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Abstract: The structural rehabilitation of historic/traditional rubble masonry wall constructions
requires consolidation and retrofitting solutions to be employed in order to withstand dynamic loads,
high vertical loads, and differential settlements. One of these strengthening techniques is based
on the use of steel bar connectors perpendicular to the wall, considered individually or integrated
into more complex strengthening techniques. The aim of this study is to evaluate numerically the
strengthening effect of transverse steel connectors on rubble masonry walls. With this purpose, a 2D
particle-reinforced model (2D-PMR) was devised and applied to model uniaxial compression tests.
The results presented show that predictions calculated using the proposed 2D-PMR model are very
close to known experimental results, particularly in the corresponding failure modes, the increase of
the maximum uniaxial compression value, and ductility. Parametric studies are also conducted by
varying the diameter of the steel bars and the level of strengthening to assess the influence of the
bar-bond effect and lateral plates. The presented parametric numerical studies show that (i) a two-
level strengthening solution guarantees a similar response to the three-level strengthening solution
adopted in the experiments; (ii) it is not relevant to apply a grout injection during the application
process of the steel connectors if lateral plates are adopted; and (iii) the 2D-PMR model can be used
in the definition of the steel bar diameter and properties; as shown, a smaller (8 mm) bar diameter
predicts a similar strengthening effect to the (12 mm) bar size adopted in the experiments. Given the
performance of the proposed 2D-PMR model, further work is underway that will allow the 2D-PMR
model to numerically assess other reinforcement techniques, namely, reinforced micro-concrete layers
and textile reinforced mortar.

Keywords: particle model; rubble-stone masonry; strengthening; transverse steel connectors; uniaxial
compression

1. Introduction

Ancient masonry buildings represent a significant percentage of the historic and
architectural heritage all over the world, including regions prone to seismic hazards.
According to [1], in Portugal, ancient masonry buildings account for around 50% of the
built heritage, many of which are classified as heritage sites (monuments, palaces, convents,
castles, churches, etc.).

In recent decades, there has been a growing interest in restoring, rehabilitating, and
preserving historic cities and their existing stone masonry buildings. It is widely acknowl-
edged that the stone masonry walls of ancient structures have reasonable resistance to
vertical loads but considerably lower shear and tensile strength. To improve the behavior
of these walls, lateral stability and resistance to gravitational actions must be ensured
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through the implementation of straightening solutions [2–6]. A state-of-the-art review on
seismic upgrading of existing masonry structures, including rubble stone masonry walls, is
presented in [7]. An extensive experimental campaign was conducted on multi-leaf, low-
strength, natural stone masonry specimens using various techniques [8]. The experimental
findings provide a better understanding of the behaviors of ordinary and strengthened
rubble masonry walls [2,9,10], and quantify the increase in strength and ductility of the
studied solutions.

One of the strengthening techniques involves the use of steel bar connectors perpendic-
ular to the wall, either individually or as part of more complex rehabilitation techniques [6].
This technique provides transverse confinement, preventing detachments of the masonry,
particularly the stones, caused by high compression loads and improving the global me-
chanical characteristics, including compression and shear strength. However, to optimize
the reinforcement solutions, numerical analyses are useful in the design of those solutions.
Studies on the effectiveness of strengthening solutions of multi-leaf masonry walls based
on transverse steel connectors are also reported in [11].

Existing rubble stone masonry is notoriously complex to model accurately due to
its heterogeneity, uncertainty in material properties, including nonlinear behavior, and
geometric unevenness of the stones’ size. The masonry analysis can be performed at the
macro scale or micro scale. In a macro-modeling approach [12,13], which is suitable for
large-scale analysis, the masonry wall is considered a single homogenized continuum
and is typically modeled within a finite element (FEM) framework. In a micro-modeling
approach, each component is individually modeled at the real scale, including the stone–
brick, the mortar, and in many cases, the stone–mortar interface. One drawback of this
approach is the intensive computational effort that is required, limiting its application
for the analysis of large structures. Despite this, the micro-modeling approach offers a
significant advantage in capturing localized cracking patterns as a real discontinuity, thus
allowing for a better understanding of the brittle failure processes that occur in masonry
structures. A variety of numerical methods can be adopted within the micro-modeling
approach. The FEM with joints can be used to model the stones and joints [14]. A polygonal
discrete element method (DEM) can be used to model rigid or flexible block interactions
of dry and mortared joints [15,16]. A rigid circular particle DEM model was proposed for
rubble stone masonry in [17]. The simultaneous use of FEM and DEM techniques proposed
in [18,19] combines the advantages of both the finite and discrete element methods. The
discontinuous strain analysis (DDA) approach, as proposed in [20], is also able to model
large block displacements, such as the DEM-based approaches.

In this paper, a detailed micro-modeling strategy based on a particle model
(2D-PM) [21–23] is adopted, which is known to successfully model the complex macro-
scopic failure with simple constitutive models by taking into account the material structure
at the grain scale. This approach has been adopted by the authors in the modeling of
traditional rubble stone masonry walls under uniaxial compression loading [24]. After
calibrating the contact parameters using known mortar and stone experimental data, the
2D-MP model is capable of predicting and representing the elastic response, the process of
crack formation, propagation in rubble masonry walls, and the peak load value in uniaxial
compression based on simple interaction models [24]. The 2D-PM model is also an excellent
framework to generate the heterogeneity that is present in rubble masonry walls. The high
computational effort characteristic of PM models can be reduced by adopting a hybrid
DEM-FEM model as proposed in [19].

The numerical models developed in this paper are based on experimental studies
conducted by Pinho et al. [2,6,9,10] on rubble stone masonry specimens constructed with
hydrated air lime mortar and strengthened by simple transverse confinement. The study
proposes a 2D-PM reinforced model (2D-PMR) in which the steel connectors are modeled
using FEM-based frame elements, and the stone–steel and mortar–steel interactions through
the grout, are modeled by means of a particle-bar contact interface. The proposed 2D-
PMR numerical model, which is implemented in the parmac2D [25] application, is used to
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evaluate the response of the reference and three-level strengthened wall specimens used in
the experimental campaign.

The numerical results presented demonstrate that the proposed 2D-PM reinforced
model can predict the improvement in terms of strength and ductility, crack growth, and
reduction in horizontal detachments that occur during the experimental tests of rubble
stone masonry walls strengthened with transverse confinement. Hence, the proposed
numerical scheme enables the 2D-PMR model to simulate the effect of steel-based transverse
confinement on rubble masonry walls.

Several parametric studies were carried out using the 2D-PM reinforced numerical
model regarding the (a) strengthening scheme, (b) steel bar diameter, (c) bar-wall element
bonds, and (d) lateral steel plate influence. A higher peak strength increase is predicted
with a strong particle/bar bond approach (50%) that is slightly higher than the average
increase in strength (47%) identified experimentally. A weak particle/bar bond approach
predicts a lower peak strength increase (20%). When a weak particle/bar bond approach
(WB) was used, a two-level reinforcement solution (four steel bars) predicted a higher peak
strength than the peak strength predicted with the three-level reinforcement solution used
in the experiment (five steel bars). The presented numerical results clearly demonstrate that
when plates are placed at the lateral faces of the walls, the bond between the connectors
and wall components is not significant, indicating that more cost-effective strengthening
solutions can be adopted without the need for mortar filling and drilling holes larger
than the steel bar diameters. The importance of the lateral plates in the strengthening
mechanism is also highlighted. When the steel plates are not present, the connector/wall
bond is important in order for the strengthening mechanism to be effective. A significant
increase in peak strength and ductility is predicted only under the strong bond assumption
when lateral plates are not present.

