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Abstract: This paper presents an enhanced artificial neural network (ANN) to predict the displace-
ment in composite pipes impacted by a drop weight having different velocities. The impact response
of fiber-reinforced polymer composite pipes depends on several factors including thickness, stack-
ing sequence, and the number of layers. These factors were investigated in an earlier study using
sensitivity analysis, and it was found that they had the most prominent effect on the impact re-
sistance of the composite pipes. In this present study, composite pipes with a diameter of 54 mm
are considered to explore the damages induced by low-velocity impact and the influence of these
damages on their strength. To evaluate the effect of low-velocity, the pipes were exposed to impacts
at different velocities of 1.5, 2, 2.5, and 3 m/s, and preliminary damage was initiated. Next, we used
Jaya and E-Jaya algorithms to enhance the ANN algorithm for good training and prediction. The
Jaya algorithm has a basic structure and needs only two requirements, namely, population size and
terminal condition. Recently, Jaya algorithm has been widely utilized to solve various problems. Due
to its single learning technique and limited population information, Jaya algorithm may quickly be
trapped in local optima while addressing complicated optimization problems. For better prediction,
an enhanced Jaya (E-Jaya) algorithm has been presented to enhance global searchability. In this study,
ANN is enhanced based on the influential parameters using E-Jaya to test its effectiveness. The results
showed the effectiveness of the E-Jaya algorithm for best training and prediction compared with the
original algorithm.

Keywords: composite pipes; impact loads; ANN; Jaya; E-Jaya

1. Introduction

Fiber-reinforced polymers are used in a wide range of applications in civil and mechan-
ical engineering structures. Because of their high strength-to-weight and stiffness-to-weight
ratios, these structures are intended to sustain stresses that ordinary metals cannot handle
without sacrificing weight. Most of these structures are intended to withstand tensile
and internal pressure loads, but they also face impact loads over their operating lifetimes.
Metals impact behavior is well understood and can be precisely predicted. However, the
behavior of fiber-reinforced composites is highly complex when it comes to impact stresses,
which can cause internal damage and stiffness loss, yet the damage is typically unde-
tectable during visual inspection [1]. Delamination, fiber breakage, and matrix cracking
are frequently caused by impact loads [2]. Because of the unusual layered architecture
and the presence of heterogeneous components, fiber-reinforced polymeric composites
have different damage mechanics from ordinary metals. A variety of experimental studies
have been conducted to investigate the behavior of composite plates [3,4], as well as nu-
merical studies [5–9], and analytical studies [10–14]. Impact-sensitive GRP pipes generate
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localized interior damage that cannot be detected by visual inspection after the impact.
Matrix cracks in the fiber orientation, delamination, and transfer splitting effects between
layers, significant debonding, and fiber breaking damages occur in composite pipes after
impact. GRP pipes lose strength because of these defects, which increase under static or
alternate loads. Furthermore, these damages result in internal pressure leakage. As a
result, low-velocity impact behaviors and impact modes of composite structures must be
determined. Various studies on low-velocity impact reactions and damage assessments of
composite pipes have been published in the literature. Damage development was analyzed
in Ref. [15], considering filament wound thin-walled GRP pipes built of S-glass and E-glass
under drop weight impact behaviors. In composite plates subjected to low-velocity impact,
several failure modes, such as fiber rupture, delamination, mechanical damage, plastic
deformations, and significant displacements, have been reported in Ref. [6]. Layer-Wise
Theory (LWT) was used by Rafiee et al. [16] to assess in-the-plane and out-of-plane impact-
generated failure modes in composite pipes. Moreover, the authors found that the LWT was
more effective than the finite element method (FEM) and higher-order shear deformation
theory (HOSDT). The mechanical and impact characteristics of fiber-reinforced composite
pipes have been studied by several researchers [17,18]. In Ref. [19], the authors studied the
burst strength of GRP pipes that were exposed to nonpenetrating impact. Next, Ref. [20]
examined the impact behaviors of composite tubes when fatigue loading was applied. The
effects of filament wound pipe impact resistance on pipe burst pressures were examined in
Ref. [21]. The obtained results found that impact damage reduced the bursting pressure of
glass/epoxy tubes substantially. Finite element analysis of composite plates was used to
extract the data using ANN to predict the absorbed energy based on low-velocity impact
loads [22]. Maziz et al. [23] presented numerical and experimental analyses of composite
pipes under the low-velocity impact and a progressive damage model for pressurized
filament wound.

