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Miljan Kovačević 1,* and Fani Antoniou 2

1 Faculty of Technical Sciences, University of Pristina, Knjaza Milosa 7, 38220 Kosovska Mitrovica, Serbia
2 Department of Environmental Engineering, International Hellenic University, 57 400 Sindos, Greece;

fanton@ihu.gr
* Correspondence: miljan.kovacevic@pr.ac.rs

Abstract: Accurate prediction of the prestressed steel amount is essential for a concrete-road bridge’s
successful design, construction, and long-term performance. Predicting the amount of steel required
can help optimize the design and construction process, and also help project managers and engineers
estimate the overall cost of the project more accurately. The prediction model was developed using
data from 74 constructed bridges along Serbia’s Corridor X. The study examined operationally
applicable models that do not require indepth modeling expertise to be used in practice. Neural
networks (NN) models based on regression trees (RT) and genetic programming (GP) models were
analyzed. In this work, for the first time, the method of multicriteria compromise ranking was applied
to find the optimal model for the prediction of prestressed steel in prestressed concrete bridges. The
optival model based on GP was determined using the VIKOR method of multicriteria optimization;
the accuracy of which is expressed through the MAPE criterion is 9.16%. A significant average share
of 46.11% of the costs related to steelworks, in relation to the total costs, indicates that the model
developed in the paper can also be used for the implicit estimation of construction costs.

Keywords: material consumption; prestressed concrete bridges; machine learning; multicriteria
optimization; compromise ranking; vikor

1. Introduction

The development of a society and the state is highly dependent on the development of
traffic and the state of the traffic infrastructure. The traffic infrastructure consists of many
bridges, viaducts, culverts, and other facilities and is constantly expanding. In the entire
past millennium to the 20th century, fewer bridges were built than now in one decade [1].
More than two million bridges are currently in use throughout the world [1]. Over 80%
of the bridges built are concrete-girder bridges, with a significant share of prestressed
concrete bridges. Many construction activities accompany the construction of bridges on
roads, significant earthworks, geotechnical works, construction of the bridge structure itself,
works on signaling, lighting, and construction of culverts and accompanying facilities.

A subset of artificial intelligence known as machine learning (ML) enables computer
systems to learn from their past performance and advance accordingly. It entails analyzing
and discovering patterns in data using statistical models and algorithms, followed by
utilizing these patterns to create forecasts or conclusions regarding brand-new data. In
numerous types of research in construction, it is applied to the random forest, AdaBoost,
gradient boost regression trees, support vector regression, extreme gradient boosting, and
ANN algorithms. Some successful implementations of these algorithms in predicting
the behavior of elements in construction are listed in the works of Tang et al. (2022),
Feng et al. (2023), and Zhao et al. (2023) [2–4].

A sufficiently accurate estimation of resources is essential when analyzing various
technical solutions for bridges when detailed data on designed bridges are unavailable. In

Buildings 2023, 13, 1187. https://doi.org/10.3390/buildings13051187 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13051187
https://doi.org/10.3390/buildings13051187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-0740-2136
https://orcid.org/0000-0002-0773-5144
https://doi.org/10.3390/buildings13051187
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13051187?type=check_update&version=1


Buildings 2023, 13, 1187 2 of 29

addition, the availability of information about the resources needed for the construction
of bridges in the initial stages of the project enables the entire project to be seen more
comprehensively to provide initial construction cost estimates for funding acquisition
purposes and also from the aspect of maintenance through the analysis of the whole life
cycle of the project. Recent thorough reviews of the literature and content evaluations
of construction cost prediction models by Tayefeh Hashemi et al. (2020) and Antoniou
et al. (2023) have shown that numerous models offering cost estimates and/or material
consumption estimates at various design stages have been provided by researchers, mostly
for buildings, but also for power generation or network construction, road construction,
rail and road tunnels, and bridges [5,6].

One of the most detailed comparative studies related to the consumption of resources
in bridge construction was done in 2001 by Flyvbjert et al. [4]. The total value of the analyzed
projects in North America and Europe was over USD 90 billion. The results indicated that
the average percentage error in cost estimation for bridges and tunnels is 33.8%, while the
total average error for all analyzed projects is 27.6%. One of the important conclusions is the
subjectivity in the assessment of resources in the construction of construction facilities [7].

An analysis of the consumption of resources, concrete, prestressed steel, and reinforc-
ing steel, and equations for their assessment in the construction of prestressed bridges
are provided by Men in 1991 in the book Prestressed Concrete Bridges [8]. The analysis
is based on records of resource consumption during the construction of 19 prestressed
concrete bridges in Switzerland. The cost of building bridges, as well as the consumption
of resources during construction, is given as a function of the variable defined as the
geometrical average-span length.

In 2001 Marcous et al. [9] worked on a preliminary quantity estimate of highway
bridges using artificial-intelligence methods. On the basis of 22 prestressed concrete
bridges across the Nile River in Egypt, artificial neural-network models were developed.
In terms of testing the accuracy of the model, cross validation was used. As a result, it
was found that the error of the created model in estimating the weight of prestressed steel
is 11.5%.

The Egnatia Motorway, a 680 km long modern highway that serves five ports and
six airports and connects the major cities of Northern Greece, is one of the largest civil
engineering projects ever undertaken in Europe. A number of Greek researchers have used
data from the Egnatia Motorway’s bridges to develop their models for estimating bridge
material consumption and construction costs. It is one of the original fourteen priority
projects of the European Union and constitutes part of the Trans-European Network for
Transport [10].