Finally, the presented parametric studies clearly show that the proposed 2D-PMR
model can be adopted in the development of reinforcement solutions by simple transverse
confinement, namely in the definition of bar characteristics, positioning, quantification,
and assessment of the relevance of the grout injection in the application process of the
steel connectors.

2. Modeling of the Masonry by a Particle Model

The modeling approach is based on the assumption that the constituent elements of
the masonry structure (stones and mortar) consist of a skeleton of aggregates of various
dimensions in direct contact with cohesive connections that enable the aggregates to
withstand tensile forces. Unlike FE-based micro-modeling approaches, which require
complex cohesive contact models and face convergence issues under cycling loading and
large displacement [26], particle models are capable of predicting complex macroscopic
failure phenomena with simple constitutive models by directly taking into account the
physical particle interactions and material randomness associated with the grain structure
of the wall’s components: stone units, mortar, and reinforcement elements. Additionally,
particle models are suitable for large displacement analysis and cyclic loading and can
generate complex numerical models that are representative of rubble stone masonry.

Previous studies conducted by the authors on URM specimens [24,27] have demon-
strated that particle models can be effectively utilized as a predictive tool for rubble-stone
masonry walls constructed with hydrated air lime mortar [2,10] under uniaxial compres-
sive loading conditions. As demonstrated in [24,27], good agreement can be achieved
with stone masonry wall behavior, including elastic response, peak strength, and ductility,
provided that the calibration of the contact parameters is based on experimental data of the
components obtained from laboratory tests.

In the study presented in [24], three important findings are reported: (i) the lateral
numerical model can reproduce the URM peak strength and overall mechanical behavior;
(ii) a coarser mortar discretization can be employed without affecting the quality of the
numerical predictions; and (iii) a maximum contact compressive yielding stress is necessary
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to adopt under compression due to the heterogeneity of URM. These findings are encour-
aging for the use of the 2D-PM model in evaluating the efficacy of transverse reinforcement
strengthening systems.

2.1. Particle Model Formulation

In the particle model (PM) formulation, the constituent materials of the masonry are
represented by particles that interact with each other through contact interfaces. In 2D-PM
models, particles are usually adopted with circular geometry. The numerical solution
is obtained by sequentially applying Newton’s second law to calculate the new particle
positions and velocities, and force–displacement law to determine the forces at each contact.
The equations of motion, including non-viscous local damping, are given by Equations (1)
and (2):

Fi(t) + Fd
i (t) = m ẍi(t) (1)

M3(t) + Md
3(t) = I ω̇3(t) (2)

where at time t, Fi(t) is the force vector and M3(t) corresponds to the applied moment;
Fd

i (t) and Md
3(t) are the force vector and moment associated with the local non-viscous

damping [24]; ẍi is the acceleration, ω̇3 is the angular acceleration of the particle; i = 1, 2
indicates the global x and y directions; and m and I correspond to the particle’s mass and
inertia of the spherical particle.

The integration of the equation of motion is performed explicitly, using the central
differences method [17]. In each step, the increments of the normal force, ∆Fn, and shear
force, ∆Fs, at each contact point, are determined according to a linear force–displacement
relationship, (3) and (4):

∆F[C]
n = kn ∆x[C]n (3)

∆F[C]
s = ks ∆x[C]s (4)

where ∆x[C]n and ∆x[C]s represent the displacement increments at the contact point on the
normal and shear directions and kn and ks represent the normal and shear contact stiffness,
respectively.

2.2. Contact Stiffness and Contact Strength

In the numerical simulations that are carried out, the stiffness of the contact in the
normal and shear directions are given by Expressions (5) and (6):

kn = Ē Ac/d (5)

ks = α kn (6)

where Ē is the modulus of elasticity of the equivalent continuous material; d is the distance
between the gravity centers of the particles in contact; Ac is the contact area; and α relates
the normal and the shear contact stiffness.

The maximum contact tensile strength, Fnt,max, the maximum cohesive force, Cmax, and
the maximum contact compressive strength, Fnc,max, are given as functions of the adopted
maximum tensile stress, σnt,c, maximum cohesion stress, τc, maximum compressive stress,
σnc,c and by the contact area, Ac, according to Expressions (7)–(9):

Fnt,max = σnt,c Ac (7)

Cmax = τc Ac (8)

Fnc,max = σnc,c Ac (9)

In the normal direction, under tensile loading and in the shear direction, a damage
model with bilinear softening is adopted for the contact [17], shown in Figure 1. In
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the normal direction, under compressive loading, a yield plateau is adopted, given by
Equation (9). As pointed out in previous studies [24], due to the heterogeneity present
in ancient masonry walls built with hydrated air lime mortar, it is necessary to adopt a
maximum contact compressive strength value.

(a) (b)

Figure 1. Bilinear softening contact model under tensile loading and shear and the yielding contact
model under compressive loading. (a) Normal direction; (b) Shear direction.

The adopted bilinear softening contact model, under tensile loading and shear loading,
requires the definition of the contact tensile fracture energy, G f ,n, and of the contact shear
fracture energy G f ,s. The maximum values of the tensile strength and cohesion are reduced
according to the total damage value, which is defined by the sum of the tensile and shear
damage. In each direction, the damage value is defined as a function of the maximum
contact displacement in that direction. When the contact damage reaches the value of 1, the
contact is considered to be cracked, only being able to work in compression under pure
friction. For more details on the 2D-PM formulation, the reader is referred to [24].

2.3. Particle Model Generation

The numerical model for a stone masonry structure using the 2D-PM is created by
generating a particle assembly for each stone unit, and by generating a particle assembly
inside the elements that represent the mortar. The main steps of the PM generation are
illustrated in Figure 2.

(a) (b) (c)

Figure 2. Stone masonry wall 2D-PM model generation procedure. (a) Masonry wall; (b) Stone unit
particle assembly; (c) Mortar particle assembly.

The first step in this process is the identification of the arrangement and geometry
of the stones in the masonry wall, Figure 2a, followed by the discretization of the space
corresponding to the interior of each stone with inner particles, Figure 2b. Then, the laying
mortar, corresponding to the external domain of each stone, is further discretized with
particles, Figure 2c.

The contacts are defined based on the Voronoi–Laguerre tessellation of the gravity
centers of each circular particle [22]. In this way, an approximate polygonal geometry is
incorporated in each particle, improving the performance of the adopted 2D-PM model
when compared to traditional PM models. More details can be found in [22].
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2.4. Steel Connectors and Steel Bar-Particle Interaction Model

The steel connectors are modeled through plane frame finite elements with three de-
grees of freedom per node. The traditional shape functions (N) and shape function deriva-
tives (dN) are used to set the plane frame displacement field, given the nodal values [25].
The numerical analysis employs an elastic-perfectly plastic stress–strain relationship for
the plane frame elements representing the steel bars.