Bambach et al. [24] employed a polymer matrix carbon fiber-reinforced square section-
reinforced composite in their study, and the damages that resulted from the experiment
were investigated. Kakogiannis et al. [25] tested composite pipes after applying an axial
dynamic impact force. The results proved that increasing the diameter of the compos-
ite material enhanced the maximum and total energy absorptions because of the trials.
To forecast the mechanical and wear characteristics of short fiber-reinforced polyamide
composites, Jiang et al. [26] used an ANN model. The neural networks were optimized
after the polyamide composites were reinforced with short carbon and glass fibers. As a
function of fiber composition and testing circumstances, a neural network was employed to
predict mechanical and wear qualities. The best prediction of shear stress–strain behavior
of carbon/epoxy and glass/epoxy fabric composites were analyzed by ANN in Ref. [27].
Khatir et al. [28–30] created an improved ANN based on different optimization techniques
for damage identification in composite materials. Based on mechanical characterization and
drilling tests, the implications of stacking sequence on the drilling machinability of filament
wound hybrid composite pipes can be found in Ref. [31]. The impact identification of
composite cylinders using a weighted fusion model and an enhanced deep metric learning
model total least squares with Tikhonov regularization can be found in Ref. [32]. The results
demonstrated that the suggested technique could achieve very low localization errors on
three-dimensional composite structures and resilient and accurate reconstruction even the
noise. This present study aims to develop a new model to predict the displacement of
composite pipes after different impacts of low velocities using enhanced ANN. Jaya and
E-Jaya are used to improve the ANN technique based on various parameters, such as input
velocity, thickness, the number of layers, and stacking sequence. The obtained results show
the advantage of E-Jaya compared with the Jaya algorithm to enhance the ANN technique.
Recently, a novel application based on Physics-Informed Artificial Neural Network Ar-
chitectures for System and Input Identification of Structural Dynamics was presented in
Ref. [33]. The provided results showed the effectiveness of the presented application.
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The structure of the present paper is divided into different sections. In Section 2, we
describe the methodology of the improved ANN technique using Jaya and E-Jaya. Section 3
presents the experimental and numerical parameters required to build the data that can
be used for the prediction. Results and discussion are reported in Section 4. Finally, the
conclusion and remarks related to the proposed technique and its advantages to predict
the displacement in the composite pipe using different low velocities are presented.

2. Improved ANN

Intelligent and nature-inspired solutions are now gaining a lot of attention in the real
world when it comes to tackling complicated challenges. One of the most widely used
and comprehensive intelligent systems is neural networks. Pattern recognition, identifica-
tion, classification, image processing, and control systems are some of the sophisticated
operations utilized by neural networks. This paper uses advanced optimization tech-
niques to improve ANN for better prediction [8,34]. More details are discussed in the
following sections.

2.1. Jaya and E-Jaya

As noted previously, Jaya performs its search process using a basic learning tech-
nique [35,36]. This strategy can be expressed as follows:

vi = xi + λ1 × (xBest − |xi|) − λ2 × (xWorst − |xi|), i = 1, 2, 3, . . . , m (1)

where λ1 and λ2 denote random numbers between [0–1]; m represents the population size;
xBest and xWorst are the current best and the worst solution, respectively; and xi and vi are
the solution and trail vectors of the ith individual, respectively. The second part of Equation
(1) means the tendency of the solution xi to move closer to the current best solution. Next,
the last term represents the tendency of xi to move away from the xWorst. Furthermore, a
better convergence speed can be presented in the next iteration, which can be shown in the
following equation:

xi

{
vi
xi

if f (vi ) ≤ f (xi), otherwise (2)

where f (*) denotes the objective function.
Population xi in Jaya is initialized as follows:

xi = l + (u − l) × λ3, i = 1, 2, 3, . . . , N (3)

where λ3 presents a random number, and u and l denote the upper and lower limit
variables, respectively.

