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Abstract: The in-plane elastoplastic failure mechanism of plate-tube-connected steel circular arches
with inverted triangular cross sections is investigated in this study by using theoretical derivation
and numerical simulation. First, the in-plane elastic buckling load formula of the arch under full-span
uniform radial load (FSURL) is presented. Then, the limited conditions of avoiding the connecting
plate and chord local failure before global elastic instability are derived. Lastly, the elastic–plastic
failure mechanisms of arches are studied under FSURL, full-span uniform vertical load (FSUVL),
and half-span uniform vertical load (HSUVL). It is found that the arch will experience global failure,
chord local failure, combined connecting plate and chord failure, and connecting plate local failure
under FSUVL and HSUVL. The failure mode is mainly related to the stiffness of the connecting plate.
The corresponding design formulas are proposed for the global failure of arches and local failure of
the chord. The proposed formulas and FE results are in good agreement.

Keywords: plate-tube-connected steel arch; circular arch; global failure; shear failure; in-plane
strength design

1. Introduction

Arches are widely used in stadium roofs, airports, bridges, and other large-span spatial
structures due to their good appearance and bearing capacity. The plate-tube-connected
circular steel arch with an inverted triangular cross section is composed of steel plates and
tubes. As shown in Figure 1, the axis of the connecting plate is perpendicular to that of
the chord, and the connecting plates are distributed uniformly in a radial direction along
the axis of the arch at a certain distance. Therefore, this type of arch has good lighting and
ventilation performance and can be widely used in building structures. Accordingly, this
arch has high research value.
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1. Introduction 
Arches are widely used in stadium roofs, airports, bridges, and other large-span spa-

tial structures due to their good appearance and bearing capacity. The plate-tube-con-
nected circular steel arch with an inverted triangular cross section is composed of steel 
plates and tubes. As shown in Figure 1, the axis of the connecting plate is perpendicular 
to that of the chord, and the connecting plates are distributed uniformly in a radial direc-
tion along the axis of the arch at a certain distance. Therefore, this type of arch has good 
lighting and ventilation performance and can be widely used in building structures. Ac-
cordingly, this arch has high research value. 

 
Figure 1. Three-dimensional model of plate-tube-connected circular steel arches with inverted 
triangular cross sections. 
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Figure 1. Three-dimensional model of plate-tube-connected circular steel arches with inverted
triangular cross sections.

The in-plane stability problem is more important than the strength due to the special
axis type of arches. As shown in Figure 2, arches can be divided into solid webs and trusses
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according to the cross-sectional type of steel arch. The in-plane elastic stability, elastic–plastic
failure mechanism, and strength of I-shaped solid-web steel arches were studied in depth
by Pi and Trahair [1,2], Pi and Bradford [3], Attard et al. [4], and Zhu et al. [5] by combining
theoretical, experimental, and numerical simulation methods. They also proposed the
corresponding in-plane strength design formulas of solid-web arches.
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Guo et al. [6,7] studied the local failure mechanism of I-shaped solid-web steel arches
with sinusoidal wave webs under shear force and proposed the design formula of web
shear strength. Guo et al. [8] and Huang et al. [9] numerically studied the elastic stability,
elastic-plastic failure mode, and stability of an I-shaped web opening arch. They also pro-
posed the corresponding stability bearing capacity design formula. Guo et al. [10] studied
the effect of local buckling of flange and web on the in-plane strength of a box-section arch.
Lu et al. [11] experimentally and numerically investigated the in-plane buckling and ulti-
mate resistance of circular steel arches with elastic horizontal and rotational end restraints.
A design method for a steel arch with elastic horizontal and rotational end restraints was
proposed. Dou et al. [12] numerically studied the in-plane buckling and strength problem
of inverted and upright triangular cross-section tabular truss arches with diagonal tubes.
They considered the member instability effect on the global stability bearing capacity of
the arch and proposed the in-plane strength design formula of a triangular truss arch.
Guo et al. [13] studied the stability of a circular arc steel tube truss arch with quadrilateral
sections’ in-plane stability bearing capacity through experiment and numerical analysis.
They also proposed the in-plane stability bearing capacity design formula of circular steel
tubular truss arches with a quadrilateral cross section.

