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Abstract: The geometrical variability in the joints of large-scale, doubly-curved space-frame structures
can have a substantial impact on the time and cost of their construction. This paper proposes a
novel framework to assess the construction complexity of space-frame structures as a factor of
the geometrical variability and fabrication of their joints, to promote the informed design of the
fabrication process. The k-means algorithm was used to cluster space-frame joints into fabrication
batches, providing an overview of the variability distribution. A novel initialisation method was
developed that allows the algorithm to adapt to project-specific inputs, substantially improving
cluster compactness. Overlaying the clustering results with the properties of different fabrication
processes provides an accurate estimation of the construction complexity of alternative fabrication
options. The method was applied to a large-scale case study to demonstrate the benefits in practice.
Alternative fabrication scenarios were assessed in the early stages of the design development, leading
to the informed design of the fabrication process and hence to the efficient construction of large-scale,
complex structures.
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1. Introduction

The application of space-frame structures on large-scale, doubly-curved projects in
recent years has important implications on the complexity of their construction process [1,2],
due to the geometrical variability introduced in their elements. This is expressed either in
structural members and joints, or in non-structural elements, such as glazing and cladding.
The impact of variability on the overall construction process is highly dependent on the
fabrication method applied, and the scale and geometrical complexity of the building. Con-
ventional fabrication methods of building components, such as casting and metal rolling [3]
favour the manufacturing of large volumes of standardised elements, while advanced,
robotic fabrication methods allow the rapid production of bespoke members. Large-scale,
freeform space-frame structures comprise both standardised and bespoke components. It
is therefore necessary to develop an accurate method to assess the geometrical variability
in their members and inform the selection of appropriate fabrication processes to accelerate
their construction.

The geometrical variability of structural elements is expressed either in the length
and cross-section of the members, or the sizes and angles of joints. The focus of this study
is placed on the latter, as joints typically represent 20–30% of the material required for
production [4]. Research on this topic therefore offers the potential for significant savings in
the time and complexity of space-frame construction. Previous studies have demonstrated
that increased joint repeatability enhances fabrication and construction [5,6] and that it can
generate significant savings throughout the whole life-cycle of a structure, when compared
to lighter, non-modular designs [7–9]. However, the methods devised in the literature do
not support the iterative and dynamic processing of joint geometry, therefore compromising
their efficiency in accurately assessing joint variability.
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Clustering analysis, a branch of unsupervised machine learning, provides an efficient
method of dynamic, iterative clustering of high-volume datasets [10,11]. It is therefore
appropriate for grouping space-frame joints into homogeneous groups, clusters, according
to their geometry [12–14]. The angle values at which members meet at a joint form the
similarity measure for the clustering analysis, while the generated clusters represent the
batches required for fabrication. Lloyd’s algorithm, or ’k-means’, is one of the most widely
used clustering algorithms and lends itself to this context, due to its simplicity, ease
of implementation on large datasets, computational efficiency and speed [15–19]. The
algorithm partitions a dataset of n items into k clusters by minimising the variance between
members of the same cluster (intracluster variance). k initial cluster centres are selected by
the algorithm’s initialisation method and each item of the dataset is, respectively, assigned to
the closest cluster centre according to the similarity measure defined. The quality of the
output clusters of k-means is highly sensitive to the initialisation method, the presence of
outliers, and the value range of the data. The versatility of its formulation however, allows
for heuristic modifications to address these challenges [19]. Thus, the k-means algorithm
presents an efficient tool to cluster the joints of a space-frame structure and gain insight
into their level of variability.

This paper proposes a novel framework for the evaluation of the construction complex-
ity of space-frame structures, as a factor of the geometrical variability of their joints. The
level of variability is initially assessed by clustering the joints into fabrication batches and
studying the relationship between the number and size of batches. Focus is then placed on
exploring methods to customise the clustering algorithm to improve its performance within
the context of space-frame joints. Overlaying the generated clusters with information re-
garding the properties of existing manufacturing processes enables a thorough assessment
of the construction complexity. Different fabrication processes are then comparatively
evaluated in early stages of the design development in a time and computationally efficient
manner. The complexity associated with different fabrication and construction scenarios
is hence assessed according to context-specific parameters and an informed design of the
construction process can take place.

2. Context
2.1. Clustering Analysis of Space-Frame Joints
2.1.1. Angles Dataset

Every joint of the structure is described by the angles of the members connected to
it. The sum of the angles of all joints forms the dataset for the clustering analysis, while
datasets of k-means algorithms remain static during the clustering analysis in the literature,
this differs in the case of space-frame joints. Due to the fact that a joint can appear in
different orientations within the same structure, its angles need to be stored in different
configurations, since the point of reference can change. According to the method developed
in [5], for a joint of valence v, there are overall 2v possible configurations of its angles.
Figure 1a presents all possible configurations of a joint of valence four. In practice, the
multiple descriptions of the same joint reflect the possibility of the same joint geometry
being used in different orientations and positions relative to each other within the same
structure. All such possible configurations need to be evaluated at every iteration of the
clustering analysis to identify the configuration that yields the most compact clusters. The
complete dataset is therefore represented by a matrix A with 2vn rows and v columns,
where n is the total number of joints and v is the maximum valence found anywhere in
the structure.