More specifically, Fragkakis et al., in 2011 [11], worked on a parametric model for
estimating resources in the construction of concrete-bridge foundations. Their database
included complete data on 78 structures and 157 pier foundations. The coefficient of
determination exceeds 77% in all prediction models. Antoniou et al. [12,13] worked on
a model for estimating highway bridge-underpass costs and material consumption. The
research was based on data from 28 closed-box sections and six frame underpasses from
the Egnatia Motorway and the E65 Motorway in Greece. Their first study [12] provided
consumption values of reinforcing steel per m3 of used concrete and the so-called theoretical
volume of the structure. This new variable is described as the product of the length, width,
and overhead clearance height of the local road that needs to be reconfigured to pass
underneath the freeway. The same research team proceeded to develop more accurate linear
regression models for forecasting the costs of underpass bridges, concrete consumption,
and reinforcing steel consumption, depending on two input variables, i.e., the bridge
surface area and the theoretical volume. As a result, satisfactory values of the coefficient of
determination for cost estimation, consumption of concrete, and consumption of reinforcing
steel of 0.80, 0.85, and 0.70, respectively, were obtained [12,13]. Similarly, Antoniou et al. [14]
provided an analytical formulation for early cost estimation and material consumption of
road overpass bridges in 2016. The database included data on 57 completed overpasses on
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the Egnatia Motorway. The research defined linear models for cost estimation, reinforcing
steel consumption, and prestressing steel consumption. In the model for forecasting the
consumption of prestressing steel, linear models are given for assessment depending on
the deck surface area as an input variable and depending on the theoretical volume of the
bridge, whose coefficient of determination value is 0.85 and 0.73, respectively. In this case
the theoretical volume of the bridge is defined as the deck length multiplied by its width
multiplied by the average pier height. In order to promote the use of prefabrication in the
design and construction of highway concrete bridges in countries with nonwell-established
relevant standards, Antoniou and Marinelli used multilinear regression analysis [15]. They
proposed a set of standard precast extended I beams suitable for use in the majority of the
common motorway-bridge models. The data of 2284 total beams from 109 bridges built
along the Egnatia Motorway and two of its perpendicular axes [15] form the basis of the
suggested set of standard beams.

Marinelli et al. [16] in 2015 worked on researching the application of artificial neural
networks for nonparametric bill-of-quantities estimation of concrete road bridges. The data
used to develop the model consists of 68 motorway bridges constructed in Greece between
1996 and 2008. A neural network model was used for forward signal propagation, and
three output variables were forecast: the volume of concrete, the weight of reinforcing steel,
and the weight of prestressed steel. The model’s accuracy expressed through the MAPE
criterion was 11.48% for precast beams, 13.94% for cast in situ, and 16.12% for the cantilever
construction method.

Kovačević et al. created a number of models in 2021 [17] for estimating the cost of
bridges made of reinforced concrete (RC) and prestressed concrete (PC). The characteristics
of the project and the tender documents were included in the database for the 181 bridges
in Serbia’s Corridor X that were finished. The research’s best option was a model based on
Gaussian random processes, and it had an accuracy of 10.86% by the MAPE criterion.

Kovačević and Bulajić carried out a study in 2022 [18] to predict the consumption
of prestressed steel used in the construction of PC bridges using machine-learning (ML)
techniques. In Serbia’s Corridor X, the database contained data on 75 completed prestressed
bridges. According to the specified criterion MAPE, the model’s accuracy in determining
the prestressed steel consumption per square meter of the bridge superstructure was 6.55%.

The application of artificial neural-network models (ANNs), models based on regres-
sion trees (RTs), models based on support-vector machines (SVM), and Gaussian processes
regression (GPR) are all taken into consideration by Kovačević et al. [19] in order to estimate
the concrete consumption of bridges based on a database for the 181 bridges in Serbia’s
Corridor X in 2022. The most precise model, with a MAPE of 11.64%, is produced by
employing GPR in combination with ARD’s covariance function, according to the study.
Also, the application of the GPR ARD covariance function makes it possible to see the
importance of each input variable to the model’s accuracy.

The development of a model for forecasting the amount of steel in this research is
significant for science for several reasons. The prediction of the prestressed steel amount
for a concrete road bridge is important for cost estimation, structural integrity, and the
efficiency of the design and construction processes. The amount of prestressed steel used in
a bridge directly affects the cost of construction. Accurately predicting the amount of steel
required can help project managers and engineers estimate the overall cost of the project
more accurately.

In this research, the hypothesis is that it is possible to define a model for forecasting
the amount of prestressing steel using machine learning methods that will be accurate and
transparent enough for practical application and where the amount of prestressing steel
can be obtained based on a narrow set of model input variables. The RMSE, MAE, R, and
MAPE criteria were defined for evaluating the model, while an effort was made to find
a model with less complexity. In addition, the aim was to find a model that would, to
the greatest extent, simultaneously satisfy all of the set criteria but at the same time is not
particularly bad according to any individual criterion from the defined criteria.
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In addition, to the author’s knowledge, the method for finding the optimal compromise
solution VIKOR was applied for the first time for forecasting the amount of prestressing
steel. In this way, implementing the VIKOR method, within the set of potential alternatives
that are represented by individual models that have different accuracy according to the
selected criteria, there is a solution that satisfies all criteria well overall but is the least bad
according to individual criteria.

2. Methods

In order to calculate the amount of prestressing steel used in the construction of
prestressed concrete road bridges, different ML approaches are presented and analyzed in
this study. The use of artificial neural networks, models based on the regression trees, and
multigene genetic programming (MGGP) models were examined.

2.1. Multilayer Perceptron (MLP) Neural-Network Models

Multilayer perceptron (MLP) neural networks are a type of feed-forward artificial
neural network that is commonly used for supervised-learning tasks. They are called
“multi-layer” since they contain one or more hidden layers in addition to the input and
output layers. Due to their ease of implementation and ability to simulate a variety of
complex functions, MLP neural networks are widely employed.

The basic structural element (Figure 1) of neural networks is a neuron. The neuron
model consists of the following elements [20].
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• A collection of synapses that have corresponding weight values;
• Summarizing part, where inputs multiplied by appropriate weights are added;
• Appropriate activation function that restricts the neuron’s output.