The interaction between a bar, discretized using plane frame finite elements, and a
given particle representing each masonry wall component (mortar or stone) occurs through
a given contact interface, as proposed in [25]. For contact detection purposes (see Figure 3),
it is assumed that the geometry of the plane frame element can be approximated by the
linear segment connecting the plane frame nodes.

Figure 3. Steel bar-particle contact interface geometry.

At a given simulation instant, the plane frame length, L, and the plane frame axial
direction, ai, are given by Equations (10) and (11):

L =

√
(xi

Nj − xi
Ni )(xi

Nj − xi
Ni ) (10)

ai =
xi

Nj − xi
Ni

L
(11)

The transverse/normal direction of the plane frame element, ti, is defined based on
the bar’s axial direction through t = (−a2, a1). It is assumed that the contact point location
xi

CL, hereafter called the interface location, through which a particle interacts with a given
plane frame element, is defined at a given instant by the plane frame element normal and
the particle centre of gravity. The location of the contact interface is given by the orthogonal
projection of the particle’s centre onto the plane frame segment, as illustrated in Figure 3.

The interface velocity is defined as the relative velocity of the two entities at the contact
interface. The relative velocity of the plane frame element (Φ2) relative to the particle (Φ1)
at the contact interface is given by Equation (12):

ẋCL
i = (ẋCL

i )Φ2 − (ẋCL
i )Φ1 (12)

where ẋCL
i is the contact interface velocity, and (ẋCL

i )Φi is the velocity of the entity Φi

at the contact interface. The velocity of particle B at the contact interface ẋCB
i is defined

through the traditional DEM formulation [25]. The velocity of the plane frame element at
the contact interface ẋCF

i follows the formulation proposed in [25]. For a given node h, the
nodal translational velocities in the plane frame element reference axes are defined using
Expressions (13) and (14):

ẋNh
a = ẋNh

i ai (13)

ẋNh
t = ẋNh

i ti (14)
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For the plane frame element, it is also necessary to define the rotational velocity of the
rigid body, ωRB

3 , according to Equation (15):

ω
[RB]
3 =

ε3jkajak,old

∆t
(15)

where ε3jkajak,old represents the external product of the current and previous axial direc-
tions of the plane frame element. The rotational velocity of node h relative to the plane
frame element axial axis, ωR,Nh

3 , can be defined through (16):

ωR,Nh
3 = ωNh

3 −ωRB
3 (16)

where ωNh
3 is the rotational velocity of node h. Given the shape functions for each nodal

point and the translational and rotational velocities, it is possible to define the velocity
of the plane frame element at the contact interface ẋCF

i . The axial velocity ẋCF
a and the

transverse velocity ẋCF
t of the plane frame element at the contact interface are defined

through Equations (17) and (18):

ẋCF
a = ẋNi

a N1 + ẋNj
a N4 (17)

ẋCF
t = ẋNi

t N2 + ẋNj
t N5 + ωR,Ni

3 N3 + ω
R,Nj
3 N6 (18)

where Ni represents the nodal shape functions associated with the degrees of freedom of
the plane frame element nodal points; Figure 3. The rotational velocity of the plane frame
element at the contact interface ωCF

3 is defined through (19):

ωCF
3 = ẋNi

t dN2 + ẋNj
t dN5 + ωR,Ni

3 dN3 + ω
R,Nj
3 dN6 + ω

[RB]
3 (19)

The translational contact velocity of the plane frame element at the contact interface is
given in global coordinates by (20):

ẋCL = ẋCL
a ai + ẋCL

t ti (20)

The increment of the interface displacement ∆xi
CL for a time increment of ∆t is given

by (21):
∆xi

CL = ẋCL
i ∆t (21)

The displacement increment at the contact point can be decomposed into its axial,
∆xai

CL, and transverse, ∆xCL
t components, as given by Equations (22) and (23):

∆xCL
t = ∆xi

CLti (22)

∆xai
CL = ∆xi

CL − ∆xCL
t ti (23)

The contact force increments are obtained using the following linear incremental laws,
(24) and (25):

∆FCL
t = kt∆xCL

t (24)

∆Fai
CL = ka∆xai

CL (25)

where ∆FCL
t is the increment of the transverse contact force given as a scalar, kt is the trans-

verse interface stiffness that relates transverse displacement increments with transverse
interface force increments, and ka is the axial contact stiffness. The rotation increment at
the contact interface ∆θCL

3 for a time increment of ∆t is given by (26):

∆θCL
3 = (ω

[Φ2]
3 −ω

[Φ1]
3 )∆t = ω

[CF]
3 −ω

[B]
3 (26)
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where ω
[Φi ]
3 is the rotational velocity of entity Φi at the contact interface. The contact

moment increment ∆M[CL]
3 is obtained using the linear incremental law given by (27):

∆MCL
3 = kθ∆θCL

3 (27)

where kθ is the rotational contact spring stiffness. The transverse, the axial forces, and the
contact moment acting at the interface are then updated by applying Equations (28)–(30):

FCL
t = FCL,old

t + ∆FCL
t (28)

Fai
CL = Fai

CL,old + ∆Fai
[CL] (29)

M[CL]
3 = M[CL,old]

3 + ∆M[CL]
3 (30)

where FCL,old
t (scalar) is the previous transverse interface force, vector Fai

CL,old is the previ-

ous axial interface force, and M[CL,old]
3 (scalar) is the previously stored value of the contact

moment. The contact interface force Fi
CL acting at the interface location is defined by

Equation (31):
Fi

CL = FCL
t ti + Fai

CL (31)

The contribution of the interface force and moment to the resulting force Fi
[Φ1] and

moment M[Φ1]
3 applied at particle B in contact is obtained by applying Expressions (32)

and (33):

Fi
[Φ1] = Fi

[Φ1] + Fi
[CL] (32)

M[Φ1]
3 = M[Φ1]

3 + ε3jk(xj
[CL] − xj

[Φ1])Fk
[CL] + M[CL]

3 (33)

The contact interface force is distributed to the nodes according to the plane frame
shape functions and the contact interface moment is distributed using the shape function
derivatives. Prior to the use of the shape functions and the shape function derivatives,
it is necessary to define the contact interface force in the reference axes, as shown in
Equations (34) and (35):

F[CL]
a = Fi

CLai (34)

F[CL]
t = Fi

CLti (35)

Given the interface axial force, it is possible to define the contributions to each axial
force node of the plane frame element according to Equations (36) and (37):

F[CNi]
a = FCL

a N1 (36)

F[CNj]
a = FCL

a N4 (37)

The contributions to the nodal transverse forces are defined by (38) and (39):

F[CNi]
t = FCL

t N2 + M[CL]
3 dN2 (38)

F[CNj]
t = FCL

t N5 + M[CL]
3 dN5 (39)

The moments applied at the nodal points are set, taking into account the transverse
interface force; Equations (40) and (41):

M[CNi]
3 = FCL

t N3 + M[CL]
3 dN3 (40)

M[CNj]
3 = FCL

t N6 + M[CL]
3 dN6 (41)
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Given the normal and transverse forces applied at a given node h, it is possible to
define the interface force contribution, in vector form, using global coordinates, (42):

Fi
CNh = F[CNh]

t th + F[CNh]
a ai (42)

The contribution of the interface force and moment to the resulting force Fi
[Nh] and

moment M[Nh]
3 applied at node h is obtained according to Expressions (43) and (44):