2.1.2. Joint Valence

For joints with a smaller valence than v, some cells of their matrix row remain empty,
as shown in the first row of the matrix in Figure 1b. The empty cells must be placed at
the end of the row, after the angles calculated, and not in-between them, such that the
relative order between the existing angle values remains intact. Once the row has been
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filled with the joint’s angles and any empty cells, their relative is assigned to the specific
joint. All possible configurations of this set are then calculated and stored, in the same way
they were calculated for the joints with the maximum valence v (Figure 1a). The generated
configurations are shown in Figure 1b, demonstrating how the position of the angles and
empty cells changes within the matrix, while maintaining their relative order in every row.
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Figure 1. Every joint can be described by 2v possible configurations of its angles, where v is the
maximum valence in the structure studied. Each of these configurations are stored in a matrix A
with 2vn rows and n columns, where v is the maximum valence and n is the number of joints in
the structure. In the case of joints of a smaller valence, the left over cells remain empty. (a) The
2v = 8 possible angle configurations for a joint with a valence v = 4. (b) The 2v = 8 possible angle
configurations for a joint with a valence v = 3, when placed in a structure of a maximum valence of
v = 4.

Once each joint’s set of angles has been determined, the joints are grouped into clusters,
according to their distance from the cluster centres. A final matrix A’ is then created, with
n rows and v columns, A’ ⊆ A, which contains a single representation of each joint—the
one that has the minimum distance from the cluster centre. Every consecutive iteration of
the algorithm re-evaluates all possible configurations of the joints included in matrix A.
This characteristic renders datasets of space-frame joints different from datasets studied in
k-means literature, which remain fixed throughout the clustering analysis.

2.1.3. Adaptive Sampling

The efficiency of the k-means algorithm is highly dependent on the selection of the
initial cluster centres (initialisation method) [17–22]. A poor initial selection can mean the
algorithm converges upon local minima, leads to empty clusters, or drastically increases the
computation time. A variety of methods have been developed to provide efficient seeding
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strategies, which explore the order in which the cluster centres are selected as well as their
selection criteria.

The standard implementation of the k-means algorithm suggests that all initial cluster
centres are randomly chosen at the beginning of the clustering analysis. Even though this
approach has been further studied in depth in the literature [23,24], recent research methods
suggest that an adaptive sampling yields improved results [19,25,26]. In this case, the initial
seeding takes place in steps, with every new cluster centre being selected according to its
relationship with the previously selected centres. This informed seeding allows for higher
control of the clustering analysis, which can improve the compactness of the resulting
clusters and reduce the computational resources required [25].

The poor reliability of the random initialisation [23,24] has led to the development of
different initialisation algorithms, which base their selection either on the distance between
cluster centres [27–29] or the density of the dataset [29,30]. While these studies achieve
a more efficient clustering when benchmarked against the original k-means algorithm,
their high sensitivity to project-specific parameters, such as the density distribution of the
dataset or the number of clusters k, hinders their generalised application. Such parameters
can significantly affect whether an initial selection based on the distance between cluster
centres, or on the density of the dataset, will yield more compact clusters. While the
simultaneous consideration of both selection criteria has been explored [31,32], further
studies on this topic are needed to provide a robust method to comparatively evaluate the
algorithm’s performance under a density- or distance-based selection of the initial cluster
centres, according to each dataset’s properties.

2.1.4. Evaluation of Cluster Compactness

On completion of the clustering analysis the cluster characteristics need to be analysed
to assess the fabrication complexity. The measure used in Lloyd’s algorithm to describe the
output of the clustering analysis is the sum of squared error (SSE) [15,17,19–21]. However,
it does not provide any useful input for fabrication, which requires an accurate description
of the absolute distances within clusters. The intracluster variance of the generated clusters
is therefore extracted here, which describes the maximum distance between two items of
the same cluster [33,34]. In the context of space-frame joints, this translates to the maximum
angle difference between two joints of the same batch and hence it represents the maximum
tolerance that the fabrication process will need to accommodate. Providing this information
allows an assessment of the variability of joints in a structure and an identification of the
respective requirements that the fabrication process and joint design will need to meet.

Table 1 summarizes the steps of the k-means clustering algorithm that vary in the
context of space-frames, when compared to conventional application of the algorithm in
literature, as described in this paper. They hence offer the potential for customisation to
achieve improved cluster compactness within this context. Once the clustering analysis has
been completed, the results are overlaid with inputs from fabrication.