An artificial neuron consists of a group of weight coefficients that enter the body of
a neuron, known as the node or unit, and a set of weights. Weights are connections with
other neurons from the previous layer that then add up, and in the end, the bias value
is added, which is independent of the other weights and serves to correct the sum. The
following Equations (1) and (2) can mathematically explain this:

uk =
m

∑
j=1

wkjxj (1)

yk = ϕ(uk + bk) (2)

where x1, x2, . . . , xm are the corresponding input values of individual variables, and
wk1, wk2, . . . , wkm are the corresponding weights for neurons k and bk, the calculated bias.

A feed-forward neural network called a multilayer perceptron (Figure 2) consists of
individual neurons grouped in at least three layers:

• Data enters the network at the input layer;
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• All calculations using the data, weights, and biases are performed in the hidden layer;
• The output layer from which outcomes are obtained.
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If the MLP architecture with the property of universal approximator is used, the
determination of the network structure is reduced to the determination of the number
of neurons of the hidden layer since the number of input neurons is determined by the
dimensions of the input vector and the number of output neurons is determined by the
dimension of the output vector.

An MLP model with one hidden layer whose neurons have a tangent hyperbolic
sigmoidal activation function, while the neurons of the output layer have a linear activation
function, can approximate an arbitrary multidimensional function for a given dataset when
there are a sufficient number of neurons in the hidden layer [17].

There are numerous recommendations regarding the approximate number of neurons
in the hidden layer, some of which are listed in Table 1.

Table 1. Recommendations for the number of neurons in the hidden layer of a neural network.

Number of Neurons in the Hidden Layer Reference

1. NH = (Ni + No)/2 Ripley [21]

2. NH =
√
(Ni + No) Kaastra [22]

3. NH = 2× Ni Kannellopulas [23]

4. NH = 2
3 × Ni + No Heaton [24]

5. NH = (4× N2
i + 3)/

(
N2

i − 8 ) Sheela [25]

6. NH ≤ min
(

2NI + 1, NS
NI+1

)
Kovačević et al. [20]

Where NI the is number of inputs, Ns is number of samples, and No is number
of outputs.

In this paper, the upper limit of the number of neurons was adopted, and then different
architectures of neural networks were examined, starting with one neuron in the hidden
layer and finally with the number of neurons equal to the upper limit obtained by the
expression in row 6 in Table 1.

2.2. Regression-Trees (RTs) Models

Regression trees (RTs) are a straightforward and understandable machine-learning
model that may be used for regression and classification [20]. In each tree node, except for
the leaves, the corresponding condition is examined. Whether the condition is met or not,
one or the other branch of the tree goes to the next node. An example of a decision tree is
given in Figure 3. For the corresponding input quantity, that is, the instance (a vector or
matrix) of the problem under consideration and for which a prediction needs to be made,
the corresponding condition at the root of the tree is first examined. Then, depending
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on the result, the instance follows the branch that corresponds to that result to the next
node and repeats the process until it reaches the terminal leaf, whose value indicates the
requested prediction. All instances of space initially belong to the same set, and then space
is gradually split up into subsets.
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The split variable j and split point value s, which serve as the location at which the
division of space will be carried out, must be determined. Its value corresponds to the
minimum value of the expression (3) that can be determined by examining all of the input
variables in the model [26,27]:

min
j, s

min
c1

∑
xi∈R1(j, s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j, s)
(yi − c2)

2

 (3)

where ĉ1 = average(yi |xi ∈ R1(j, s)) and ĉ2 = average(yi |xi ∈ R2(j, s)).
After identifying the split variable j and the best-split point s, the process is maintained

by further splitting these regions until a specific stop criterion is satisfied. This approach
represents the so-called greedy approach since it only considers what is optimal in the
current iteration, not considering whether that decision is also globally optimal [20,26,27].

According to the implemented binary recursive segmentation (Figure 3 (left)), each
step involves splitting the input space into two parts and repeating the segmentation
process. The resulting areas or regions should not overlap and encompass the whole space
of predictors or input variables. In binary recursive partitioning, the output is characterized
by the mean value in each of the two areas that make up the input space.

The Figure 3 shows the mean values for regions R1− R8 denoted with c1− c8 (Figure 3
(right)). Regions are defined using specific values t1 − t7, which represent the obtained
optimal values for split point values s for split variables x1 and x2.

In this way, instead of one linear model for the entire domain of the considered
problem, the domain is fragmented into a larger number of subdomains in which the
corresponding linear model is implemented.

Deep regression trees are typically prone to overfitting since, by applying a large
number of conditions, such trees can describe even irrelevant specificities of the data
on which they were trained. Shallow trees typically have the problem of underfitting.
Based on this, it can be concluded that the depth of the tree represents a regularization
hyperparameter. The good side of decision trees is their interpretability. If the tree is small,
its conditions clearly indicate the basis on which it makes decisions.

Moreover, each path through the decision tree from root to leaf can be seen as a single
if–then rule, in which the condition represents the conjunction of all conditional outcomes
along the path, while the final decision is the numerical value in the terminal leaf. Another
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advantage of using regression trees is that regression trees can combine categorical and
continuous attributes.

2.3. Multigene Genetic-Programming (MGGP) Models

Genetic programming (GP) is a machine-learning method based on evolutionary
principles applied to mathematical models of the problem under consideration [28]. The
basic idea lies in the evolutionary principle that the biological individual best adapted to
the environment survives. Analogous to that approach, individual prediction models can
be considered biological individuals. The models that provide the most accurate forecast
for the output-model variable can be considered the most adapted and survive and go into
the next generation with other adapted models.

With the MGGP method [29–32], individuals are first created, making up the initial
population (Figure 4). Then, each individual model is represented by one or more trees. The
tree model is formed in the first iteration as a random selection of mathematical functions,
constants, and model variables. Each tree represents one gene. Trees end with terminal
nodes that are either model input variables or constants, while all other nodes are called
functional nodes.
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Figure 4. An example of an MGGP model that has two genes [17].

