubular columns with different cross sections.
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Figure 12. Regression diagram of calculated value and actual value verified by modified formula.

In the future, we will use numerical simulation to generate new data and test data
to form composite data, which will go to improve data quality, a limitation of the current
study due to insufficient training samples of the model. In addition, we will also consider
using more advanced machine learning algorithms to capture data rules to further improve
the accuracy of the prediction model and to better guide the actual project.

6. Conclusions

The Gaussian process regression algorithm can accurately grasp the characteristics
of data by learning the rules of test data from small sample sizes. Therefore, based on
the Gaussian process regression algorithm, we propose a more accurate bearing capacity
prediction model and give a display formula to calculate the bearing capacity of concrete-
filled steel tubular columns. The bearing capacity prediction model proposed in this paper
considers the influence of the section form of concrete-filled steel tubular columns on the
bearing capacity, characterises the above influence as a unified shape parameter, and gives
a determination method for the shape parameters. For concrete-filled steel tubular columns
with different sections, the determination coefficient, average absolute error, and root mean
square error are used as evaluation indices to compare the traditional empirical model with
the proposed bearing capacity prediction model.

Based on the comparative analysis results, we can draw the following conclusions:
(1) The proposed bearing capacity prediction model can use the Gaussian process regression
algorithm to learn the probability distributions of the test parameters of concrete-filled
steel tubular columns. According to the box diagram and cumulative distribution function
diagram, the data generated by the proposed bearing capacity prediction model are very
similar to the 122 groups of actual data of the test. (2) Compared with the traditional empir-
ical model, the bearing capacity prediction model proposed in this paper fully considers
the impact of different section forms on the bearing capacity of concrete-filled steel tubular
columns, uses shape parameters to characterise the impact of section forms on the bearing
capacity, determines the shape parameters, and gives the display formula. (3) The error
between the data generated by the proposed bearing capacity prediction model and the
test value is within 10%, which is smaller than the error between the data generated by the
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traditional empirical model and the test data. Therefore, the proposed bearing capacity
prediction model is more suitable for calculating the bearing capacity of concrete-filled
steel tubular columns with different sections.
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