Two strategies are used for E-Jaya. The first is based on a local exploitation strategy,
and the second is based on a global exploration strategy. Lower and upper local attractors
are considered to avoid the potential risk. The upper local attract point can be described
as follows:

Pu = λ3 × xBest + (1 − λ3) ×M (4)

where λ3 denotes a random number in the interval [0–1], Pu denotes the upper local attract
point, xBest presents the current best solution, and M denotes the current mean solution.

Next, the following equation expresses the lower local attract point:

Pl = λ4 × xWorst + (1 − λ4) ×M (5)

where xWorst denotes the current worst solution, and λ4 presents a random number in the
interval [0–1].

Based on the last two equations, the local exploitation strategy of E-Jaya can be
presented as:

vi = xi + λ5 × (Pu − xi) − λ6 × (Pl − xi), i = 1, 2, . . . , N (6)
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where λ5 and λ6 denote a random number [0–1].
The second strategy is based on global exploration, and improving the global abil-

ity of the original algorithm, the main idea is based on the differential vectors between
historical and contemporary populations having a greater solution space than differential
vectors between populations of the same generation. The following equation expresses the
presented strategy:

Xold (Xold = {xold, 1, xold, 2, . . . xold, N}) (7)

First, it is generated by the following equation:

Xold

{
X

Xold
if PSwitch ≤ 0.5; (8)

where Xold denotes the historical population, and Pswitch denotes the switch probability.
The global exploration strategy of E-Jaya can be expressed by the following equation:

vi = xi + k × (xold − xi), i = 1, 2, . . . , N (9)

where k denotes a random number.

2.2. Implementation of E-Jaya to Enhance ANN

An ANN can be used as a black-box model to connect complicated input and output
datasets once it has been properly trained. More influential parameters in ANN weights
and biases can help to connect the neurons together, as shown in Figure 1. wij presents the
weights of neuron connection between the input node and neuron in the hidden layers. bj
denotes the bias associated with the jth neuron in the hidden layer.
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Figure 1. ANN architecture.

Additionally, wj denotes the weight of neuron connection between the jth neuron in a
hidden and single neuron in the output layers. Indices i = 1, 2, . . . , m represent the input
features, and j = 1, 2, . . . , n represent hidden layer neurons. The total number of parameters
used in the network is n × (m + 2) + 1, and b1 represents the bias associated with the single
neuron in the output layer neuron. In this article, Jaya and E-Jaya are used to improve the
parameters of ANN. The objective function is used to minimize the network root mean
square error (RMSE). Four parameters are considered, namely input velocity, thickness, the
number of layers, and stacking sequence to compute the displacement as output.

3. Experimental Validation

The data needed to train ANN models was generated by improved numerical simula-
tions using the commercial FEA software Abaqus. The numerical model is required to be
evaluated against previously proven numerical or experimental data, which is a standard
procedure in numerical investigations. This section describes more details about numerical
validation based on experimental analysis taken from Refs. [37,38].
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3.1. Low-Velocity Impact Tests and Materials

The low-velocity impact responses of GFRP composite pipe samples were investigated
using a specially developed low-velocity impact apparatus. In Figure 2, we can see the
low-velocity impact instrument, specimen support, and anti-rebound system. V-shaped
support with a 60◦ angle was used to fix the test specimens. We can obtain a single hit since
the test stand contains an anti-rebound mechanism. A data logging system is also included
in the test stand, which can send force signals at a sampling rate of 25 kHz.
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Figure 2. (a) Low-velocity impact test stand and data logging system, (b) anti-rebound system, and
(c) shore D hardness tester [37,38].