One prediction MGGP model consists of one or more trees or genes. After the for-
mation of the initial population of a specific size, the models that are the most adapted,
which in MGGP modeling means the models whose prediction differs the least from the
target value, are selected. Those best models are then used to create the next population
of models through crossover, mutation, and direct copying of individuals of the previous
generation. In practical implementation, the selection is made, probabilistically based on
the model’s fitness value and/or complexity. The complexity of the model is based on the
number of nodes and subtrees that can be formed from the given tree, which represents the
so-called expressional complexity of the model.

A gene can either be replaced entirely during the crossover or partially changed [29–32].
If it is assumed that the individual model marked with J1 (4) contains the following genes
[G1,1 G2,1 G3,1 G4,1 G5,1 ] and if it is assumed that the other individual model marked with
J2 (5) contains the following genes [G1,2 G2,2 G3,2 G4,2 G5,2 ]. Let us indicate by <> the
genes that are randomly selected in both models with two cross sections:

J1 :[G1,1 < G2,1 G3,1 > G4,1 G5,1 ], (4)

J2 : [G1,2 G2,2 < G3,2 > G4,2 G5,2 ]. (5)

The bolded portions of the model or entire genes covered by random cross sections
are exchanged in the offspring O1 (6) and offspring O2 (7), which represents the so-called
high-level crossover procedure [20].

O1 :[G1,1 G3,2 G4,1 G5,1 ], (6)
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O2 :[G1,2 G2,2 G2,1 G3,1 G4,2 G5,2 ]. (7)

Crossover is also implemented at the level of one gene (low-level crossover), where
the structure of a part of the gene changes (Figure 5a,b). However, only part of the gene
may be exchanged (that is, only part of the tree is exchanged).
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Figure 5. Crossover and mutation operation in MGGP: (a) random selection of parent tree nodes;
(b) exchange of parents’ genetic material; (c) random node selection in tree mutation; and (d) mutation
of a randomly selected part of a tree [20].

It is also possible to mutate at the level of a single gene in addition to crossover
(Figure 5c,d). A mutation involves the random selection of one gene and one node within it.
The relevant mutation is then carried out, adding a subtree that was randomly generated
at the location of the chosen node. A specified number of iterations are made using the
aforementioned processes.

The model obtained this way is pseudolinear since it represents a linear combination
of nonlinear individual models in the form of a tree.

Mathematically, a multigene regression model can be represented by the following
Equation (8):

ŷ = b0 + b1t1 + b2t2 + . . . + bGtG (8)

where b0 is the bias term, bi is the ith scaling parameter, ti is the (N × 1) vector of outputs
from the ith tree (gene), and whose structure is represented by Figure 6.

With G, it is denoted the gene-response matrix, or G = [ 1 t1 t2 . . . tG], whose
dimensionality is (N × (G + 1)) and b is a vector of the coefficients b = [b0 b1 b2 . . . bG] is
the dimensionality ((G + 1)× 1). Taking into account the above, the multigene regression
model can be written in the following Equation (9):

ŷ = Gb (9)
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From the training data, the vector b is the least-squares estimate and it can be calculated
using the following Equation (10):

b =
(

GTG
)−1

GTy (10)

Regular tournament selection, which solely employs RMSE or Pareto tournament, is
used to choose individuals for breeding. Each individual in a Pareto tournament is chosen
probabilistically based on their RMSE (fitness) score and expressional complexity. The
procedure is successively repeated until a certain stopping criterion is reached.
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2.4. Method for Multicriteria Compromise Ranking VIKOR

Very often, to solve various optimization problems, it is necessary to choose a solu-
tion that is evaluated based on a large number of criteria. Multicriteria decision-making
(MCDM) approaches are used when selecting the best alternative from a list of potential
alternatives due to their capacity to consider various and frequently conflicting criteria to
create rankings of alternatives. Many different MCDMs have been adopted for decision
making in the construction industry [33,34]. One of the ways to solve the problem is the
VIKOR compromise programming method, which ranks the alternatives in such a way
that they propose an alternative that ensures the maximum satisfaction of the majority
of the defined criteria and, at the same time, is not particularly bad according to specific
criteria [35–39]. It can be said that the proposed compromise solution is a compromise that
satisfies both the majority and the minority criteria at the same time.

Compromise programming proposes establishing a reduced set of solutions to the
problem of multicriteria optimization by employing the ideal point as a reference point in
the space of criterion functions.

Suppose that there is an optimal solution x∗i , ie. f ∗i , according to the i-th criterion (11):

f ∗i = ext
x∈X

fi(x), i = 1, 2, . . . , n. (11)

where ext represents the maximum if that criterion function represents something that
is “good” that it is wanted to be maximized, such as profit, benefit, etc., or minimum
if it represents something that is “bad” that it is wanted to be minimized, such as cost,
something that is harmful, etc.

The vector F∗ = ( f ∗1 , . . . , f ∗n ), where n is the total number of criterion functions, fi(x)
is the ideal solution to the problem of multicriteria decision making. In practice, it is rare
that a potential solution is simultaneously optimal according to all of the individual criteria
fi(x), i = 1, 2, . . . , n.

In real situations, it is necessary to find a solution closest to the ideal based on some
adopted measure of distance. Therefore, in the VIKOR method, the measure of the distance
from an ideal point defined by Equation (12) [33–37] is used:

Lp(F∗, F) =
{
∑n

i=1[ f ∗i − fi(x)]p
}1/p

, 1 ≤ p ≤ ∞. (12)

This metric represents the distance between the ideal point F∗ and point F(x) in the
space of criterion functions. In order to emphasize the dependence on the parameter p, the
metric Lp(F∗, F) will be denoted by R(F(x), p).
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The solution x+(p) ∈ X which achieves the minimum of the function R(F(x), p),
is called the compromise solution of the multicriteria optimization problem with the
parameter p [35–39].

The function R(F(x), p) for p = ∞ has the following form (13):

R(F(x), ∞) = max
i

[ f ∗i − fi(x)]. (13)

When the value of the parameter p tends to infinity, the problem of the distance from
the ideal point is reduced to the mini–max problem.