Table 1. Summary of the k-means parameters that change in the context of space-frames, when
compared to other applications in the literature.

Dataset Valence Adaptive Sampling Distance Metric

Literature static constant random, density, distance SSE
Space-frames dynamic varying density and distance intracluster var.

2.2. Classification of Fabrication Processes

The fabrication of space-frame joints includes a wide range of manufacturing processes
and tooling equipment. Joints are generally produced in batches, whose size can range
from a single element to large quantities [3]. The automation of a fabrication process is
defined by the frequency at which the equipment needs to be reconfigured and can be
characterised as continuous, discrete or fabrication in batches [6]. Continuous processes are
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characterised by a fixed automation, in which the often time-expensive set-up process takes
place infrequently during the production, allowing for large quantities of identical elements
to be produced in-between. Examples of such processes include metal rolling, casting or
powder metal production. Discrete fabrication processes on the other hand, have a flexible
automation, in which the machining equipment is reconfigured before the production of
each element. This category includes digital fabrication methods, where the information
for the manufacturing of each joint is transferred directly from the digital design software
to the manufacturing tool. Such examples include CNC-milling, robotic fabrication and
3D printing among others. Fabrication in batches describes an in-between process, in which
the level of automation is programmed at frequent intervals of the fabrication process.
It therefore simultaneously offers the benefits of customization and automation with the
re-programming of the manufacturing process. For example, ref. [35] proposed the casting
of metal joints into sand-printed moulds, while the casting process produces geometrically
identical elements, the moulds have a limited lifespan, therefore enabling the reuse of their
material to print a mould of a different geometry.

Figure 2 describes a classification of the different joint fabrication processes from
the literature according to their batch size and level of automation [6]. Every fabrication
process falls into one of these categories and can be positioned accordingly on the graph.
When time- and cost-effective manufacturing of joints is considered, a fixed automation
with large batch sizes is more efficient; however, it is restrictive on the variability of the
generated joints. On the other hand, when the complex geometry of the design is the driver
for the fabrication, flexible automation with single-element batches is most appropriate, but
with potential implications for project cost. The approach developed in this paper allows a
quick, comparative evaluation of the effect that different fabrication processes will have
on the construction complexity of a structure and hence leads to an informed choice of the
manufacturing process.

Figure 2. Classification of joint fabrication processes depending on batch size and process automation,
and literature examples for each (adapted form [6]). The boundaries between different fabrication
types remain fluid and cannot be strictly defined. (a) Hubs [36], (b) Chun et al. 2018 [37], (c) Dritsas
et al. 2017 [38], (d) Souza et al., 2018 [39], (e) Tanadini et al., 2022 [40], (f) Kladeftira et al. 2021 [41],
(g) Kladeftira et al., 2022 [42], (h) Bach et al., 2023 [43], (i) Ariza et al. 2018 [44], (j) LANIK Engi-
neers [45], (k) MERO [46], (l) Octatube [47], (m) Niehe 2017 [35], (n) Aghaei Meibodi et al., 2019 [48].

2.3. Joint Tolerance

In the context of space-frame joints, tolerance can be expressed as the variability
between the angles at which members meet. In terms of angle variability, every joint design
has an embedded capacity to accommodate a level of tolerance in the angles at which its
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members meet. Depending on the specific design, this tolerance is either radial, around the
member’s centroidal axis, or specific to a plane of rotation, as shown in Figure 3. When the
angle difference between two joints is smaller or equal to the joint’s embedded tolerance,
they can still be fabricated as members of the same batch [6]. The selection of the joint
design is therefore a key factor in the fabrication process. For this paper, every joint is
considered to carry an embedded tolerance, which represents the combined result of both
the joint design and the construction tolerances. In practice, it describes the rotational
freedom that a member has, when rotating perpendicular to its axis, while connected to a
joint (Figure 3a). When a structure’s joints are clustered into fabrication batches, members
of the same cluster must have an angle difference smaller than or equal to the fabrication
tolerance.

t

(a)

t2
t1

(b)

Figure 3. The tolerance embedded in different joint designs. (a) Joint design with minimal toler-
ance [45,46]. The tolerance is measured rotationally around the members’ axis. (b) Joint design with a
high level of tolerance [36]. The level of tolerance differs, depending on the plane the members move
in. Reprinted with permission from [6].

3. Research Methodology

The focus of this paper is to develop a novel formulation of the k-means algorithm
to efficiently cluster space-frame joints into fabrication clusters. The method developed is
presented on a small-scale, two-dimensional truss case study , which offers direct insight
into the angles of the structure’s joints and their cluster compactness. The analysis of
joint angles presented is identical for 2D and 3D joint angles [6], rendering the method
robust and fully transferable to more complex structures. The method is then applied
on a freeform, large-scale space-frame structure, based on a real building, to validate its
efficiency and highlight the benefits of its application in practice.