The anti-rebound system is engaged by dropping mass through a proximity sensor,
which sends a signal to the PLC unit, where pneumatic pistons are actuated with a predeter-
mined delay to prevent subsequent impacts. After the first impact, the anti-rebound device
kept the impact mass, preventing repeated impacts. The force sensor transmits force signals
from the origin to the termination of the impact to the data recording system and Signal
Express software. Newton’s law of motion is used to calculate the variance of contact force
displacement and energy time. The considered diameter is Ø54, and composite pipes with
(±55◦)3 configurations were fabricated. In order to test the effect of low-velocity impact
damage, composite pipes with a Ø54 diameter according to ASTM D 7136 at different
velocities using five repeated tests were used. More details about the production of GFRP
composite pipes can be found in Refs. [37,38].

3.2. FE Model

For this investigation, the data were extracted from numerical simulations using the
commercial FEA software Abaqus explicit after validation with experimental data from
Refs. [37,38]. Table 1 shows the geometric dimensions of the composite pipe and impactor
information related to the radius, mass, and velocity. The mechanical properties of fiber
and matrix are presented in Table 2. The mechanical properties and strength of GFRP layers
can be obtained using the equations in Appendices A and B respectively.
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Table 1. Geometric dimensions of the composite pipe and the impactor.

Composite Pipe Impactor

Length 155 (mm) Radius 12 (mm)

Interior diameter 54 (mm) Mass 5.6 (kg)

Exterior diameter 58.8 (mm) Velocity 1.5, 2, 2.5 and 3 (m/s)

Table 2. Mechanical properties of fiber and matrix.

E (GPa) σtensile (MPa) ρ (g/cm3) εfailure (%)

Fiber: E-glass 73 2400 2.6 1.5–2

Matrix: Epoxy resin 3.4 50–60 1.2 4–6

Figure 3a shows the meshing of the composite pipe and the shape of the impactor, and
Figure 3b shows the ply configuration. The material considered in this analysis is GFRP
tubes. The geometry of the composite pipe is 3-D, which is meshed using the S4R shell
elements (a four-node doubly curved thin or thick shell with reduced integration, hourglass
control, and finite membrane strains). The friction coefficient [39,40] between all system
parts (composite pipe/support–impactor/composite pipe) equals 0.3 in the present study.
The load is applied in the form of initial velocity to the impactor, which equals the value of
energy at the time of impact. The boundary conditions are considered by fixing the test
specimens and simulating V-shaped support with a 60◦ angle.
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Figure 4a,b shows the stress contour at the time of maximum contact and the displace-
ment, where the impactor kinetic energy became zero.
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The obtained results based on experimental analysis are compared with developed
FEA. The failure initiation was identified, and the damage was simulated using 3D Hashin
failure criteria [41–43]. This criterion was applied in many studies and offered a more
effective result in the damage evaluation in composite constructions. In the current study,
this criterion is applied in all steps of the composite pipe’s progressive damage. A suitable
grid size is chosen, and the numerical solution’s convergence with the elastic phase is
confirmed. Using the S4R mesh type, we reduce the element size from 5 mm to 1 mm, as
shown in Figure 5a,b:
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Figure 5. Different numerical outputs for different impact velocities and mesh size: (a) Peak load (N)
and (b) energy (J).

The convergence study in terms of energy and the peak load during contact is shown
in Figure 5a,b, where it is observed that the results of 1 mm and 2 mm element sizes are
identical. The numerical results are then compared with experimental graph data following
the convergence study. The force–time loading curves and energy–time curves have been
generated by the 3D model. Figure 6 presents the peak load variation versus time under
increasing impact velocities, and Figure 7 shows the variation of energy versus time for
different velocities for a composite pipe with a diameter equal to Ø54 mm.
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Figure 6. The peak load variation versus time under increasing impact velocities: (a) 1.5 m/s,
(b) 2 m/s, (c) 2.5 m/s, and (d) 3 m/s.
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Based on the obtained results for different outputs (load-time data, energy-time data),
the developed numerical model shows accurate results and acceptable error compared
with the experimental results. This model is used in the next section to construct the data
for several input cases.