In the case of compromise optimization, in the general case, it is necessary to determine
the sequence for a particular set of alternatives

{
a1, a2, . . . , aJ.

}
According to the defined

criteria f1, f2, . . . , fn.
The distance of some alternative aj, concerning the ideal point in relation to all defined

criteria (the criteria are considered in summary), is measured by the measure Sj, which is
defined by the following Equation (14):

Sj = ∑n
i=1

[
wi
(

f ∗i − fij
)
/
(

f ∗i − f−i
)]

, f or p = 1), (14)

where wi represents the weight attached to some criterion fi; fij represents the value of i-th
criterion function for the alternative aj; f ∗i represents the best value according to criterion i;
and f−i represents the worst value according to criterion i (i = 1, 2, . . . , n).

The distance of some alternative aj, concerning the ideal point to certain individual
criteria, is defined through the measure Rj, which is defined by the following Equation (15):

Rj = max
i

[
wi
(

f ∗i − fij
)
/
(

f ∗i − f−i
)]

, ( f or p = ∞). (15)

Using the defined measures Sj and Rj, the initially defined problem of finding the
optimal solution concerning the defined criteria fi(x), i = 1, 2, . . . , n, is reduced to a two-
criteria problem of optimizing the distance from the ideal point.

The ideal alternative in the new two-criteria problem has the following goodness-
measure values (16), (17):

S∗ = min Sj
j

and R∗ = min Rj
j

(16)

S− = max Sj
j

and R− = max Rj
j

(17)

The definitive measure of the optimality of an alternative is determined by the value
Qj, which represents the superposition of measures Sj and Rj, i.e., the balance between
the fact that the better alternatives better meet the majority of criteria and have a minimal
deviation from individual criteria, is determined by the Equation (18):

Qj = v1QSj + v2QRj. (18)

where v1 is the weight of decision-making strategy satisfying the majority of criteria, v2
is the weight of decision-making strategy taking into account the individual criterion, the
distance values of individual alternatives are normalized in relation to measures Sj and Rj,
i.e., QSj =

(
Sj − S∗

)
/(S− − S∗), and QRj =

(
Rj − R∗

)
/(R− − R∗). If both strategies have

the same weight, then ν = v1 = v2 = 0.5.
According to [35–39], the VIKOR approach only proposes the alternative that is in

the first position on the compromise ranking list for ν = 0.5 as a multicriteria optimal
alternative (for specified weights wi) if it also has:

• “sufficient advantage” over the alternative from the next position (condition U1);
• “sufficiently firm” first position with weight change ν (condition U2).
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Alternative a′ has a sufficient advantage for ν = 0.5 over the following a′′ from the
ranking list if (19):

Q(a′′ )−Q(a′)≥ DQ, (19)

where DQ is the “priority threshold” DQ = min (0.25;1/(J − 1)), and J represents the total
number of problem alternatives.

3. Dataset

This research analyzed the consumption of prestressing steel in prestressed concrete
bridges (prefabricated or cast onsite). In order to create an appropriate model for assess-
ment, it was necessary to create an appropriate database on prestressed bridges, for which
data was collected on realized prestressed concrete bridges on Corridor X in Serbia. In
addition, project and contract documentation was collected for 74 completed bridges on
the highway and the connecting roads to the highway (Figure 7).
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Figure 7. Eastern and southern legs of Corridor X in Serbia [17].

Most research uses a modified span variable. In this research, variables were intro-
duced that take into account the maximum individual span, the average span, and the total
length span of the bridge since it is very important for the model whether the bridge is
made of a larger number of smaller spans or a smaller number of larger spans. In addition,
sometimes, not all spans on the same bridge are the same. Since, in the case of bridges
that have more spans, where a certain span can be slightly larger than the other spans
(e.g., due to the river that the bridge spans), a variable describing the maximum span
was introduced.

In addition, the dataset included bridges on the highway itself, but also a certain
number of access bridges, so a variable was introduced that contains information about
the width of the road. The variable that contains information about the width of the road
implicitly contains information about the useful load. The bridges that were analyzed were
located in a narrow geographical area, and there were no differences in terms of load, so
the load was not treated as a separate variable.

The data was divided so that 70% of the total data was assigned to the training set, and
the remaining 30% of the data that the model did not see was used for testing the model.
When dividing the data, it was taken into account that these two sets of data should have
similar statistical characteristics.
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The data was divided by mixing the entire set using the integrated randperm Matlab
function several times and then randomly separating the training and test set from it in the
specified percentage while controlling the statistical indicators of the training and test set,
which should be, ideally, in the case of the same, that is, in the practical research of similar
values. A total of 52 datasets were used for model training. The remaining data from
22 datasets were not submitted to the model and were used for model evaluation.

For the input variables for the forecast model of prestressing steel per m2 of the bridge
superstructure, the following were taken: x1—maximum individual bridge span (MIBS),
x2—average bridge span (ABS), x3—total bridge span (TBS) length, x4—bridge width (BW).

Based on project documents, the dependent variable PS, being the mass in kg of
prestressed steel per m2 of the bridge superstructure, is calculated. The statistical charac-
teristics of the model variables are given in Table 2. The mechanical characteristics of the
prestressing steel are given in Table 3.

Table 2. Mean, minimum, and maximum values of variables in the model used to estimate the
prestressed steel consumption per m2 of the bridge superstructure.

Variable Average
Value

Minimum
Value

Maximum
Value

Max. individual bridge span—MIBS [m] 31.58 18.00 49.00

Average bridge span—ABS [m] 30.74 17.60 44.91

Total bridge span—TBS [m] 161.33 21.20 628.74

Bridge width—BW [m] 12.81 8.40 17.80

Mass of prestressed steel (PS) [kg/m2] 17.13 8.98 38.74

Table 3. Geometrical and mechanical rope characteristics [18].
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By analyzing the correlation matrices of the considered variables of the model, it
can be observed that there is a significant intercorrelation of the variables of the model.
Significant intercorrelation of model variables significantly reduces the accuracy of linear
regression models, and nonlinear machine-learning models are particularly suitable for
modeling in these cases.