However, only a few researchers have studied Vierendeel arch structures. Kinnick [14]
studied the effect of shear deformation on the in-plane elastic buckling of double-limb
batten lattice arches, and the elastic buckling load formula of double-limb batten lattice
arches was derived. It should be noted that its elastoplastic buckling performance has not
been studied. Guo et al. [15] studied the in-plane failure mechanism and strength design
of circular steel planar tubular Vierendeel truss arches. This provides enlightenment for
the research of plate-tube-connected circular steel arches with inverted triangular cross
sections in this work.

Compared with the solid-web steel arch, existing research on the stability of the
Vierendeel steel tubular truss arch is still relatively lacking, although this structure has been
widely used in practical engineering. The plate-tube-connected circular steel arch with an
inverted triangular cross section studied in this paper is a new type of Vierendeel truss arch
structure; its in-plane elastic stability, elastoplastic failure mechanism, and strength design
are rarely reported. Therefore, it is necessary to deeply study the failure mechanism and
strength of plate-tube-connected circular steel arches with inverted triangular cross sections
to sum up the relevant stability design methods for reference in design and construction.

This work adopts theoretical derivation and a finite element (FE) method to study
the in-plane elastic stability and elastoplastic failure mechanism of plate-tube-connected
circular steel arches with inverted triangular cross sections. The arch is assumed to be
in-plane pin-ended and three kinds of load cases are considered, namely full-span uniform
radial load (FSURL), full-span uniform vertical load (FSUVL), and half-span uniform
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vertical load (HSUVL). The corresponding design formulas are given for different failure
modes to provide a reference for engineering design.

2. Finite Element Model
2.1. Description of FE Model

The global size and cross-sectional parameters of the arch calculation model are shown
in Figure 3, where L is the arch span, f is the arch rise, R is the arch axis radius, S is half of
the arch axis length, H is the section height, Lc is the segment length, L0 is the clear spacing
of the connecting plates, B is the section width, D is the chord outer diameter, tc is the chord
thickness, bw is the connecting plate width, and tw is the connecting plate thickness.
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Figure 3. Related parameters of the arch: (a) global size of the arch; (b) cross-sectional parameters of
the arch.

In this work, the finite element (FE) analysis software ANSYS is used for numerical
simulation, and beam element 188 is utilized to establish the calculation model. Following
the method of Guo et al. [15], the plate-tube-connected circular steel arch with inverted
triangular cross sections is equivalent to an arch with a rectangular cross section of the
same compressive, bending, and shear rigidity along the arch axis. The equivalent model is
only used to obtain the elastic internal force and study the deformation of the arch. The
other analysis is based on the actual situation to establish a 3D refined beam element model.
Three chords are properly stretched out and intersected at the cross-sectional centroid to
impose boundary conditions, which are applied at the intersection point. The two ends of
the arch foot are assumed to be hinged in plane; thus, only the in-plane rotation angle of the
arch foot is released, and the out-of-plane displacement of all chords is restricted. The effects
of geometric nonlinearity, material nonlinearity, and geometric initial imperfections on the
stability bearing capacity are considered in the elastoplastic analysis of large deflection.

The ideal elastic–plastic material model is adopted in this study. The elastic modulus is
E = 2.06× 105 MPa, the Poisson’s ratio is υ = 0.3, the chord’s yield strength is fy1 = 235 MPa,
and the connecting plate’s yield strength is fy2 = 345 MPa. The triangular frames at both
ends of the model are regarded as rigid members. The first-order antisymmetric buckling
mode of the arch is introduced as the initial geometric imperfection into the elastoplastic
calculation model with the amplitude υ0 = S/500 at a quarter of the developed length,
which is consistent with Guo et al. [6,7,15]. This work mainly considers three types of load
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cases (Figure 4), namely full-span uniform radial load (FSURL), full-span uniform vertical
load (FSUVL), and half-span uniform vertical load (HSUVL).
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2.2. Verification of Simplified Beam Model

In order to verify whether the simplified beam (sm) model is equivalent to the original
model (om), the internal forces of the simplified model and the original at the arch foot are
compared. The parameters of the original models are f /L = 0.3, L = 25–50 m, B = 0.5 m,
H = 0.5 m, L0 = H, D × tc = 0.114 × 0.01 m, and bw × tw = 0.2 × 0.02 m. The results
are shown in Figure 5, where Nsm and Vsm, respectively, denote the axial force and shear
force of the simplified model; Nom and Vom, respectively, denote axial force and shear force
of the original model. The results show that the simplified model is equivalent to the
original model.
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3. In-Plane Elastic Buckling
3.1. Section Shear Stiffness