3.3. Design of Experiments

The design of experiments is helpful during the data gathering phase because it offers
a systematic and exact approach that produces reliable, tenable, and supportable datasets.
The sensitivity analysis identifies different variables—impact velocity, composite pipe
thickness, number of layers, and stacking sequence of material type—as being of particular
importance when taking the impact behavior into account. As a result, the study here
considers these four variables, and the various levels examined are provided in Table 3.
The objective is to collect data on the peak displacement of the impactor for each pipe, from
total pipe failure to just slight or minimal pipe damage.

Table 3. The obtained collected data from a developed numerical model used for training ANN-Jaya
and ANN-E-Jaya.

Inputs Outputs

Velocity (m/s) Thickness (mm) Number of Layers Stacking Sequence Displacement (mm)

Factors Levels Factors Levels Factors Levels Factors Levels

-
1.5 1

1.3 1 4 1
(±55) 11.95 2 6 2

2 2 2.6 3 8 3
(±45) 22.5 3 3.25 4 10 4

3 4 3.9 5 12 5 (±35) 3
Min Max Min Max Min Max - Min Max
1.5 3 1.3 3.9 4 12 0.791289 19.906

A total of 75 numerical tests were run with various combinations of the earlier men-
tioned variables. The estimations were based on the maximum displacement at impact
velocities of 1.5, 2, 2.5, and 3 m/s. In every investigation instance, the impactor’s size and
weight are kept constant. All the tests follow the same boundary conditions as well. The
models were run in the Explicit setting of Abaqus software.

4. Results and Discussion

The present study highlights the utilization of a recently developed optimization
technique, namely, E-Jaya, to effectively adapt the influenced parameters of artificial neural
networks (ANN) during the training process. This study aims to compute the displacement
of a composite pipe after low-velocity impacts, and thereby aid in selecting the best design
before use. To investigate the efficacy of E-Jaya, it was tested alongside the original
algorithm. Both optimization algorithms were subjected to a population size of 1000 and
500 iterations, while the best training was identified through the consideration of different
hidden layer sizes (H) (i.e., 6, 8, 10, and 12). The training process for both optimization
algorithms is presented in Figure 8.
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The effectiveness of the E-Jaya algorithm was compared with that of the Jaya algorithm
for achieving better training to improve an artificial neural network (ANN) model. To
achieve this analysis, 75 datasets from the developed numerical model were collected into
the ANN model. The obtained results from this study demonstrate that better training can
be achieved by using the E-Jaya algorithm with different hidden layer sizes compared with
the Jaya algorithm. The successful adaptation of influenced parameters of ANN during
the training process using E-Jaya led to improved accuracy in computing the displacement
of a composite pipe after low-velocity impacts. This indicates the effectiveness of E-Jaya
as an optimization technique for enhancing the performance of ANN in material testing
and design.

To further demonstrate the effectiveness of the E-Jaya algorithm, six scenarios were
tested, considering CPU time, with varying hidden layer sizes. The presented results of
these tests are summarized in Table 4a–d. These results highlight the benefits of using the
E-Jaya algorithm for achieving better training and improving accuracy in material testing
and design.

In the present study, the performance of the E-Jaya algorithm was evaluated in com-
parison with the Jaya algorithm based on the accuracy of the obtained results. The CPU
time for both algorithms was also compared across different cases.

The results demonstrate that the E-Jaya algorithm outperforms the Jaya algorithm
in terms of accuracy for all cases. Additionally, the CPU time is lower when using the
E-Jaya algorithm as compared with the Jaya algorithm. These findings indicate that the
E-Jaya algorithm has the potential to provide faster predictions as compared with the finite
element method (FEM).

The discrepancies between the actual results, as well as, the results obtained from the
E-Jaya and Jaya algorithms, were further summarized. This analysis provides a detailed
overview of the effectiveness of both algorithms in achieving accurate predictions for the
given application in Figure 9a–d.