The two-dimensional truss is generated from an arc of constant curvature, with non-
uniform depth, to ensure sufficient variability in the joint angles for the clustering process.
An arc of r = 25 m is subdivided into five equal segments, the midpoints of which are offset
normal to the arc to create the truss structure. Starting with an offset depth of 0.7r in the
first bottom layer joint, the depths are consecutively decreased by a constant amount, when
the bottom chord joints are taken in turn, until a depth of 0.2r is reached for the last one
(Figure 4). The dataset of the joint angles generated is presented in Table 2.
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Figure 4. A two-dimensional truss with geometrically varying joints.
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Table 2. The dataset of the joint angles for the case study analysed.

Joint ID a (◦) b (◦) c (◦) d (◦)

0 - 68.88 291.12 -
1 10.55 68.88 216.00 64.57
2 21.14 64.57 216.00 58.28
3 37.16 58.28 216.00 48.56
4 62.53 48.56 216.00 32.91
5 32.91 - - 327.09
6 69.76 114.18 176.06 -
7 47.71 139.16 90.25 82.88
8 52.59 136.15 107.82 63.43
9 51.03 129.94 128.17 50.85
10 41.28 42.24 276.48 -

3.1. Clustering Joints of Different Valence

During the clustering analysis, the difference between joint angles is calculated to
assess their distance. For joints of the same valence, a simple calculation of the absolute
angular distance between every pair of angles is required. This is shown in Table 3a, where
joints 1 and 2 of the truss structure are compared. When the joints compared have different
valences, however, further analysis is required. In practice, such joints could still have the
same geometry and be fabricated in the same batch, but some of the connections would
remain unused in the final structure. Therefore, no tolerance needs to be considered for
the angles that represent unused connections. In the context of clustering analysis, angular
distances only need to be calculated for the pair of angles, in which both joints have a
connected member. Table 3b describes this scenario, when joints 1 and 6 of the case study
are compared.

When both joints that are compared have a valence smaller than the maximum valence
of the structure (vmax = 4), the overall number and distribution of the empty cells can play
a critical role in the clustering analysis. When there is an empty cell in a row, the specific
distance is not calculated and remains empty, as described in the case of Table 3b. If there is
an empty cell on every row, in either of the joints’ angles, then the final calculated distance
between the two joints will be null. This would apply in the comparison of joints 0 and 5 of
the case study , which both have a valence of two, when the distribution of empty cells is as
shown in Table 3c. This comparison would have been driven by the relative position of the
empty cells and not by the angle values and their respective distance, therefore leading to
poor clustering results. It is therefore necessary to ensure that a comparison between two
joints is avoided, when their angle configuration is such that there is an empty cell in each
row of the matrix. A counter is thus introduced, which penalises such cases and ensures
the comparison between joints is only driven by the relative distance of their angles and
not the distribution of empty cells, as shown in Table 3c.

3.2. New Formulation of the k-Means Initialisation Method

The clustering analysis starts with the initialisation method, which can substantially
impact the cluster compactness, depending on the criteria for the selection of the initial clus-
ter centres—dataset density or cluster centre distribution (distance). This paper establishes a
novel method to select initial cluster centres that are placed in both dense and distributed
areas across the dataset.

3.2.1. Density Distribution

An analysis of the density distribution is carried out and a frequency histogram is
plotted for each of the four angles of the case study joints (a, b, c, d), as demonstrated in
Figure 5. Every row of the graph describes the frequency histogram of a different angle. The
horizontal axis represents the angle values, which lie within the range of (0, 360), while the
height of each frequency window is determined by the number of joints that have an angle
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within this range of values. The width of the frequency windows can vary, depending on
the degree of detail required by the designers in each project. In the authors’ experience, the
width of 5◦, used in this paper, provides a compact yet detailed visualisation of the dataset.

Table 3. Distance calculation between joints of different valences.

(a) Option 1: Joint 1, valence = 4 | Joint 2, valence = 4

Joint 1 Joint 2 Distance/Angle Total Distance d1−2

a1 = 10.55◦ a2 = 21.14◦ da = | a1 − a2 | = 10.59◦ d1−2 =
d

∑
j=1

di →

b1 = 68.88◦ b2 = 64.57◦ db = | b1 − b2 | = 4.31◦
c1 = 216.00◦ c2 = 216.00◦ dc = | c1 − c2 | = 0◦
d1 = 64.57◦ d2 = 58.28◦ dd = | d1 − d2 | = 6.29◦ d1−2 = 21.19◦