Fi
Nh = Fi

[Nh] − Fi
CNh (43)

M[Nh]
3 = M[Nh]

3 −M[CNh]
3 (44)

The force–displacement law is applied to the identified plane frame finite element/
particle interfaces. The applied forces are then used to define the new particle and the new
node positions. A given particle is only allowed to interact with one finite element of the
several used to model a given steel bar. The contact interface element stiffness matrix [ke]
in terms of particle and nodal displacements for a reference plane passing through the
transverse to plane frame element ti = (t1 , t2) is defined as follows (Equation (45)):

ka N11 0 0 ka N41 0 0 −ka N1 0 ka N1dB

0 kt N22 + kθ N′22 kt N32 + kθ N′32 0 kt N52 + kθ N′52 kt N62 + kθ N′62 0 −kt N2 −kθ N′2
0 kt N23 + kθ N′23 kt N33 + kθ N′33 0 kt N53 + kθ N′53 kt N63 + kθ N′63 0 −kt N3 −kθ N′3

ka N14 0 0 ka N44 0 0 −ka N4 0 ka N4dB

0 kt N25 + kθ N′25 kt N35 + kθ N′35 0 kt N55 + kθ N′55 kt N65 + kθ N′65 0 −kt N5 −kθ N′5
0 kt N26 + kθ N′26 kt N36 + kθ N′36 0 kt N56 + kθ N′56 kt N66 + kθ N′66 0 −kt N6 −kθ N′6

−ka N1 0 0 −ka N4 0 0 ka 0 −kadB
0 −kt N2 −kt N3 0 −kt N5 −kt N6 0 kt 0

ka N1dB −kθ N′2 −kθ N′3 −ka N4dB −kθ N′5 −kθ N′6 −kadB 0 kad2
B + kθ


(45)

where ka, kt, and ka are, respectively, the contact interface axial, transverse stiffness, and
rotational stiffness, dB = ‖xi

[B] − xi
CL‖ represents the Euclidean norm of the corresponding

vectors, xi
B is the location of the center of gravity of particle B, xi

CL is the contact interface
location, Na is the shape function evaluated at the interface location for dof a, N

′
a is the

shape function derivative evaluated at the interface location for dof a, Nab = NaNb is the
product of the shape functions evaluated at the interface location for dof a and dof b, and
N
′
ab = N

′
aN

′
b is the product of the shape function derivatives evaluated at the interface

location for dof a and dof b.
In order to define the critical timestep or apply a density scaling scheme, it is necessary

to establish an upper bound for the translation and rotational stiffness of both the particle
and the nodal points. Based on the global stiffness matrix of the contact interface and by
applying Gerschgorin’s theorem to the uncoupled interface matrix, an upper bound for the
translation and rotational stiffness of the particle, which does not take into consideration
the interface orientation, can be defined according to [25], by Equations (46) and (47):

kparticle
t = 2(ka + kt) (46)

kparticle
θ = kad2

B + kθ(|N
′
3|+ |N

′
5|+ 1) + kad2

B (47)

An upper bound for the translational and rotational stiffness of each nodal point of
the plane frame element, which does not take into consideration the interface orientation,
can be defined by Equations (48) to (51):

kNodei
t = 2kaN1 + 2kaN2 + kθ N

′
22 + kθ |N

′
52| (48)

kNodei
θ = kt(N33 + |N63|) + kθ(|N

′
33|+ |N

′
63|+ |N

′
3|) (49)

k
Nodej
t = 2kaN4 + 2kaN5 + kθ N

′
55 + kθ |N

′
25| (50)

k
Nodej
θ = kt(N66 + |N36|) + kθ(|N

′
66|+ |N

′
36|+ |N

′
6|) (51)
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For a given particle, the contribution of all the plane frame element/particle interfaces
is obtained by summing up all the interface contributions using Equation (46) for the
translation term and Equation (47) for the rotational term. The same procedure is applied
to all nodes belonging to plane frame elements that have particles interacting with them,
using Equation (48) or (50) for the translational terms and Equation (49) or Equation (51)
for the rotational degree of freedom.

In the simulations presented, the interface stiffnesses are proportional to the plane
frame stiffnesses through a K multiplier. A value of K = 1 corresponds to an interface
stiffness equal to the bar element stiffness. In the simulations presented here, two different
values of K are adopted: a value of K = 0.001, which represents a weak stiffness bond
(KLsb), and a value of K = 1000, which represents a strong stiffness bond (KHsb). A higher
stiffness imposes a stronger bond between the bars and the particles, reducing the slip
displacement between the materials. Reducing the multiplier K is an indirect way of
numerically reducing the transfer of forces between the two materials.

For the axial direction, a linear elastic zone followed by a yield plateau is adopted for
the interface. As an approximation, the yield plateau is defined using the recommended
values for confined concrete, τ = 2.5 f 0.5

ck , according to CEB-FIP (1990) [28]. A yield plateau
of 2.0 MPa, corresponding to a mortar uniaxial compression value of 0.65 MPa, was adopted.
We should note that the interfaces never reached their maximum axial strength, Fa.max, in
these simulations. Similar numerical results to those presented here were obtained using a
yield plateau of 0.4 MPa.

2.5. PM Contact Model Parameters

Within a PM modeling approach, the elastic and strength contact properties of each
material that is being considered need to be calibrated beforehand. Typically, uniaxial
compression, uniaxial tensile, splitting, or bending tests available in the literature are
adopted.

For each material that is modeled with a PM model, it is necessary to define eight
contact parameters associated with the elastic (2) and the strength properties (6), see
Section 2.2. The Young’s modulus of the equivalent continuous material, Ē, and the
stiffness factor, α, that relates the shear stiffness to the normal stiffness, control the elastic
response. The strength parameters that need to be defined are the maximum tensile stress
σnt,max, the maximum cohesion stress τs,max, the friction coefficient µc, the tensile G f ,n, the
shear G f ,s fracture energies, and the maximum compression stress value σnc,c Ac.

In addition, the particle assembly needs to be defined for each masonry constituent
element, namely the maximum diameter, the minimum diameter, and their distribution.

3. Experimental Campaign

An experimental campaign was conducted at NOVA FCT [2,6,10] on rubble stone
masonry wall specimens built according to traditional Portuguese construction techniques
and materials, considering transverse strengthening solutions. The objective of the experi-
mental campaign was to quantify the increase in the mechanical strength relative to the
unreinforced specimens (URM) and to assess the performances of various strengthening so-
lutions. The URM specimens replicate the typical stone masonry found in ancient buildings
that are representative of Portugal.

Overall, Pinho’s experimental work [2] involved the construction of 62 masonry
specimens, including 42 “small specimens” with dimensions of 0.80× 1.20× 0.40 m3 (length
× height × thickness) used in uniaxial compression tests as URM reference specimens and
subjected to different strengthening techniques. The remaining 20 specimens, referred to as
“large specimens” with dimensions of 1.20× 1.20× 0.40 m3, were used in shear-compression
tests, including URM specimens and specimens strengthened using the same techniques as
those used for the small specimens.

The rubble masonry specimens that are numerically evaluated are part of the small
specimens which were constructed on top of reinforced concrete bases with a height of
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0.20 m. A 1:3 ratio of mortar and stone was adopted, i.e., about 25% of the volume of each
specimen was filled with hydrated air lime laying mortar and the remaining 75% was filled
with irregular limestone blocks.