In the specific case, all the variables related to the span are correlated (MIBS, ABS,
and TBS) by the amount of prestressing steel as an output variable. However, the vari-
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able bridge width (BW), which has a low correlation with the value (R = 0.08) with the
output variable, is correlated with other input variables. The application of machine-
learning methods is particularly suitable in such cases of synergistic effects of individual
input variables.

Data related to the consumption of prestressing steel is a good indicator of the total
costs. In the formed database of 74 bridges, the calculated share of steel works in the total
costs was 46.11%, while the share of concrete works was 40.66%. A model that would focus
on the prediction of the amount of steel could also be used for implicit cost estimation.

Histograms of model variables and mutual correlations with the correlation coefficient
values are given in Figure 8. From Figure 8, it is noticeable that there is a significant
intercorrelation between most of the input variables of the model.
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In Table 3, the mechanical characteristics of the prestressed steel ropes are listed for
the reason that the limitation of the developed model is that the amount of steel obtained
by prediction refers to the prestressed steel of the given characteristics.

Criteria for Assessing Model Accuracy

In the research, all models were trained and tested under identical conditions. When
determining the optimal model, the accuracy of the model according to the criteria RMSE,
MAE, R, and MAPE was taken into account, though the complexity of the model was also
taken into account. The applied systemic approach to modeling is given in Figure 9. The
RMSE and MAE criteria are absolute criteria of model accuracy expressed in the same unit
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as the variable that is being modeled. MAPE and R criteria are relative criteria of model
accuracy and have no unit.
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The RMSE criterion is defined by Equation (20) and is characterized by the fact that
deviations from the target value are first squared, then averaged, and then their square root
is found. With such a calculation, a greater emphasis on greater deviations is given.

RMSE =

√√√√ 1
N

N

∑
k=1

(dk − ok )
2 (20)
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where dk is the target value, ok is the modeled output, and N is the number of samples.
The MAE is used to estimate the model’s mean absolute error and practically all

deviations have the same weight. It is defined by the following Equation (21):

MAE =
1
N

N

∑
k=1
|dk − ok | (21)

The R coefficient, is a relative criterion for the evaluation of the model’s accuracy. It is
defined in dimensionless form by the following Equation (22):

R =

√√√√[ N

∑
k=1

(dk − d)(ok − o)

]2

×
[

N

∑
k=1

(
dk − d

)2
(ok − o)2

]−1

(22)

where o is the predicted mean and d is the mean target value.
The mean absolute percentage error (MAPE) is a measure of prediction accuracy

calculated in dimensionless form. The accuracy is expressed as a ratio determined by the
following Equation (23):

MAPE =
100
N

N

∑
k=1

∣∣∣∣dk − ok
dk

∣∣∣∣ (23)

When determining the optimal solution, the VIKOR method of multicriteria compro-
mise ranking of alternatives was used to obtain a solution or model that will satisfy the
majority of criteria, but will not be significantly bad, according to any defined individual
criteria. In addition, the complexity of the model was taken as a criterion.

4. Results

With the applied methods depending on the method, a different data-preparation
procedure was applied. In the method of artificial neural networks, linear scaling in the
interval [0, 1] was applied so that all of the variables were equal during model training
and then rescaled, and an accuracy assessment was performed after the output variables
were rescaled. No scaling was applied to regression tree models and models based on
genetic programming.

The MLP neural network has a fixed number of neurons in the input and output layers,
with four and one neurons, respectively. However, the number of neurons in the hidden
layer was determined through experimentation and was limited to a maximum of nine
neurons based on expression in row six in Table 1.

For determining the optimal number of neurons in the hidden layer, the network
was trained multiple times with different numbers of neurons in the hidden layer ranging
from one to nine, as illustrated in Figure 10. The adopted limit of nine neurons is large
enough to satisfy all the recommendations indicated by the expressions in Table 1. By
analyzing Figure 10, it can be seen that the thus-adopted range for the number of neurons
is satisfactory and, within that range, the accuracy functions RMSE, MAE, and MAPE
have minima, while R achieves maximum. The results of the training indicate that the best
number of neurons in the hidden layer is four, which was determined by evaluating the
network’s performance using four quality criteria: RMSE, MAE, R and MAPE, as shown in
Figure 10.

All models were trained within the Matlab program with default parameter settings.
The LM algorithm was used.

The regression-tree model is built using a recursive binary-splitting process. Starting
from the root node, the predictor variable that best separates the data into two subsets is
selected using a split criterion mean-squared error (MSE). This process is repeated for each
subset until a stopping criterion is reached. The splitting process continues until a set of
leaf nodes is reached that provides predictions of the dependent variable. This research
implements a minimum number of observations per node as the stopping criterion.
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the hidden layer: (a) RMSE and MAE; and (b) R and MAPE.

The performance of the regression tree can be improved by tuning the hyperparam-
eters, such as the maximum tree depth and the minimum number of observations per
node. This involves trying different values of the hyperparameters and evaluating the
performance of the tree on the testing set. The goal is to find the optimal hyperparameters
set that provides the best predictions.

In this research, the RT model examined different values of the minimum amount of
data per parent node ranging from 1 to 10 and the minimum amount of data per terminal
leaf from 1 to 10. All the models thus obtained were evaluated in terms of the defined
accuracy criteria RMSE, MAE, R, and MAPE on a defined test set of subdata.

It was found that the optimal model with a min parent size equal to four and a
minimum amount of data per terminal sheet is two. The structure of the regression table is
given in Figure 11.