The present study aimed to evaluate the performance of an enhanced artificial neural
network (ANN) model using E-Jaya with different hidden layer sizes for composite pipes.
The correlation data obtained from this study showed that the enhanced ANN using E-Jaya
with eight neurons outperformed the other networks for composite pipes.

The correlation coefficient, denoted as R, was used to evaluate the level of accuracy of
the ANN model. The enhanced ANN model using E-Jaya with eight hidden layer sizes
achieves a high level of accuracy, with an R value of 0.998. This is significantly higher than
the other hidden layer sizes and the original algorithm.

The results of this study underscore the potential of the E-Jaya algorithm in enhancing
the performance of ANN for composite pipes. The use of E-Jaya with eight hidden layer
sizes resulted in a highly accurate ANN model for composite pipes, which can support the
design and testing of these materials.

Further research on the utilization of E-Jaya in other applications is warranted to
determine its broader applicability and efficacy. Moreover, investigating the impact of
varying parameters, such as the number of iterations and the population size, on the
performance of the ANN model can further enhance its accuracy and applicability.
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Figure 9. Peak displacement prediction for six scenarios: (a) H = 6, (b) H = 8, (c) H = 10, (d) H = 12.



Buildings 2023, 13, 973 13 of 16

Table 4. Independent scenarios to verify Jaya and E-Jaya model: (a) H = 6, (b) H = 8, (c) = 10 and (d) = 12.

Actual peak
displacement

Simulated peak
displacement

Simulated
peak dis-

placement Difference
CPU
(Jaya)

CPU
(E-Jaya)

Hidden = 6

V T N S (Abaqus) mm (Jaya) mm

Difference
(Absolute

value) (E-Jaya) mm

1.5 4.8 12 3 1.1977 3.3815 2.1838 1.4611 0.2634

3746.557 3070.96

1.5 4 10 3 1.6282 1.1378 0.4904 1.4375 0.1907
2 4 10 2 2.4162 0.8834 1.5328 2.1267 0.2895

2.5 3.2 8 2 4.2674 3.0015 1.2659 3.9907 0.2767
3 3.2 8 2 5.3216 10.2138 4.8922 5.2222 0.0994
2 1.6 4 1 12.6957 12.3378 0.3579 12.6404 0.0553

(a) H = 6

Actual peak
displacement

Simulated peak
displacement Difference

Simulated
peak dis-

placement Difference
CPU
(Jaya)

CPU
(E-Jaya)

Hidden = 8

V T N S (Abaqus) mm (Jaya) mm (E-Jaya) mm

1.5 4.8 12 3 1.1977 3.5246 2.3269 1.1204 0.0773

3711.569 3113.85
1.5 4 10 3 1.6282 2.7805 1.1523 1.7411 0.113
2 4 10 2 2.4162 1.2612 1.155 2.4716 0.0555

2.5 3.2 8 2 4.2674 1.936 2.3314 4.278 0.0106
3 3.2 8 2 5.3216 2.35 2.9716 5.4882 0.1666
2 1.6 4 1 12.6957 14.9022 2.2065 12.4277 0.268

(b) H = 8

Actual peak
displacement

Simulated peak
displacement Difference

Simulated
peak dis-

placement Difference
CPU
(Jaya)

CPU
(E-Jaya)

Hidden = 10

V T N S (Abaqus) mm (Jaya) mm (E-Jaya) mm

1.5 4.8 12 3 1.1977 0.1565 1.3542 1.4344 0.2367

3718.516 3068.287

1.5 4 10 3 1.6282 0.6487 0.9795 1.8452 0.217
2 4 10 2 2.4162 1.6043 0.8119 2.4206 0.0044

2.5 3.2 8 2 4.2674 2.379 6.6464 3.7983 0.4691
3 3.2 8 2 5.3216 4.7983 10.1199 5.1405 0.1811
2 1.6 4 1 12.6957 10.8877 1.808 12.4026 0.2931

(c) H = 10

Actual peak
displacement

Simulated peak
displacement Difference

Simulated
peak dis-

placement Difference
CPU
(Jaya)