Unlike in the solid-web arch, the effect of section shear deformation on the global
elastic buckling load of the arch cannot be neglected. Guo [16] studied the shear stiffness
of a steel tubular truss arch with diagonal tubes. Unlike the steel tubular truss arch with
diagonal tubes, the plate-tube-connected circular steel arch mainly bears the cross-sectional
shear force through the chord. Under pure shear force V, if the segment length Lc is small,
then the segment can be regarded as straight, and its shear mechanism is equivalent to that
of three-limb batten lattice columns. According to the principle of structural symmetry [17],
the bending moment distribution of a segment when its reverse bending point is at the
midpoint of the chord segment can be easily obtained, as shown in Figure 6. The shear
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deformation of the segment under pure shear force is mainly composed of two parts,
namely the deformations caused by the bending of the chord, and the connecting plate.
Depending on the moment distribution of the segment, the total deformation of the segment
under pure shear force V is expressed as follows:
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V
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where γ is shear angle. With the introduction of Equation (1) into Equation (2), the expres-
sion of section shear stiffness Kv of the plate-tube-connected steel arch with an inverted
triangular cross section is obtained as follows:

Kv =
1

Lc2

32EIc
+ Lc Lt3

24EIt H2 +
LcB3

64EIt H2

(3)

If the shear strain of the connecting plate under shear force V is considered in calculat-
ing the shear angle γ, then Equation (3) can be rewritten as Equation (4):

Kv =
1

Lc2

32EIc
+ Lc Lt3

24EIt H2 +
LcB3

64EIt H2 +
nLc

Lt AtG

(4)

where n is the cross-section coefficient, and its value for rectangular cross-section plate is
1.2 according to Timoshenko [18]. At is the cross-section area of the connecting plate, G is
the shear modulus, and E = 2.6G.

3.2. Buckling Mode of the Arch

Similar to three-limb batten lattice columns, when the chord has a large slenderness
ratio, local buckling of the chord will occur before the global buckling of the arch. When
the out-of-plane bending stiffness is small, local buckling of the connecting plates will also
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occur before global buckling of the arch. The three kinds of buckling modes of the plate-
tube-connected arch are shown in Figure 7. The model parameters of different bucklings
are shown in Table 1.
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chord buckling of the arch; (c) local connecting plate buckling of the arch.

Table 1. Model parameters of different buckling modes of the arch.

Buckling Modes Model Parameters Corresponding to Buckling Modes

Global buckling f/L = 0.3, L = 50, H = 1 m, B = 1 m, L0 = H,
D × tc = 0.114 × 0.01 m, bw × tw = 0.2 × 0.02 m

Local chord buckling f/L = 0.3, L = 50, H = 1 m, B = 1 m, L0 = 2 H,
D × tc = 0.114 × 0.01 m, bw × tw = 0.2 × 0.03 m

Connecting plate buckling f/L = 0.3, L = 50, H = 1.5 m, B = 1.5 m, L0 = 2 H,
D × tc = 0.114 × 0.01 m, bw × tw = 0.2 × 0.01 m

3.3. Global Elastic Buckling Load

Timoshenko [18] derived the in-plane elastic buckling load formula of circular solid-
web arches hinged at both ends as follows:

qcr,0 =
EIg

R3

(
4π2

Θ2 − 1
)

(5)

where EIg denotes the cross-sectional flexural rigidity. However, unlike solid-web arches,
the sectional shear deformation on the global elastic buckling load of plate-tube-connected
circular steel arches with inverted triangular cross sections cannot be neglected. Kinnick [12]
provided the in-plane elastic buckling load formula of double-limb lattice arch hinged at
both ends. Guo [19] derived the elastic buckling load formula of steel tubular truss arches
with diagonal tubes and inverted triangular cross sections under the effect of cross-sectional
shear deformation. According to their results, in this work, the proposed elastic buckling
load formula of plate-tube-connected circular steel arches with inverted triangular cross
sections under uniform radial load is