(b) Option 2: Joint 1, valence = 4 | Joint 6, valence = 3

Joint 1 Joint 6 Distance/Angle Total Distance d1−6

a1 = 10.55◦ a6 = 69.76◦ da = | a1 − a6 | = 59.21◦ d1−6 =
d

∑
j=1

di →

b1 = 68.88◦ b6 = 114.18◦ db = | b1 − b6 | = 45.30◦
c1 = 216.00◦ c6 = 176.06◦ dc = | c1 − c6 | = 39.94◦
d1 = 64.57◦ - n/a d1−6 = 144.45◦

(c) Option 3: Joint 0, valence = 2 | Joint 5, valence = 2

Joint 0 Joint 5 Distance/Angle Total Distance d0−5

- a5 = 32.91◦ n/a

n/a→ penaltyb0 = 68.88◦ - n/a
c0 = 291.12◦ - n/a

- d5 = 327.09◦ n/a

a
0 90 180 270 360

b

c

d

Angle (o)

Angle type

Figure 5. Frequency histogram of the density distribution of the structure’s joint angles.

The density distribution is carried out considering all possible configurations of the
joints included in the matrix A[2vn, v], as described in Figure 1a. Since every joint is
described by 2v configurations, every angle value of the same joint appears twice in every
column of the dataset. This repetition of values leads to every column of the dataset
containing identical values with each other, but in a different order. In effect, the frequency
histograms of the different angles end up being identical as well.

3.2.2. Joint Ranking

The first cluster centre is selected based on the density distribution, while previous studies
on adaptive sampling suggest a random selection of the initial cluster centre [27,28,31,49];
placing it in the densest area of the dataset has been found to enhance the efficiency of the
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analysis. Every joint is assigned a density ranking, rdensity, which is calculated as the sum of the
value of the frequency windows, in which all their angles belong:

rdensity =
v

∑
j=1

f j, (1)

where f j is the value of the frequency window for the angle j of the joint and v is the
maximum valence of the dataset. The first cluster centre is selected as the joint with the
highest density ranking.

Once the first cluster centre has been selected, every joint is assigned a distance ranking,
rdistance, according to its Euclidean distance to (all) the previously selected cluster centres.
The distance is calculated for each angle of the joint and the final ranking is the sum of all
distances, as described below:

rdistance =
v

∑
j=1

√
(xj − x̄j)2, (2)

where xj and x̄j describe the angle value j of the joint and the cluster centre, respectively,
and v is the maximum valence of the dataset. This ranking is dependent on the position
of the formerly selected cluster centres and is therefore updated every time a new cluster
centre is selected. The rdensity previously calculated, on the other hand, is dependent
only on the angle values present in the dataset and thus remains constant throughout the
whole process.

Following this process, every joint has two rankings, one density- and one distance-
based. Due to the high diversity in the scale of their values, they are normalised to the
range of [0, 1]. These rankings then form the basis for the selection of each consecutive
cluster centre in the seeding process. The relative efficiency of the former over the latter
is highly sensitive to the project-specific density distribution and the total number of
clusters required. A weighting factor w is hence introduced to balance their effect on the
initialisation process. The final ranking of a joint is therefore given by:

r = (1− w)rdensity + wrdistance (3)

where w ∈ [0, 1] is the weighting factor used. Due to the high computational efficiency of
the k-means clustering algorithm, designers can run an initial analysis for various values
of w in the early stages of their design development and identify the value that yields the
minimum intracluster variance for their designs.

3.2.3. Weighting Factor w

An initial analysis is run to evaluate the algorithm’s performance for different values
of w and identify the one generating the clusters with the minimum intracluster variance.
Given the small scale of the case study , the analysis was carried out for every possible
number of clusters, k ∈ [1, 11]. The range of possible values for the weighting factor is [0, 1],
with low values representing a selection of initial cluster centres in areas of high density,
and high values describing a selection of initial cluster centres that are well-separated
from each other. A subsection of five values of the weighting factor was evaluated for the
scope of this study, w ∈ [0, 0.25, 0.50, 0.75, 1], which, in the authors’ experience provides a
thorough yet efficient overview of its performance. For every weighting factor analysed,
joints were clustered into all possible numbers of clusters, k ∈ [1, 11]. The maximum
intracluster variance of the generated clusters was then extracted, providing an overview
of the factor’s performance. The initialisation method was also benchmarked against the
original Lloyd’s algorithm that uses a random sampling for the initial cluster centres. The
outcomes of the random initialisation were obtained by running the algorithm 25 times and
selecting the overall minimum intracluster variance for comparison, as described in [30,32].
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The results, shown in Figure 6, demonstrate that the proposed algorithm yields
improved clustering results for most values of w, when compared to the original k-means
algorithm. This is particularly evident for smaller values of k, where the intracluster
variance generated with the proposed initialisation method is up to 35% lower, compared
to the one generated with a random initialisation (k = 2), while this percentage gradually
drops, as the number of clusters increases, certain values of the weighting factor consistently
generate more effective results.