CPU
(E-Jaya)

Hidden = 12

V T N S (Abaqus) mm (Jaya) mm (E-Jaya) mm

1.5 4.8 12 3 1.1977 3.0797 1.882 0.9108 0.2869

3741.412 3093.343

1.5 4 10 3 1.6282 6.0291 4.4009 1.5353 0.0929
2 4 10 2 2.4162 0.9828 3.399 2.4353 0.0191

2.5 3.2 8 2 4.2674 2.4248 1.8426 4.1478 0.1196
3 3.2 8 2 5.3216 1.5051 3.8165 5.0469 0.2747
2 1.6 4 1 12.6957 6.5249 6.1708 12.7985 0.1028

(d) H = 12

Notation: V: Velocity (m/s); T: Thickness (mm); N: Number of layers; S: Stacking sequence.

5. Conclusions

In this study, the effectiveness and robustness of the algorithms to improve the training
of ANN and its ability to predict displacement are discussed. Two parameters, bias and
weight, including different hidden layer sizes (6, 8, 10, and 12), are considered to enhance
the ANN model. The data used for this study were extracted from the numerical model
using FEM after validation with experimental tests. The study presents an enhanced ANN
algorithm, based on the E-Jaya algorithm, for predicting the displacement in composite
pipes subjected to low-velocity impact loads. The study investigates the damages induced
by impact velocities of 1.5, 2, 2.5, and 3 m/s on composite pipes with a diameter of
54 mm. The results demonstrate that the E-Jaya algorithm is effective in training and
predicting displacement, outperforming the original algorithm. This study highlights the
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importance of predicting low-velocity impact behavior in composite pipes, which can lead
to internal damage and stiffness loss. The findings of this study can support the design of
composite pipes with improved impact resistance and reduce the risk of internal damage
and pressure leakage. The study contributes to the existing knowledge on the behavior
of fiber-reinforced polymers under impact loads and provides a new methodology for
enhancing ANN algorithms for better prediction accuracy. Future research can explore the
effectiveness of other ANN algorithms in predicting the impact response of composite pipes
under different loading conditions. This study has significant implications for the design
and application of composite pipes in various industries, including civil and mechanical
engineering structures.
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Appendix A

Micromechanics rules for mechanical properties of GFRP layers [44–46]. Mechanical
properties of the GFRP layers can be obtained using the equations below:

Ex = E f Vf + EmVm (A1)

νxy = ν f Vf + νmVm (A2)

Ey =
E f Em(Em + E f Vf − EmVf )

E f
2(−2 + Vf )(−1 + Vf )Vf

2 + Em2(−1 + Vf )
2(1 + Vf )Vf + E f Em(1 + 2Vf (−1 + Vf )(1 + (−1 + Vf )Vf ))

(A3)

Gxy =
Gm

1−
√

Vf (1− Gm
G f

)
(A4)

Ezz = Ey; Gxz = Gxy; Gyz = Ey/(2 + 2vyz); vxz = vyz = 0.2 (A5)

ρGFRP = (Vf ρ f + Vmρm) (A6)

Appendix B

Calculating the strength of GFRP layers [44]:

XT = X f (Vf + Vm
Em

E f
) (A7)

XC = 0.5XT (A8)

YT = VmXm (A9)

https://github.com/Samir-Khatir/Enhanced-ANN-Real-application-in-composite-pipe
https://github.com/Samir-Khatir/Enhanced-ANN-Real-application-in-composite-pipe
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YC = VmXm
′ (A10)

where XT, XC, YT, and YC denote the longitudinal tensile strength, longitudinal compressive
strength, transverse tensile strength, and transverse compressive strength of GFRP plies. Xf,
Xm, and Xm

′ stand for fiber tensile strength, matrix tensile strength, and matrix compressive
strength, respectively.