qcr =
qcr,0

1 + qcr,0R
Kv

(6)
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where qcr,0 is the classical elastic buckling load of a pin-ended circular arch under a uniform
radial load and is calculated using Equation (5). Kv is the cross-sectional shear stiffness of a
plate-tube-connected steel arch with an inverted triangular cross section and is calculated
using Equation (4). The results of Equations (5) and (6) are compared with the FE results
with different models to verify the rationality of Equation (6) for calculating the in-plane
elastic buckling load of a plate-tube-connected circular steel arch with an inverted triangular
cross section hinged at the arch foot under FSURL. The parameters include section width
B, section height H, clear spacing of connecting plates L0, rise-to-span ratio f/L, and span L.
The cross-sectional width is uniformly taken as B = 0.5 m, the chord size D× tc = 0.114
× 0.01 m, and the connecting plate size bw × tw = 0.2× 0.01 m. The comparison between
Equation (6) and FE results is shown in Figure 8.
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Figure 8. Comparison of FE results with the solutions of Equation (6): (a) changing span; (b) changing
rise-to-span ratio; (c) changing section height; (d) changing clear spacing of connecting plates.

As shown in Figure 8a, the in-plane elastic buckling load of the arch decreases with the
increase in span, while the rise-to-span ratio remains unchanged and the span is changed.
With the increase in span, the FE results gradually come close to those of Equation (6) and the
Timoshenko solution. Specifically, the shear deformation slightly affects the elastic buckling
load of the arch as the span increases. Figure 8b shows that when the other geometric parame-
ters of the arch are kept unchanged and only the rise-to-span ratio is changed, the buckling
load decreases with the increase in the rise-to-span ratio, then the value decreases after f/L
= 0.25. When f/L = 0.25, the buckling load is at its maximum. Figure 8c shows that the
elastic buckling load of the arch increases with the increase in the section height because
the cross-sectional flexural stiffness also increases along with the section height, thereby
causing a growth in the global elastic buckling load. Figure 8d shows that the Timoshenko
solution will not change when the clear spacing of the connecting plates is changed. The
elastic buckling load of the arch decreases with the increase in the clear spacing of the
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connecting plates because the shear angle increases with the increase in spacing, thereby
decreasing the shear stiffness. Equation (6) shows that the elastic buckling load of the arch
also decreases. Figure 8d shows that the elastic buckling load of the arch decreases with
the increase in the linear stiffness ratio of the connecting plate to the chord because the
decrease in the bending stiffness of the connecting plate will decrease the global bending
stiffness of the arch. Accordingly, the elastic buckling load will also increase. The results
shown in Figure 8 are in good agreement with the FE results, and the maximum relative
error is less than 10%. The results in Figure 8 further show that beam element 188 can be
used to establish FE models, and the derivation of section shear stiffness is correct.

3.4. Limited Conditions of Member Local Buckling

The plate-tube-connected pin-ended circular steel arch with an inverted triangular
cross section will be in pure compression under a uniform radial load. The chord with a
large slenderness ratio will buckle before the global elastic buckling of the arch. The out-
of-plane elastic buckling of the connecting plate will also occur before the global elastic
buckling because the out-of-plane flexural stiffness of the connecting plate is far less than
that in the plane. The chord slenderness ratio λc should be limited to the global slenderness
ratio λg, and the slenderness ratio of the connecting plate λt to the global slenderness ratio
λg, to prevent the local buckling of the chord and connecting plate from occurring before
the global elastic buckling of the steel arch. The slenderness ratio of the chord is defined
as follows:

λc =
Lc√

Ic/Ac
(7)

The global slenderness ratio of the arch is defined as follows:

λg =
S√

Ig/3Ac
(8)

Chord local buckling is a complex problem, and the connecting plates will constrain the
end of the chord when this condition occurs. The connecting plate will provide support for the
chord. In a large segment, the effect of curvature on the stability of the chord cannot be ignored.
Thus, the segment chord can be regarded as circular arches that are elastically embodied
at both ends. However, the restraining effect of the connecting plate on the chord will be
different with the change in connecting plate size and chord size. This condition brings
difficulty in calculating the chord buckling load. Conservatively, the chord is simplified as a
circular arch hinged at both ends. The problem of local buckling of the chord is transformed
into the problem of solving the critical load of the hinged arch at both ends. The mechanical
model of the segment chord is shown in Figure 9.
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The elastic buckling load of the tube arch can be calculated using Equation (5) due to
the small cross-sectional shear deformation of the steel tube. The elastic buckling load of
the upper chord can be written as follows:

qcr,2 =
EIc(

R + H
3

)3

(
4π2

θc2 − 1
)

(9)

where EIc denotes the chord cross-sectional bending stiffness and θc is the chord segment
angle.