The high diversity in the resulting intracluster variance of the generated clusters,
when different weighting factors are used, demonstrates the algorithm’s sensitivity to
the initialisation method. The relative effectiveness of the different weighting factors
changes, as joints are grouped into different numbers of clusters. This highlights that
both the weighting factor and the number of clusters play an important role in achieving
efficient clustering results. The overall performance of the factors studied was evaluated
by calculating the average intracluster variance of the generated clusters, as shown in
Figure 6. As the results show, the performance of different weighting factors is comparable
and substantially better than the random initialisation. The factor w = 0.25 had the overall
highest performance and was therefore used for this case study. The fact that it is closer to
the value of 0 than 1 implies that, for this specific case study, selecting the initial cluster
centres in dense areas of the dataset, rather than distributing them, yields improved results.
Figure 7 describes the steps of the novel initialisation method developed and its integration
with the other steps of the k-means clustering analysis.

Figure 6. Comparison of the novel initialisation method to the random initialisation of the k-means
algorithm. The average intracluster variance of the generated clusters for the different weighting
factors shows that the novel method outperforms the random initialisation of k-means.

The results of the clustering analysis are finally overlaid with the information regarding
the joint fabrication. The two joint designs described in Figure 3 are considered. The SEO
joint (Figure 3a) allows for a minimal tolerance to account for manufacturing equipment
and assembly contingencies, which is assumed to be 2◦. The HUBS joint (Figure 3b), on the
other hand, allows for a planar tolerance of up to 30◦. When overlaying this information
on the graph, it becomes evident that the selection of the joint design will greatly impact on
the overall fabrication process. Figure 8 describes the joint fabrication of the truss structure
analysed, if low or high tolerance joints are selected. Such information can meaningfully
drive the fabrication and design development of a project, depending on available resources,
time and cost.
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Figure 7. The pseudocode of the clustering analysis and the novel initialisation method.

(a) Discrete fabrication using the SEO joint (b) Fabrication in batches using the HUBS joint

Figure 8. Two options to fabricate the case study joints with a (a) discrete fabrication or (b) fabrication
in batches. The different colours represent joints that belong to different fabrication batches.

4. Real-Building Case Study

The analysis method developed was applied on a large-scale, complex structure to
highlight its benefits in practice. The envelope of the Singapore Arts Centre was used
as a realistic case study for the application of the proposed methodology. The building
comprises two structures, the Concert Hall and the Lyric Theatre, both of which have
freeform roof structures, as shown in Figure 9. The geometry of the Lyric Theatre was
recreated, according to the information provided in [1]. The generated digital model of
the space-frame roof has a constant structural depth of 0.9 m and contains 3300 joints.
The goal of the analysis was to evaluate the construction complexity of the generated
geometry and explore alternative fabrication scenarios. Since the geometry was recreated
to represent an existing building, this study validates the applicability of the proposed
workflow in practice, where it can inform the selection of appropriate joint design and
fabrication methods in early stages of the design development.
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Figure 9. Singapore Arts Centre with the Concert Hall and the Lyric Theatre [50].

4.1. Description

The first step of the proposed methodology requires the number of clusters k as an
input, and a selection of the weighting factor w. Assuming that this analysis is realised
during the early stages of design development, and that these parameters have not been
defined by the brief, the roof structure is analysed for multiple values of k ∈ (10, 50, 100,
200), to obtain an overall estimation of the cluster characteristics. The joints are clustered
for each value of k, using different values of the weighting factor w ∈ [0, 0.25, 0.50, 0.75,
1.00]. The factor that generates the most compact clusters will then be taken forward for
the detailed design of the fabrication process.

4.2. Results

Due to the large-scale structure, the characteristics between different clusters are highly
diverse. As a result, a simple extraction of the maximum intracluster variance for a given set
of k and w values would not capture the variance distribution and the properties of different
clusters, as in the previous example (Figure 6). The standard normal distribution of the
maximum intracluster variance is therefore plotted for all cluster values, when different
weighting factors are applied, as shown in Figure 10A. The horizontal axis describes the
intracluster variance and the vertical axis the probability density of this variance for the
respective k and w values. An efficient clustering analysis would exhibit a high probability
density for low values of intracluster variance, and would therefore have a low mean and a
low standard deviation. The efficiency of a weighting factor ek

w, when joints are grouped
into k clusters, is evaluated as the inverse of the sum of the mean and standard deviation
for a given value of k, as described below:

ek
w =

1
x̄k

w + σk
w

(4)

where e is the efficiency ranking of the weighting factor w, x̄ is the mean and σ the standard
deviation for the w and k values given. The overall efficiency of each weighting factor
is calculated as the average of its efficiency ranking for the different values of k studied.
Figure 10 presents the average efficiency of the weighting factors evaluated. w = 0.5 has the
highest overall performance across all values of k and is therefore used for this study.