The volumetric composition of the hydrated air lime mortar was 1:3 (hydrated air
lime:sand) with a sand mixture consisting of equal parts of river sand and yellow pit sand.
The water to hydrated air lime ratio was 1.2:1. The URM specimens were constructed in a
manner that the two leaves were tied by through stones, which were placed 1/3 and 2/3 of
the way up the specimens. To ensure uniform load distribution on the masonry, reinforced
concrete beams (lintels) were constructed on top of the specimens.

The three specimens used in this study, M28, M41, and M44, were strengthened with
transverse confinement systems consisting of independent steel transverse connectors
of M12 galvanized steel-threaded rods tested under compression loads. The connectors
were applied by drilling 16 mm diameter holes through the specimens. Each connector
corresponds to a 12 mm diameter threaded–galvanized steel bar, tightened by nuts and
steel plates measuring 100× 100× 5 mm3 at both ends, using a torque wrench. The holes
were blown through with a compressed air jet and then washed out and injected with a
pozzolanic micro mortar (through PVC tubes applied for this purpose) using a manual
pump under low pressure. Finally, the connectors were tightened by a dynamometric
spanner with a torsional moment of 1 kg·m.

Figure 4 shows a schematic representation of the specimens strengthened by transverse
steel connectors, the experimental testing system, and the frontal and lateral final failure of
a specimen (M28) [2,6,10].

(a) Reference RM solution (b) Testing system (c) Failure modes: specimen M28

Figure 4. Setup for compression tests of the RM wall specimens and final failure modes [6].
(a) Schematic representation of the reinforcement solution with steel connectors (Specimens M41,
M44, and M28); (b) axial compression testing system; and (c) frontal and lateral views of the failure
mode of specimen M28. See [2,6] for more details.

The transverse confinement system is arranged in “quincunxes” spaced 0.40 m (corre-
sponding to the thickness of the specimen) in both the horizontal and vertical directions
as shown in Figure 4a. Table 1 presents the results obtained in uniaxial compression
tests for specimens M41, M44, and M28, as well as the results obtained for the reference
URM specimens.
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Table 1. Experimental results obtained in axial compression (monotonic tests) on specimens strength-
ened by transverse confinement (M41, M44, and M28) and the URM specimens (M43, M21, and
M32) [2,6].

Strengthening Specimens Age(?) Fmax σmax δFmax
v εFmax

v E
Solution [Days] [kN] [MPa] [mm] [o/oo] [GPa]

M41 925 168.5 0.53 4.0 3.3 0.477

Transverse steel M44 927 226.0 0.71 5.8 4.8 0.485

connectors M28 931 203.3 0.64 4.3 3.6 0.505

RM Average – 199.3 0.63 4.7 3.9 0.489

URM specimens

M43 618 134.2 0.42 6.8 5.7 0.239

M21 626 127.7 0.40 6.4 5.3 0.409

M32 638 148.5 0.46 4.3 3.6 0.267

URM
Average – 136.8 0.43 5.8 4.9 0.305

(?) Age at testing.

4. Numerical Modeling

Based on the experimental results, numerical modeling is carried out to assess the
effect of the transverse steel connectors on the behavior of the strengthened rubble stone
walls under simple compression loading using a 2D reinforced particle model.

4.1. 2D-PM Numerical Model Generation

The numerical models were defined from the lateral sides of the tested rubble masonry
walls [2], which have a width of 0.40 m. As demonstrated in [24], the use of the 2D-
PM model of the lateral sides allows for the evaluation of peak strength and overall wall
behavior with lower computational costs compared to the 2D-PM model of the frontal faces.

The generation of the 2D-PM model for the URM rubble masonry wall follows the
same procedure as adopted in [24]. In the discretization of each stone element, with an
average size of 16.7 cm, a particle model with a uniform radius distribution ranging between
0.003 mm to 0.005 m was adopted. In the discretization of the mortar, a uniform radius
distribution between 0.00714 m and 0.00119 m was adopted, where the maximum radius
value corresponds to the maximum dimension of the sand used in the laying mortar [2].

For the RM models, the steel connectors, connector–stone, and connector–mortar
interfaces also need to be defined. Each steel connector bar is discretized with 20 finite
plane frame elements. The nodal points at the end of each connector are rigidly connected
to the square rigid plates, 0.10 m in length and 0.05 m thick, which interact with the particles
(mortar and stone) in direct contact.

Figure 5 presents the 2D-PM and 2D-PMR models developed from the lateral faces of
the unreinforced (URM) [24] and reinforced (RM) rubble stone masonry walls. Note that
the 2D-PMR models representing the one- and two-level strengthening scheme will later
be used in the parametric analyses.

The scheme adopted with three levels of steel connectors corresponds to the reinforce-
ment scheme used in the experimental tests, as shown in Figure 5d. In this model, the end
connectors are represented by 2× 12 mm diameter steel connectors, while the connector at
mid-height is represented by a single 12 mm diameter bar.

In the other strengthening solutions, with one- and two-level connectors, Figure 5b,c,
each connector represents two bars with a diameter of 12 mm. The elastic and strength
properties adopted for the steel connectors were obtained during the experimental work [6],
E ≈ 200 GPa and σy ≈ 590 MPa.



Buildings 2023, 13, 987 13 of 27

(a) Reference URM (b) One-level RF (c) Two-level RF (d) Three-level RF

Figure 5. The 2D-PM and 2D-PMR models of the lateral faces of the rubble masonry walls with and
without connectors; (a) without reinforcement; (b) one-level, (c) two-level, and (d) three-level, as in
the experimental test.

Table 2 presents the number of particles adopted in the rubble stone masonry wall
discretization, as well as the number of contacts present in the adopted 2D-PM model,
according to the type of contact: stone/stone (s–s), mortar/stone (m–s), and mortar/mortar
(m–m).

Table 2. Number of particles and contacts for 2D-PM masonry models.

Model
Particles Contacts

Stone(s) Mortar(m) m–m m–s s–s

Lateral 7501 45,381 20,034 127,176 10,154

The adopted model corresponds to the lateral coarse model adopted in [24], which
was shown to predict a response closer to that predicted by a more refined model, with a
significant reduction in simulation times.

4.2. Contact Parameter Calibration

In [24], the elastic and strength contact properties of each type of contact were cali-
brated based on the experimental results presented in [2] and on some tests performed
in the scope of the modeling work with PM-type models, namely uniaxial compression
tests on stone and mortar. The s–s contact properties were calibrated on 0.20 m × 0.20 m
specimens and the m–m contact properties were calibrated on 0.04 m × 0.04 m models.
In [24], the calibration procedure is explained in more detail and, therefore, is not repro-
duced here. Figure 6 shows a typical final crack pattern obtained in uniaxial compression
for the calibrated contact parameters representative of the mortar.

Figure 6. The 2D-PM model calibration: final crack pattern for the uniaxial compression test of the
mortar model.

Table 3 presents the calibrated properties for each contact type, as shown, the proper-
ties of the m–m contact were adopted for the m–s contact.
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Table 3. Calibrated contact elastic and strength properties [24].