Equal stability theory posits that the buckling load of the upper chord should satisfy
the following inequality to avoid chord local buckling:

Ncr = qcrR ≤ qcr,1

(
R +

H
3

)
(10)

where qcr denotes the buckling load of plate-tube-connected circular steel arches with
inverted triangular cross sections. With Equations (5) and (9) integrated into Equation (10),
the inequality can be rewritten as follows:

EIg

R3

(
4π2

Θ2 − 1
)

R ≤ EIc(
R + H

3

)3

(
4π2

θc2 − 1
)(

R +
H
3

)
(11)

By bringing λc and λg into Equation (11) and through simplification, we have

λc

λg
≤

√
4
3

4π2 − θc2

4π2 −Θ2 (12)

Equation (12) shows that when θc = Θ (that is, no connecting plate is present between
the upper and lower chords), λc/λg ≤

√
4/3, which is the worst case. Usually, θc < Θ,

which indicates that
(

4π2 − θc
2/4π2 −Θ2

)
< 1. In summary, the limited condition to

avoid chord local buckling is λc/λg ≤
√

4/3.
The oblique connecting plate of the arch will buckle before the global elastic buckling

of the arch occurs. Instability will occur one after another because the transverse connecting
plate restrains the inclined connecting plate. No relevant research on the stability of
triangular frames is available at present. Thus, a simplified method is used to conservatively
estimate the elastic buckling load of the connecting plate. The oblique connecting plate is
simplified to an oblique compressive bar hinged at both ends, as shown in Figure 10.
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In accordance with the equilibrium method, the elastic buckling load formula of
oblique connecting plates can be obtained as follows:

Pcr =
π2EIt

Lt2 cosθ (13)

where EIt is the cross-sectional flexural rigidity of the oblique connecting plate. Equation (13)
can also be rewritten as follows:

Pcr =
π2EAt

λt2 cosθ (14)

where At = bw × tw, λt denotes the slenderness of the oblique connecting plate and is
defined as follows:

λt =
Lt√

It/At
(15)

Equal stability theory posits that the following conditions should be satisfied to prevent
the oblique local buckling of the connecting plate from occurring before the global elastic
buckling of the plate-tube-connected circular arch with an inverted triangular cross section:

Pcr > Ncr,0 = qcr,0R (16)

Substituting Equations (5) and (15) into Equation (16) yields

π2EAt

λt2 cosθ >
EIg

R3

(
4π2

Θ2 − 1
)

R (17)

The limited value of λt/λg under FSURL is obtained by bringing λg and S = R/2 into
Equation (17).

λt

λg
<

√
4π2

4π2 −Θ2
At

3Ac
cosθ (18)

4. In-Plane Failure Mechanism of Arches
4.1. Failure Mechanism under FSURL

The plate-tube-connected steel circular arch with an inverted triangular cross section
is in a pure compression state under FSURL. The chord may experience elastoplastic buck-
ling before the global elastic–plastic buckling of the arch under the action of axial pressure.
Therefore, the slenderness ratio of the chord should be limited to avoid its local elastic–plastic
buckling. The Chinese Technical Specification for Steel Tube Structures (CECS280-2010) [20]
for the stability of three-limb batten lattice columns specifies that the limb slenderness ratio
should meet Equation (19) to avoid local elastoplastic instability.

λc < min{0.5λ0x, 40} (19)

where λ0x is the equivalent slenderness ratio of the arch and is defined as Equation (21).