Figure 11 summarizes the relationship between the sizes, number of clusters and the
respective intracluster variance to extract further details. Each horizontal line corresponds
to a different value of k and each circle represents a cluster. The size of the circle is indicative
of the number of joints in that cluster and its position on the x-axis represents the intracluster
variance of the respective cluster. Hence the further left on the x-axis a circle is, the more
compact that cluster. An efficient clustering algorithm would lead to a gradual shift in all
the circles towards the left side of the graph, as the number of clusters increases, which
would signify clusters of higher homogeneity between their members.
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Figure 10. (A) Distribution of the intracluster variance of the k and w values studied. (B) The overall
performance ranking of the different weighting factors.

Observing the results of the clustering analysis in Figure 11, the size of clusters
decreases as the value of k rises, indicating that a higher number of smaller clusters is
created. Simultaneously, the large clusters of high intracluster variance, which can be
observed for k = 10 (intracluster variance > 70◦) are gradually split into smaller, more
compact clusters, represented by the smaller-sized circles at lower values of intracluster
variance in the k = 50, 100, 200 rows. Moreover, the clusters, whose intracluster variance lies
between 15 and 55◦, gradually obtain higher compactness, as k rises. These observations
highlight the efficiency of the algorithm in generating compact clusters as k increases.
This relationship between the number of clusters and the intracluster variance plays an
important role in designing an efficient fabrication process, as it describes the number
of clusters that have similar characteristics. Figure 12 presents a frequency histogram
describing this relationship for different values of k. The high number of clusters that have
a minimal intracluster variance of only a few degrees is particularly interesting, as these are
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clusters of practically identical items. From a fabrication perspective, this means that their
fabrication time and cost would be minimal, as their items would have similar geometry
and could be produced with continuous processes. For k = 50 there are 24 such clusters,
for k = 100 there are 69 clusters and for k = 200 there are 148. The increase in number of
clusters of identical items is hence not proportional to the number of clusters; the higher
the value of k, the higher the percentage of clusters of practically identical items required.

 10

 10  20  30  40  50  60  70  80  90 0

50

100
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11 - 50 members
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Intracluster variance (o)
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Figure 11. Thesize and intracluster variance of all clusters, when the structure’s joints are subdivided
into different numbers of clusters, k.
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Figure 12. The frequency histogram of the intracluster variance, when joints are grouped into multiple
values of clusters, k.

4.3. Assessing Fabrication Complexity

Comparative studies for different fabrication processes and joint designs can guide
designers in selecting the most efficient fabrication method and joint designs for their
structures. In terms of the fabrication process, the batch size and level of automation
required will define whether a discrete or continuous process is more effective. In terms of
the joint design, on the other hand, joints with a high embedded tolerance can accommodate
significant intracluster variance, while joints with a small tolerance are more efficient in
compact clusters. Due to the high impact that the fabrication automation and joint design
tolerance have, their appropriateness can significantly vary, depending on the value of k.

If joints are grouped in a small number of clusters (k = 10), the large size of the
generated clusters suggests that a continuous fabrication process, favouring the mass-
production of identical elements, would be more efficient. However, due to the great
variability in the members of each cluster, the joint design would need to accommodate a
high level of tolerance. Therefore a joint design similar to the one described in Figure 3b,
would be better suited, as demonstrated in Table 4, Scenario 1.
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Table 4. Fabrication options for the Singapore Arts Centre structure when different joint designs and
fabrication processes are considered.

Scenarios Joint Design Fabrication Process Clusters

1 High tolerance Continuous 10

2 Low tolerance Discrete (148 cl.) 200Continuous (52 cl.)

3 High tolerance Continuous 200

4 Low tolerance (148 cl.) Continuous 200High Tolerance (52 cl.)

As k increases, the characteristics of the different clusters vary significantly. For this
case study, the results for k = 200 are analysed in more detail. As previously described,
there is a high number of large clusters of near-identical elements, while at the same
time there is a small number of clusters with a high intracluster variance. If a joint type
of minimal tolerance is selected (Figure 3a), then a combination of both discrete and
continuous fabrication would be most efficient. The 148 clusters of near-identical items
could be fabricated with a continuous process, while discrete fabrication could incorporate
the variability of the remaining 52 clusters, as shown in Table 4, Scenario 2. On the other
hand, if a joint with a high level of tolerance is selected, then a continuous process could
be applied to all elements. The fabrication process could enable the production of large
batches of identical members, in the case of the 148 clusters of minimal intracluster variance,
while the joint design would also accommodate the variance of the remaining clusters
(Table 4, Scenario 3). Finally, if two different joint types could be used, a joint that allows for
minimal tolerance could be applied for the clusters of no intracluster variance (148 clusters)
and a joint design that can accommodate variability for the remaining clusters (52 clusters),
as described in Table 4, Scenario 4.