References
1. Davies, G.A.O.; Olsson, R. Impact on composite structures. Aeronaut. J. 2016, 108, 541–563. [CrossRef]
2. Chib, A. Parametric Study of Low Velocity Impact Analysis on Composite Tubes. Ph.D. Thesis, Wichita State University, Wichita,

KS, USA, 2006.
3. Kersys, A.; Kersiene, N.; Ziliukas, A. Experimental Research of the Impact Response of E-Glass/Epoxy and Carbon/Epoxy

Composite Systems. Mater. Sci. 2010, 16, 4.
4. Karakuzu, R.; Erbil, E.; Aktas, M. Impact characterization of glass/epoxy composite plates: An experimental and numerical study.

Compos. Part B Eng. 2010, 41, 388–395. [CrossRef]
5. Li, C.F.; Hu, N.; Yin, Y.J.; Sekine, H.; Fukunaga, H. Low-velocity impact-induced damage of continuous fiber-reinforced composite

laminates. Part I. An FEM numerical model. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1055–1062. [CrossRef]
6. Tita, V.; de Carvalho, J.; Vandepitte, D. Failure analysis of low velocity impact on thin composite laminates: Experimental and

numerical approaches. Compos. Struct. 2008, 83, 413–428. [CrossRef]
7. Benaissa, B.; Hocine, N.A.; Khatir, S.; Riahi, M.K.; Mirjalili, S. YUKI algorithm and POD-RBF for Elastostatic and dynamic crack

identification. J. Comput. Sci. 2021, 55, 101451. [CrossRef]
8. Shirazi, M.I.; Khatir, S.; Benaissa, B.; Mirjalili, S.; Wahab, M.A. Damage assessment in laminated composite plates using Modal

Strain Energy and YUKI-ANN algorithm. Compos. Struct. 2022, 303, 116272. [CrossRef]
9. Benaissa, B.; Khatir, S.; Jouini, M.S.; Riahi, M.K. Optimal Axial-Probe Design for Foucault-Current Tomography: A Global

Optimization Approach Based on Linear Sampling Method. Energies 2023, 16, 2448. [CrossRef]
10. Iannucci, L.; Willows, M.L. An energy based damage mechanics approach to modelling impact onto woven composite materials—

Part I: Numerical models. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2041–2056. [CrossRef]
11. Khatir, S.; Tiachacht, S.; Benaissa, B.; Le Thanh, C.; Capozucca, R.; Abdel Wahab, M. Damage Identification in Frame Structure

Based on Inverse Analysis. In Proceedings of the 2nd International Conference on Structural Damage Modelling and Assessment,
Ghent, Belgium, 4–5 August 2021; pp. 197–211.

12. Kahouadji, A.; Tiachacht, S.; Slimani, M.; Behtani, A.; Khatir, S.; Benaissa, B. Vibration-Based Damage Assessment in Truss
Structures Using Local Frequency Change Ratio Indicator Combined with Metaheuristic Optimization Algorithms. In Proceedings
of the International Conference of Steel and Composite for Engineering Structures, Ancona, Italy, 12–13 September 2022;
pp. 171–185.

13. Slimani, M.; Khatir, T.; Tiachacht, S.; Boutchicha, D.; Benaissa, B. Experimental sensitivity analysis of sensor placement based on
virtual springs and damage quantification in CFRP composite. J. Mater. Eng. Struct. 2022, 9, 207–220.

14. Slimani, M.; Tiachacht, S.; Behtani, A.; Khatir, T.; Khatir, S.; Benaissa, B.; Riahi, M.K. Improved ANN for Damage Identification in
Laminated Composite Plate. In Proceedings of the International Conference of Steel and Composite for Engineering Structures,
Ancona, Italy, 12–13 September 2022; pp. 186–198.

15. Doyum, A.B.; Altay, B. Low-velocity impact damage in glass fibre/epoxy cylindrical tubes. Mater. Des. 1997, 18, 131–135.
[CrossRef]

16. Rafiee, R.; Ghorbanhosseini, A.; Rezaee, S. Theoretical and numerical analyses of composite cylinders subjected to the low velocity
impact. Compos. Struct. 2019, 226, 111230. [CrossRef]
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