Contacts Ē α σnt,c τc µc G f ,n G f ,s
[GPa] [–] [MPa] [MPa] [–] [N/m] [N/m]

s–s 8.60 0.11 8.90 35.7 1.0 0.3838 56.1403
m–m & m–s 0.09 0.43 0.16 0.16 1.0 0.0013 0.0030

In the normal direction under compression, a contact model with a yield plateau
for a compression stress value of 0.80 MPa was adopted, close to the maximum value in
the simple compression of the laying mortar [2]. A yield plateau is required because, as
shown in [24], high normal contact compression forces were found to occur at some mortar
contacts, due to the heterogeneity present in the masonry walls. Table 4 shows the elastic
and strength contact properties of each component obtained numerically after calibration,
as well as the known experimental values. For more details on the calibration process,
see [24].

Table 4. Experimental and numerical macroscopic values of the elastic and strength properties.

(a) Experimental values [2]

Material E [GPa] ν σc [MPa] σt. f l [MPa]

mortar 0.075 0.16 0.65 0.3

stone 6.0 0.3 47.8 –

(b) Numerical predictions after calibration [24]

Material E [GPa] ν σc [MPa] σt. f l [MPa]

mortar 0.075 0.16 0.66 0.16

stone 6.0 0.3 47.8 –

5. 2D-PM Reinforced Model Prediction

To validate the 2D-PMR modeling approach, the response of the three-level strength-
ening solution that follows the same reinforcing scheme adopted experimentally was
simulated. In the experimental studies being modeled, the bond between the connectors
and the masonry wall was not evaluated through pull-out tests. Due to the uncertainty
regarding the stiffness and strength properties of the bar-particle interface, the numeri-
cal results of the RM reference model are presented for both the strong and weak bond
approaches, as described in Section 2.4. Figure 7 presents the stress–displacement curves
obtained experimentally in [2] for RM walls M21, M43, M44, and M28, as well as the
results for the 2D-PM URM numerical model and the 2D-PMR models with the three-level
strengthening solution that follows the same scheme adopted experimentally, considering
both strong bond (2D-PM-L3-SB) and weak bond (2D-PM-L3-WB) approaches.

From the analysis of Figure 7, it can be observed that the numerical model without re-
inforcement (MP-2D), after a calibration procedure, is able to predict a stress–displacement
curve with an evolution close to the curves obtained experimentally for walls M21 and
M43 [2]. For more details related to the adopted numerical approach, see [24]. From
Figure 7, it can be seen that the (2D-PM-L3-SB) and (2D-PM-L3-WB) models, compared
to the numerical model without reinforcement, lead to an increase in the peak force and
predicted ductility.
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Figure 7. Results of the URM and the reference reinforced (three-level) 2D-PMR models; stress–
displacement curves in comparison with the experimental results [2].

The predicted numerical results using the 2D-PMR model show that the reinforcement
solution with 3 levels of reinforcement, as adopted in the experimental tests, leads to an
increase in the peak stress values between 20% (for weak particle/bar bond) and 50% (for
high particle/bar bond). These predicted values fall within the range of the values obtained
experimentally, where an average increase in strength of 47% was observed for the walls
with connectors compared to the reference URM walls. Table 5 presents the peak stress
values obtained numerically and the average of the experimental values.

Table 5. Experimental and numerical values of the peak stress.

Model σmax
v [MPa]

MP-2D 0.50
Numerical 2D-PM-L3-SB 0.75

2D-PM-L3-WB 0.60

Experimental Average URM [2] ? 0.43
Average RM [2] # 0.63

? URM average values: specimens M43, M21, and M32 [2]; # RM average values: specimens M41, M44, and
M28 [2].

The increase obtained experimentally is slightly higher than the value obtained nu-
merically for a weak bond assumption. This can be explained by the effect of carbonation
(among other factors, such as the heterogeneity of the masonry and the position of the
connectors relative to the stones placed on the face of the walls, e.g., crossing the stones or
crossing the joints) since the walls tested with the reinforcement solution are older than
the walls tested experimentally without reinforcement. As shown, the developed 2D-PM
reinforced models predict values within the order of magnitude of the experimentally
obtained values.

The damage evolution throughout the uniaxial compression test for the 2D-PM and
2D-PMR numerical models is shown in Figure 8.

Cracking occurs in all 2D-PMR models for a uniaxial load of around 0.40 MPa. In
the unreinforced 2D-PM model, there is a steep increase in tensile cracks, whereas in
the 2D-PMR strengthened numerical models, both adopting weak and strong bonds, the
increase in tensile cracks is much more controlled as the steel bars restrain their growth.
In both strengthened 2D-PMR models, there is a significant increase in cracked contacts
that occurred under tensile or shear and are found under compression due to the lateral
restraint imposed by the steel connectors.



Buildings 2023, 13, 987 16 of 27

(a) (b)

(c)

Figure 8. Results of the URM and reference RM 2D-PMR models: stress–displacement diagram and
crack evolution. (a) Without confinement; (b) Three levels–strong bond; (c) Three levels–weak bond.

Figure 9 presents the distribution of contact damage obtained for the maximum dis-
placement value for both the URM 2D-PM and the tested 2D-PMR models. As shown, in
comparison to the model without reinforcement, in both reinforced models, the damage
at the contacts in the area of influence of the connectors and the crack opening is practi-
cally non-existent, as the connectors are able to restrict the propagation of damage, thus
preventing the lateral detachment of stones.

Figure 9. Numerical models: contact damage distribution (a) without and (b,c) with reinforcement
(strong and weak bonds).

In the strengthened models, the overall deformability at the maximum displacement
value, the upper plate rotation, and the crack opening are much lower. In the experimental
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tests [2,6], an improvement in the failure conditions of the walls reinforced with steel
elements was observed. The strengthened walls, when compared with the unreinforced
walls, showed higher masonry integrity and cohesion.

The evolution of the axial stress at the steel connectors’ mid-span at each location
(a1 − a3), is presented in Figure 10 for both strengthening 2D-PMR models. As shown, the
largest difference between the numerical model with a strong (SB) and weak (WB) bond
occurs in the steel connector at mid-height and in the upper connector, with the difference
being more pronounced in the connector at mid-height. This is associated with the final
failure mode observed in the strengthened models, which is due to the rotation of the part
of the wall above the upper connector. Figure 10 also shows that a stress level close to the
yield value (approximately 590 MPa) is reached only at the mid-level connectors since only
a single steel connector is placed at this height.

Figure 10. Numerical models 2D-PM-L3-SB and 2D-PM-L3-WB: axial stress at the steel connectors
(a1, a2, a3), mid-span versus the plate vertical displacement diagram.

6. Parametric Studies

Overall, the presented numerical studies demonstrate that the predictions of the 2D-
PMR-reinforced model are in good agreement with experimental results [2], particularly in
terms of the corresponding failure modes and the increase in the maximum uniaxial com-
pression value and ductility. Subsequently, several parametric studies are presented, which
demonstrate the potential of the 2D-PMR models in the development of such reinforcement
solutions, including the definition of bar characteristics, positioning, quantification, and
the relevance of the importance of grout injection in the drilled holes.

6.1. Reinforcement Scheme

In the experimental work, only one steel connector-based strengthening solution,
namely the three levels of steel connectors (2D-PM-L3), was tested. Taking the numerical
results of the 2D-PM-L3 solution as a reference, two other strengthening solutions were
numerically assessed, i.e., with only one level of reinforcement at mid-height (2D-PM-L1)
and with two levels of reinforcement at a quarter of the height (2D-PM-L2), as shown in
Figure 5b,c.