With the MGGP model, the first population of random trees is generated to start
the evolutionary process. In all models, a population of 1000 randomly generated trees
was initially formed using a functional set composed of selected mathematical operators
and randomly selected ephemeral random constant (ERC) values (Table 4). Within the
MGGP model, the selection of the appropriate parameters in terms of crossover probability,
mutation probability, and probability of the Pareto tournament, which determines the
transfer of individuals to the next generation, is of crucial importance for creating the
model. The ERC probability, which determines the probability of the appearance of certain
values of constants from the range [−10, 10] in terminal leafs, is set to the value of 0.1,
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and the tournament size is set to the smallest value of two, which prevents premature
convergence and ensures a greater diversity of individuals. The values for the number of
genes were adopted in accordance with the recommendations of the authors of the GPTIPS
2.0 software with the maximum value of five, while the optimal depth of the trees was
investigated experimentally.
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Table 4. Setting parameters for MGGP models.

Parameter Setting

Function set times, minus, plus, rdivide, square, exp, log, mult3, sqrt, cube, power
Population size 1000

Number of generations 100
Max number of genes 5

Max tree depth 6
Tournament size 2

Elitism 0.05% of population
ERC probability 0.1 (Integer 0.5)

Crossover probability 0.85 (High level 0.2, Low level 0.8)
Mutation probability 0.14

Probability of Pareto tournament 0.7

Each tree in the population is then evaluated simultaneously based on fitness expressed
through RMSE and expressional complexity. The fittest individuals from the population
are selected to be parents for the next generation. The selected parents are then combined
through genetic operators such as crossover and mutation to produce offspring for the next
generation, and a certain percentage of trees (0.05% of the population) went directly to the
next generation.

The offspring replace the least-fit individuals in the population to create the next
generation. The evolutionary process is continued until a stopping criterion is met, such
as a maximum number of generations or a desired level of fitness. The complexity of the
model was examined using the MGGP approach using various values of the number of
genes and various tree depths.

In this research, the maximum number of generations was limited to 100, and the
procedure was repeated ten times for each gene structure with a defined maximum depth
of the tree, and the models were combined. Models with one to five genes whose tree depth
varied from one to six were tested. A total of 30,000,000 MGGP models were tested.
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In order to single out the optimal models, a graphic representation of the population
of models obtained during 100 generations was used and presented on a two-dimensional
graph, one axis of which is expressional complexity and the other axis is the value of 1−R2.
In this way, it is possible to define the so-called Pareto front composed of regression MGGP
models that are not inferior in terms of expressional complexity and the 1− R2 value,
represented by green dots. Non-Pareto models are represented by blue dots.

It is of interest to further analyze these models on the test dataset in terms of the
defined accuracy criteria RMSE, MAE, R and MAPE. In the specific case, e.g., model that
has three genes and whose depth is six, the Pareto front is made up of 19 different models
(marked green). The optimal model in the training set is represented by a green dot with a
red border (Figure 12).
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Figure 12. Pareto front of models in terms of model performance and model complexity for a model
with 3 genes and depth of up to 6.

In total, more potential architectures of the MGGP model were analyzed, that is,
models with one, then two, three, four and five genes. For each model, the depth varies
from one to a maximum of six. Using the evolutionary process, it creates a total of one
million models for each type of model, and only the best 10,000 were displayed on the
Pareto front. The number of model types is 30 (since we have models of up to five genes
whose depth is from one to six, that gives 5 × 6 = 30 model types).

Figure 13 shows 19 Pareto optimal models out of a total of a million analyzed models
that have a given structure of three genes (three trees) and whose tree depth is a maximum
of six.

The results of all of the analyzed models in terms of the defined criteria are graphically
presented in the Figure 14. It can be seen that in terms of RMSE and R criteria, the optimal
model is composed of three genes whose tree depth is limited to six. Regarding the MAE
criteria, the optimal model is composed of four genes whose depth is limited to four. While
in terms of the MAPE criteria, it was found that the model with three genes and whose
tree depth was limited to six was the most accurate. Regarding expression complexity, the
optimal model is a model with four genes and a depth of up to three, whose expression
complexity is the lowest and amounts to 39. The value of expression complexity is given
automatically by the GPTIPS 2.0 software. Details regarding the model with four genes
and whose tree depth is a maximum three are given in Appendix A (Figures A1–A3), while
for the model with four genes whose tree depth is four, details are given in Appendix B
(Figures A4–A6).
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The specific analysis did not single out one model as the most accurate in terms of
all defined criteria of accuracy, so a multicriteria analysis (Table 5) was used to rank the
potential solutions. In order to select a multicriteria optimal solution, the approach was to
try to select a solution that, to the greatest extent, satisfies all the criteria of accuracy, and
does not have extremely bad criteria indicators, according to individual criteria.
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Table 5. Values of criterion functions for individual models or alternatives.

Criteria a1
(Gene = 4, Depth = 4)

a2
(Gene = 4, Depth = 3)

a3
(Gene = 3, Depth = 6) f*

i f−i

f1 = RMSE 1.9531 1.7602 1.5618 1.5618 1.9531

f2 = MAE 1.2022 1.2462 1.2843 1.2022 1.2843

f3 = MAPE/100 0.0940 0.0941 0.0916 0.0916 0.0941

f4 = R 0.9091 0.9268 0.9429 0.9429 0.9091

f5 = expr.comp. 54 39 84 39 84

In addition, priority was given to finding a solution that has a lower complexity of
expressions. The complexity of the expression is defined by the expressional complexity
value given by GPTIPS 2.0 [27,28] software. As a methodological approach, the VIKOR
method for finding compromise solutions was implemented. In this way, the search for a
multicriteria compromise optimal solution was started.

When applying the VIKOR method, it was assumed that all criteria have the same
weight, which is wi = 0.2, (i = 1, 2, . . . , 5). Since the criteria space is heterogeneous, i.e.,
criteria expressed in different units, all values are first scaled into the interval [0, 1]. The
length of the range of the i-th criterion function is Di = f ∗i − f−i , where for each i-th
criterion, f ∗i corresponds to the best alternative system (or decision) and f−i the worst.
For creating dimensionless functions (Table 6) with an interval range from criteria functions
[0, 1], the following transformation is used here (20):

dij = T
(

f ∗i − fij
)
=
(

f ∗i − fij
)
/Di (24)

Table 6. Normalized and weighted normalized values of criterion functions.