λ0x =

√
λg2 +

π2

48
λc2(5 + 8β1) (20)

where β1 is the ratio of the linear stiffness of the chord to the oblique connecting plate
β1 = ic/it; λg is the global slenderness ratio of the arch. λc is the slenderness ratio of
the chord. Equation (18) should be satisfied spontaneously to ensure that the connecting
plate does not suffer from local buckling. To investigate the global instability and failure
mechanism of a plate-tube-connected circular steel arch with an inverted triangular cross
section under FSURL, large deflection elastoplastic analysis is conducted by taking models
with rise-to-span ratio f /L = 0.3, L = 20 m, B = 0.5 m, H = 0.5 m, L0 = H, D× tc = 0.114
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× 0.01 m, and bw × tw = 0.2 × 0.02 m as examples. The load–displacement curve of the
vault is drawn in Figure 11.
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Figure 11 shows that the vertical displacement of the vault increases with the increase
in the load. The load–displacement curve decreases slowly after the load reaches the
ultimate bearing capacity. Therefore, the global elastic–plastic buckling of a plate-tube-
connected steel arch belongs to extreme point instability. The first-order antisymmetric
deformation is introduced as the initial geometric imperfection. Accordingly, the antisym-
metric deformation of the arch occurs with the increase in displacement, and the cross-sectional
axial force produces a second-order bending moment. Initially, the chord yields near the
quarter point. Then, the plastic region gradually expands. Finally, the whole section yields at
the 1/4 L and 3/4 L positions. Figure 12 shows the global stress distribution of the arch at
point A. At this point, the connecting plates are still in an elastic state. The large plastic
deformation occurs at the 1/4 L position of the lower chord; this condition indicates that
the arch has failed.
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Figure 12. Stress distribution of the arch at point A on the curve (Pa).

Pi et al. [21] emphasized that the normalized slenderness ratio can be used to study the
stability bearing capacity of the arch under pure compression. The normalized slenderness
ratio λn and reduction factor ϕ are also introduced to study the buckling and yielding of
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the plate-tube-connected circular steel arches with inverted triangular cross sections under
FSURL. The normalized slenderness ratio λn is defined as follows:

λn =

√
Ny

Ncr
=

√
3 fy1 Ac

qcrR
(21)

The reduction factor ϕ is defined as follows:

ϕ =
Nu

Ny
=

quR
3 fy1 Ac

(22)

where qcr is calculated according to Equation (6) and qu is the ultimate load under uniform
radial load. The parameters of the FE models are L = 20–50 m, f /L = 0.1–0.5, B = 0.5 m,
H = 0.5 m, bw × tw = 0.2 × 0.02 m, and D × tc = 0.114 × 0.01 m. The scope of λc/λ0x
varies from 0.06 to 0.28. The results of all FE models are plotted in the ϕ− λn column curve
and compared with three types of column curves, namely a, b, and c of GB50017-2017 [22]
and Eurocode 3 [23] (Figure 13).
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Figure 13. ϕ − λn curve of the arch under FSURL: (a) results of FE and GB50017-2017 (L0 = H);
(b) results of FE and Eurocode 3 (L0 = H); (c) results of FE and GB50017-2017 (L0 = 1.5H); (d) results
of FE and Eurocode 3 (L0 = 1.5H).

Figure 13 shows that column curve b of GB50017-2017 or Eurocode 3 can efficiently
predict the ultimate bearing capacity of the plate-tube-connected circular steel arch with an
inverted triangular cross section under FSURL. Therefore, the stability bearing capacity
design formula of the plate-tube-connected circular steel arch under uniform radial load
can be written as follows:

Nu = ϕNy ≤ Ny (23)
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where ϕ is the reduction factor and is taken according to the column curve b of GB50017-
2017 or Eurocode 3.

4.2. Failure Mechanism under FSUVL

The cross-sectional bending moment, shear force, and axial force exist simultaneously
under FSUVL. The cross-sectional shear force of Vierendeel structures greatly influences its
failure mode. Therefore, the internal force distribution along the axis of the arch should be
investigated prior to discussing the failure mechanism of plate-tube-connected circular steel
arches with inverted triangular cross sections. A simplified beam model is used to study
the internal force distribution of the arch. The corresponding original model parameters
are f /L = 0.3, L = 40 m, H = 0.5 m, L0 = H, D× tc = 0.114 × 0.01 m, and bw × tw = 0.2
× 0.02 m.

The corresponding internal force distribution is shown in Figure 14, where the max-
imum internal force is set to 1. Figure 14 indicates that the maximum axial and shear
forces are located at the arch foot when the rise-to-span ratio is 0.3. The maximum bending
moment is located at the quarter point of the arch. However, the cross-sectional bending
moment will be converted into the chord axial. Finally, the cross-sectional shear force will
be converted into the chord bending moment. Therefore, the arch may suffer from global
and local failure under FSUVL.
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Figure 14. Internal force distribution along the arch axis under FSUVL ( f
L = 0.3): (a) axial force;

(b) bending moment; (c) shear force.