Figure 11 presents the stress–displacement curves obtained for the 2D-PMR numerical
models for the three strengthening schemes (-L1, -L2, -L3), considering the strong bond (SB)
and the weak bond (WB) approach, as well as the results obtained for the 2D-PM model of
the URM.

As shown in Figure 11, the two-level (-L2) strengthening scheme predicts a response
similar to the response obtained with the strengthening scheme adopted in the experimental
work (-L3) for both bond options. The two-level scheme with a weak bond approach
predicts a higher peak stress response than that predicted with a three-level scheme.
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(a) (b) .

Figure 11. Numerical models: stress–displacement diagrams for the URM 2D-PM model and the
2D-PMR model for various reinforcement levels. (a) Strong bond; (b) Weak bond.

When the strong bond approach is adopted, the predicted increase in the peak value
varies between 23% for one-level (L1) and 50% for three-level (L3). In the weak bond
approach, the predicted increase in the peak value varies between 21% for one-level (L1)
and 33% for two-level (L2). In the weak bond approach, the increase in peak strength is less
noticeable with a three-level (L3) solution (20% increase). These results are summarized in
Table 6.

Table 6. Peak strength increase compared with the unreinforced wall 2D-PMR model.

Bond Type Model ∆σmax
v [%]

Strong Bond
2D-PM-L1-SB 23

2D-PM-L2-SB 38

2D-PM-L3-SB 50

Weak Bond
2D-PM-L1-WB 21

2D-PM-L2-WB 33

2D-PM-L3-WB 20

In Figure 12, the evolution of axial stress at the steel connectors’ mid-span is presented
for the several MP-2DR models at each connector location (a1 − a3). It shows that a similar
response is obtained with both weak and strong bond approaches. Figure 12 also shows that
the axial stress at the bars is far from the yield value for both L1 and L2 of reinforcement.

(a) (b)

Figure 12. Axial stress at the steel connectors mid-span versus the plate’s vertical displacement
diagram: 2D-PMR models for various reinforcement levels and bond strength. (a) Strong bond; (b)
Weak bond.

Figure 13 presents the contact damage distribution obtained at the maximum dis-
placement value for the various tested 2D-PMR models, for different reinforcement levels,
adopting a strong bond approach. A similar behavior was observed when adopting a weak
bond approach. As shown, compared to the 2D-PM response of the URM, in the MP-2DR
models, as the number of reinforcement levels is increased: (i) the deformability of the



Buildings 2023, 13, 987 19 of 27

numerical model at the maximum displacement value decreases; (ii) the rotation of the
upper plate decreases; and (iii) the observed crack opening decreases.

Figure 13. Numerical models: contact damage distribution with and without various reinforcement
levels and a strong bond.

The numerical results presented demonstrate that a single layer of steel bars at mid-
height (L1) provides a similar increase in ductility and peak strength for both the strong
bond (23%) and weak bond approaches (21%). When using a weak bond approach, the
two-level solution (L2) predicts a higher peak strength increase (30%) compared to the peak
strength increase predicted with a three-level reinforcement solution (20%). In a strong
bond approach, the two-level solution predicts a peak strength increase (38%), which is
slightly lower than the peak strength increase predicted with a three-level reinforcement
solution (50%).

6.2. Connector–Particle Bond

In the experimental work, steel connectors with a diameter of 12 mm were placed in
16 mm holes drilled in the walls, which were subsequently filled with mortar to ensure a
bond between the wall components and the steel connectors. As shown in the previous
numerical analysis, similar results are obtained with strong and weak bond assumptions.

In this section, we evaluate the possibility of having no bond between the steel con-
nector and the wall component, which was not tested experimentally. Compared with
the adopted experimental procedure, this solution reduces the strengthening procedure
requirements, namely drilling a higher diameter hole and injecting it with a pozzolanic
micro mortar.

The stress–displacement curves obtained for the 2D-PMR numerical models, consider-
ing a strong bond (SB) and no bond (NB), are presented in Figure 14.

Figure 14. Stress–displacement diagrams for the 2D-PMR models: strong bond versus no bond.
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From the results presented in Figure 14, it can be seen that a strong bond assumption
always leads to a higher peak and a more ductile response, but the response predicted with
the 2D-PMR model without a bond is very similar to that predicted with a strong bond.
This indicates that the confinement provided by the plate connected to the steel bars applies
to the rubble masonry walls and is sufficient enough to guarantee the required behavior
improvement under uniaxial compression.

Figure 15 shows the damage evolution throughout the uniaxial compression test for
the 2D-PMR numerical models with a strong bond and without a bond for a two-level
reinforcement scheme.

(a) (b)

Figure 15. Stress–displacement diagram and crack evolution for 2D-PMR models with (a) strong
bond approach and (b) without a bond.

The cracking evolution is similar under both bond assumptions in the 2D-PMR model.
However, in the model without a bond, a higher number of tensile cracks are observed
compared to the strong bond assumption. The evolution of shear cracks and the evolution
of cracked contacts that occurred under tensile or shear and are found under compression
due to the lateral restraint imposed by the steel connectors are very similar under both
bond assumptions. This shows that the confinement produced by the plates connected to
the steel bars is sufficient to ensure similar strengthening.

Figure 16 presents the axial stress evolution at the mid-span of the steel connectors
for the two-level strengthening scheme, MP-2DR models, for both the strong bond and
no-bond cases. Similar results were found for the one-level and three-level strengthening
schemes. As shown, the MP-2DR models predict a similar response without a bond as
with a strong bond approach. Notably, in the 2D-PMR model with a two-level scheme
without a bond, the axial stress evolution at both levels is more symmetric than with a
strong bond approach.

The contact damage distribution obtained at the maximum displacement value for
the 2D-PM and for the various tested 2D-PMR models, for different reinforcement levels,
adopting a no-bond approach, is presented in Figure 17. The predicted damage patterns
are similar to those predicted with a 2D-PMR model with a strong bond approach.

The presented numerical results need to be validated by experimental testing, but they
clearly indicate that when plates are adopted, the bond between the connectors and the
wall components is not relevant and, therefore, more economical strengthening solutions
can be adopted.
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Figure 16. Axial stress at the steel connectors mid-span versus the plate’s vertical displacement
diagram for the 2D-PMR models of the two-level strengthening scheme: bond influence.

Figure 17. Numerical models: contact damage distribution for URM and RM models without a bond.

6.3. Lateral Plate Influence

In the experimental work, the steel connectors were connected to 0.10 m square lateral
plates measuring 0.05 m in thickness, with the interposition of a cement mortar and sand
layer (1:3) between the plate and the masonry. However, on site, it may not be feasible to
apply the square plates in one or both wall faces. The developed 2D-PM reinforced model
was adopted to assess the relevance of the square plates in the lateral confinement effect
and the overall behavior.

In Figure 18, the stress–displacement curves obtained for the 2D-PM reinforced numer-
ical models, with a strong bond (SB) and lateral plate, with a weak bond (WB) without the
lateral plate (NP), and with a strong bond (SB) without the lateral plate (NP) for two-level
and three-level strengthening schemes are presented.