Criteria di1 di2 di3 widi1 widi2 widi3

f1 = RMSE 1 0.5070 0 0.2 0.1014 0

f2 = MAE 0 0.5359 1 0 0.1072 0.2

f3 = MAPE/100 0.96 1 0 0.192 0.2 0

f4 = R 1 0.4763 0 0.2 0.0953 0

f5 = expr.comp. 0.3333 0 1 0.06667 0 0.2

Using the normalized values, the following metric values can be obtained:

Sj = Σi=5
i=1widij;S1 = 0.658667;S2 = 0.503858;S3 = 0.4;

Rj = max
i

[
widij

]
;R1 = 0.2;R2 = 0.2;R3 = 0.2;

The VIKOR method introduces a modified measure Rj by adding to the value obtained
in the previous expression a value of the quantity rj, which is determined on the basis of
the following relation:

rj =
Sj − R−j

100
;r1 = 0.004587; r2 = 0.003039; r3 = 0.002;

From here, the values of the modified measure R are obtained:

R′1 = 0.2 + 0.00458 = 0.204587; R′2 = 0.2 + 0.003039 = 0.200304; R′3 =
0.2 + 0.002 = 0.202;

Based on the defined metrics S and R, the problem is reduced to a two-dimensional
one, and by adopting the same preference for satisfying the majority of criteria as for each
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individual criterion (ν = v1 = v2 = 0.5), a compromise ranking list of solutions can be
obtained (Table 7).

S∗ = 0.4;S− = 0.658667;R∗ = 0.202;R− = 0.204587;

Table 7. Ranking of individual alternatives using the metrics of the VIKOR method.

ai Ri R’
i QSi QRi Qi

a1 0.658667 0.204587 1 1 1

a2 0.503858 0.200304 0.401514 0.401623 0.401568

a3 0.4 0.202 0 0 0

By analyzing Table 7. it can be seen that the final order of alternatives based on metric
Q has the following order a3 → a2 → a1 . In order for alternative a3 to be considered as the
only compromise solution to the problem, it is necessary that the difference in Q measures
for alternatives a3 and a2 be greater than the threshold value DQ = 0.25, which is satisfied
in this case, so it can be considered that a3 represents the only compromise solution to the
optimization problem. In addition, a3 satisfies both conditions U1 and U2. The accuracy of
the proposed compromise solution, according to the adopted criteria, is given in Table 8
and its structure is as in Figure 15.

Table 8. Comparative analysis of results of different machine-learning models.

Model RMSE MAE MAPE/100 R

ANN 2.9540 2.2760 0.1490 0.8070

Decision tree 1.7131 1.1035 0.0766 0.9341

MGGP (gene = 3, depth = 6) 1.5618 1.2843 0.0916 0.9429

MGGP (gene = 4, depth = 3) 1.7602 1.2462 0.0941 0.9268

MGGP (gene = 4, depth = 4) 1.9531 1.2022 0.0940 0.9091
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Diagrams of modeled and actual values on the training set are shown in the Figure 16a),
while the values of the modeled and actual values on the test dataset are shown in the
Figure 16b).
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5. Conclusions

The paper defines models based on regression trees that can be used to forecast
the amount of prestressed steel in the construction of prestressed concrete bridges. De-
fined models do not require the use of certain software or the possession of program-
ming knowledge and can be very easily applied in practice. In addition, the analyzed
models showed higher accuracy compared to neural network models recommended by
many studies.

The application of defined symbolic models in the form of constitutive equations is
quick. The structure of the model and its parameters are extracted directly from the data in
this study, as opposed to the standard regression models, which first specify the model’s
structure before determining its parameters from the experimental data. The resulting
model, which takes the form of scaled trees and represents a linear combination of nonlinear
input transformations, can effectively simulate the challenging task of estimating the
consumption of prestressed steel during the construction of prestressed concrete bridges.

The accuracy of the model expressed through the value of the MAPE error of 9.16%,
as well as the high value of the correlation coefficient of 94.29%, was obtained.

The formed mathematical model recognized the span as a variable that implicitly
contains information about the type of bridge construction (for example, precast beams or
box girder). The representation of different types of construction was unbalanced, so this
information could not be entered as an input. However, since the authors are working on
increasing the database, it will be implemented in the future research.

In this research, MGGP models proved to be significantly simpler and more accurate
than ANN models. There is a significantly larger number of ANN model parameters
that need to be determined, significant analysis is required when determining the optimal
structure, and their implementation requires some programming knowledge. The RT
models that were analyzed have less complexity than the ANN model, however, the form
of the model itself, being in the form of a complex tree, is not ideal for practical application.
MGGP models have an advantage over both ANN and RT models in that their structure is
determined by the data itself without any subjective action.

The model developed in the paper can be applied within the range of the dataset on
which it was developed.

The limitations of the paper are that the bridges within the database were realized
in a relatively narrow geographical area. In that area, there are no significant differences
in bridge load (seismic load, wind load, etc.). If there are significant differences in model
loading during model training, an additional input variable could be introduced to the
training dataset that would include this.

Although the database of prestressed bridges, in this case, is composed of data on 74
completed bridges, it can be considered significant. Expanding the database would result
in more data within the training and test dataset, which could define the model and its
accuracy even more precisely.

The research applied in this paper has, in terms of results compared to previous
research, produced a result that is generally better than the other researched models in terms
of criteria of accuracy and complexity. Furthermore, the obtained model is straightforward
and is in the form of a simple equation.

In the event of a significant increase in the database in future research, clustering
methods could also be applied. The methodology developed in this work would be applied
in individual clusters, and individual equations can be defined for each cluster type.
The mentioned methodology can also be applied to the similar problem of determining
constitutive equations in engineering and construction when we have enough experimental
data for the problem we are considering.
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