The analysis presented highlights that, when small values of k are used, all clusters
share similar characteristics and the selection of the fabrication method and joint design is
a linear process. As k increases, evaluating the fabrication complexity becomes a highly
complex process in itself, as cluster sizes and variability are scattered. The co-existence
of both large and small clusters suggests that a combination of different fabrication pro-
cesses would be the most appropriate, with a continuous process for large clusters and
a discrete process for the small clusters. In addition, the significant diversity in the level
of intracluster variance implies that different levels of embedded variability in the joint
design would be beneficial; applying multiple joint designs would therefore contribute
to further facilitating fabrication. It is thus evident that high diversity in the cluster sizes
and degrees of intracluster variance render the selection of a fabrication process and joint
design a challenge. The computational workflow developed facilitates this process, by
enabling the assessment of different fabrication options in early stages of the design.

5. Discussion

A novel initialisation method for the k-means algorithm has been developed, that
selects the initial cluster centres according to the density distribution of the joint angles
and the distance between them. Existing research has proposed deterministic approaches,
in which the impact of the dataset density or the distance between initial cluster centres
remains constant during the seeding process, whenever the algorithm is applied to different
datasets [27–32]. The initialisation method developed, however, introduces a weighting
factor that calibrates the relative impact of the density and cluster centres’ distance on
the seeding process. Informed by the geometrical characteristics of the specific structure
analysed, the value of the weighting factor is automatically adjusted to ensure improved
clustering results. The performance of the initialisation method has been compared against
the random initialisation of the original k-means algorithm [15], and shows to be 35% more
efficient.
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The case study analysed demonstrated that the design of an efficient fabrication
process is highly complex, due to the variety of manufacturing methods available and
the diverse characteristics that joint clusters present, while this might be expected in a
building of such scale and geometrical complexity, the analysis presented enables a critical
assessment of different fabrication and construction options. The results demonstrate that
continuous fabrication processes and joint designs accommodating high levels of tolerance
can be more appropriate for achieving an efficient construction process. However these
findings are only valid when a reduction in the construction complexity is the main driver
in the decision-making process. If the criteria change, the interpretation of the clustering
analysis would need to adapt accordingly. For example, if achieving a specific geometry
is the driver, a discrete fabrication process, which generates bespoke elements, would
be appropriate. In addition, the availability of the different fabrication processes also
plays a critical role. It therefore becomes evident that project-specific requirements and
limitations are the drivers for the interpretation of the clustering analysis results and the
design of an efficient fabrication process. The workflow developed provides a robust and
automated tool for the analysis and consideration of such parameters in the early stages of
design development.

This observation triggers a discussion of the relation between customisation and the
performance of contemporary computational tools. On the one hand, the k-means algorithm
is a widely used clustering algorithm, applicable in diverse contexts. Nevertheless, the
randomness embedded in its seeding process can substantially compromise its performance,
depending on the properties of the dataset [19]. On the other hand, the proposed clustering
algorithm is a highly customised tool that responds to context-specific requirements. This
is further accentuated by the introduction of the weighting factor, whose value is informed
by the geometry of the given structure analysed. There is hence a clear distinction between
heuristic algorithms that are applicable in diverse contexts, such as the k-means, and
highly customised tools. Heuristic algorithms are efficient procedures that can find high-
performing solutions, even if they are not optimal, in a quick and computationally efficient
manner [51]. Their speed of execution and flexibility in formulation enable their application
in diverse sets, that are often difficult to model. The method proposed, on the other hand,
is an adaptation of the k-means that outperforms the heuristic algorithm. However, it has
been developed in the context of space-frame joints and therefore remains applicable to
this specific type of problem. Hence, it is essential to understand the limitations of the tools
applied to solve a given design problem and to recognise the project-specific parameters
that can affect their performance.

6. Conclusions

This paper proposes a novel framework for the evaluation of the construction com-
plexity of freeform space-frame structures, as a factor of geometrical variability in their
joints. It has been shown that designing an efficient construction process is highly complex,
both due to the variety of available manufacturing tools and processes, as well as the
high diversity in the distribution of geometrical variability within a single structure. A
new initialisation method has been developed to cluster joints into fabrication batches,
generating substantially more compact clusters compared to existing methods. This has
been integrated into a computationally efficient and automated process that allows a de-
tailed overview of alternative construction scenarios, in which different combinations of
fabrication processes are assessed. It is thus possible to identify the most efficient solution,
according to project-specific requirements and constraints, while applicable at any stage
of the project development, the proposed method is most useful when applied in early
stages of the design, when it can drive the project development in an informed manner.
The robustness of the method makes it applicable on diverse projects in practice, where
it can provide a framework for the critical evaluation and informed application of novel
and existing fabrication processes and reduce the construction complexity of large-scale,
freeform space-frame structures.
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