As shown in Figure 18, a weak bond assumption without a lateral plate only leads to a
5% increase in the peak strength, when compared with the value predicted with a 2D-PM
URM model. Under a strong bond assumption, a significant increase in the peak strength
and ductility can be obtained even if a lateral plate is not adopted.
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Figure 18. Stress–displacement diagrams for the 2D-PMR L2 and L3 models: strong and weak bond
assumptions without lateral plates and a strong bond with lateral plates.

Figure 19 presents the contact damage distribution obtained at the maximum dis-
placement value for the 2D-PM URM model and the 2D-PMR models with a strong bond
approach without a lateral plate for different reinforcement levels.

Figure 19. Contact damage distribution of the numerical models: URM and RM models with a strong
bond without a lateral plate.

The overall predicted damage patterns without the plates are similar to those predicted
with a 2D-PMR model with a strong bond approach and lateral plates, as seen in Figure 13;
however, the contact damage is more distributed throughout the masonry wall when no
plates are adopted. The confinement provided by the lateral plates reduces the damage
occurrence in their vicinity, as observed in Figure 13.

Figure 20 shows the damage evolution throughout the uniaxial compression test for
the 2D-PMR numerical models with a strong bond and plate, and for the 2D-PMR models
without plates under strong and weak bond assumptions, for a two-level reinforcement
scheme. In the 2D-PMR models without plates, regardless of the bond assumption, a higher
number of tensile cracks occurs when compared to the strong bond with plate model.
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(a) (b)

(c)

Figure 20. Stress–displacement diagram and crack evolution for the 2D-PMR models with and
without plates for strong and weak bond approaches. (a) 2D-PM-L2-SB; (b) 2D-PM-L2-SB-NP;
(c) 2D-PM-L2-WB-NP.

The total number of cracks that occur under tensile or shear and are found under com-
pression is much lower in the 2D-PMR model with plates, indicating that the confinement
provided by the plates connected to the steel bars is crucial for effective strengthening. The
presented numerical results clearly demonstrate the importance of the lateral plate in the
strengthening mechanism. If a lateral plate cannot be adopted, the connector/wall bond
becomes crucial for the strengthening mechanism to be effective.

6.4. Steel Bar Diameter

In the experimental tests, it was not possible to evaluate the influence of the steel
connector diameters in the strengthening mechanism; only steel connectors with 12 mm
diameters were used. For this reason, several numerical analyses were carried out to
evaluate the relevance of steel connector diameters, which have an influence on bar stiffness
and strength. The 2D-PMR models with 8 mm and 16 mm diameter bars are evaluated
under the no-bond assumption between the steel connectors and the wall components.

Figure 21 presents the stress–displacement curves obtained for the 2D-PMR numerical
models with a three-level reinforcement solution without a bond and considering different
connector diameters: 12 mm diameter (2D-PM-L3-NB), 16 mm diameter (2D-PM-L3-NB-16),
and 8 mm diameter (2D-PM-L3-NB-8). As shown, the diameter range that is numerically
assessed has little influence on the predicted response. As expected, the highest peak
strength and ductility under uniaxial compression were predicted with the MP-2DR model
with the largest diameter, but the overall response obtained with the smallest diameter is
very similar.
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Figure 21. Stress–displacement diagrams for 2D-PMR models with a three-level reinforcement
solution and a no-bond assumption: connector diameter assessment.

Figure 22 presents the evolution of axial stress at the mid-span of steel connectors
for MP-2DR models with a two-level strengthening scheme and a no-bond assumption
for several tested connector diameters. As expected, the axial stress increases as the bar
diameter decreases, and in the MP-2D-L2-NB-8 model, the steel connectors at the upper
level reach the yielding stress value of 590 MPa. The axial stress evolution is very similar in
all MP-2DR models until a vertical stress of 0.40 MPa, where noticeable damage begins to
occur in the particle assembly.

Figure 22. Axial stress at the steel connectors’ mid-span versus the plate vertical displacement
diagram for 2D-PMR models with two levels of reinforcement without a bond assumption: connector
diameter assessment.

The presented numerical results indicate that an 8 mm steel connector diameter with
elastic and strength properties (similar to that adopted in the experimental test) would
have been sufficient to guarantee a similar strengthening effect.

7. Conclusions

Particle models (2D-PM) have shown their capability to predict complex macroscopic
failure with simple interaction constitutive laws and have been successful in modeling the
response of URM stone masonry walls in terms of maximum force, ductility, and the process
of crack formation and propagation under uniaxial compressive loading conditions [24].
However, it should be noted that the contact parameters of each wall element, including
mortar and stones, need to be calibrated beforehand using known standard experimental
data [24].
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In this work, we extend the PM modeling strategy proposed in [24] to investigate and
assess the response of steel-based reinforced systems for existing two-leaf stone masonry
walls subjected to axial compressive loading. We develop a 2D-PM reinforced model
in which the steel connectors are discretized using FEM-based frame elements, and the
stone–steel and mortar–steel interactions, through grouting, are modeled by a particle-bar
contact interface. The proposed numerical scheme enables the 2D-PMR model to simulate
the steel-based transverse confinement effect on rubble masonry walls.

To validate the proposed 2D-PMR model, a numerical evaluation was conducted on a
steel connector reinforced system with a three-level reinforcement arrangement identical
to the experimental specimens. The study concluded that the numerical results closely
match the experimental results in terms of strength and ductility, the crack growth process,
and the reduction in horizontal detachments. The 2D-PMR model was used to conduct
parametric studies on the masonry specimen by varying the level of strengthening and the
diameter of the steel bars to assess the influence of the bar-bond effect and lateral plates.
Based on the results and the presented discussion, the following main conclusions can
be drawn:

• The proposed 2D reinforced particle model formulation allows the 2D-PMR model to
replicate the transverse confinement effect of steel-based reinforcement on rubble stone
masonry walls. The formulation is straightforward and can be easily incorporated
into similar models that use other commercial or open-source implementations.

• The 2D-PMR model can predict the improved strength and ductility, the crack growth
process, and the reduction in horizontal detachments of the masonry observed in the
experimental tests of strengthened rubble stone masonry walls. Numerical results
indicate that a strong particle/bar bond approach (50%) predicts a higher peak strength
increase than the average increase in strength (47%) observed experimentally for the
reference specimen.

• The presented discussion, from a numerical modeling perspective, regarding the
relevance of the bond between the steel bar connectors, the presence and importance
of the end plates, and the connectors’ diameters, provides useful information for the
consolidation and understanding of this reinforcing technique.

• The results and discussions presented underline the complexity of capturing the
accurate behavior of the existing/real rubble stone masonry walls and the difficulty in
numerically estimating the effect of this intervention technique.

• Overall, the proposed 2D-PMR model can be adopted in the design phase of re-
inforcement solutions involving simple transverse confinement, particularly in the
definition of bar characteristics, positioning, quantification, and in the assessment of
the relevance of the grout injection in the application process of the steel connectors.

The performance of the proposed 2D-PMR model is encouraging and, therefore, fur-
ther work is underway that will allow the 2D-PMR model to numerically evaluate other
reinforcement techniques, namely, reinforced micro-concrete layers and textile reinforced
mortar. The development of a 3D-PMR model is also being carried out. Given the computa-
tional restrictions, several modeling simplifications are being devised to keep the associated
computational costs to a minimum.
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