4.2.1. Global Failure of the Arch

When the segment length of the plate-tube-connected circular steel arch is short, a
small bending moment is produced by shear force at both ends of the chord. Meanwhile,
the chord axial force produced by the cross-sectional bending moment is large. Thus, global
elastic–plastic failure of the arch may occur.

The whole process of large deflection elastic–plastic analysis of the arch is conducted
to study the global failure mode of the plate-tube-connected steel arch under FSUVL. The
parameters of the arch are L = 30 m, f /L = 0.3, B = 0.5 m, H = 0.4 m, L0 = H and
L0 = 2H, bw × tw = 0.2 × 0.01 m, and D× tc = 0.114 × 0.01 m. The load–displacement
curve of the vault is shown in Figure 15.
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As shown in Figure 15, the ultimate load of the arch decreases with the increase in Lc
when only the segment length Lc is changed. The global stiffness of the arch also changes.
As the displacement continues to increase, the plastic area of the lower chord near the arch
foot at both ends gradually expands. Figure 16 shows the stress distribution at point B of the
load–displacement curve. Because the shear deformation of the cross section will increase
the influence of the second-order bending moment, the yield position of the chord is not
consistent with the maximum position of the bending moment analyzed by the simplified
beam model in Figure 14.
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Unlike the solid-web arch, the second-order bending moment caused by the cross-
sectional axial force cannot be neglected when the plate-tube-connected circular steel arch
undergoes global failure. Thus, the moment amplification factor δ is introduced to consider
the second-order bending moment caused by shear deformation. The global stability
bearing capacity design formula for the plate-tube-connected pin-ended circular steel arch
with an inverted triangular cross section under FSUVL is proposed as follows [2,15]:

N∗

ϕNy
+

M∗

My
≤ 1 (24)

where N∗ represents the maximum axial force obtained from the first-order elastic analysis
by using the simplified beam model when the arch reaches the ultimate bearing capacity
qu; ϕ is the reduction factor, which is taken from the column curve b of GB50017-2017
or Eurocode 3; Ny is the resultant force of the cross-sectional axial force when the chord
fully yields and is calculated according to Equation (21); My is the cross-section bending
moment, My = HNy/3; and M∗ is defined as follows:

M∗ = δM (25)

M is the maximum bending moment obtained from the first-order elastic analysis by
using the simplified beam model when the arch reaches the ultimate bearing capacity qu. δ
is the moment amplification factor and is defined as follows:

δ =
1

1− N∗
qcr R

(26)

where N∗ has the same meaning as in Equation (24). qcr is the elastic buckling load of the
arch under a uniform radial load and is calculated according to Equation (6).

The FE and Equation (24) results are compared to verify the applicability of adopting
Equation (24) to verify the stability of the plate-tube-connected circular steel arch with an
inverted triangular cross section under FSUVL. The parameters of the models are L = 30–50,
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f /L = 0.1–0.5, B = 0.5 m, H = 0.4 m, bw × tw = 0.2 × 0.02 m, and D× tc = 0.114 × 0.01 m.
The comparison between FE and Equation (24) results is shown in Figure 17.
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As observed, all the numerical results are on the right side, the bending moment is the
main reason for the global elastic–plastic failure of the plate-tube-connected circular steel
arch with an inverted triangular cross section under FSUVL.

4.2.2. Local Failure of the Chord

Figure 14 shows that the maximum shear force of pin-ended arches is located at the
arch foot. When the segment length Lc of the arch is large, a large chord-end bending
moment is generated by the shear force, and chord local failure may occur at the position
of maximum shear force. The vault load–displacement curve of the arch with L = 40 m,
f /L = 0.3, B = 0.9 m, H = 0.9 m, L0 = 2H, bw × tw = 0.2 × 0.02 m, and D × tc =
0.114× 0.01 m is shown in Figure 18 for studying the local chord failure of the arch.
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Figure 18 shows that, after the steel arch reaches the ultimate bearing capacity, the
downward trend of the curve is steep and then tends to be flat after falling within a certain
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range. This phenomenon indicates that the arch still has a bearing capacity after reaching
the ultimate bearing capacity, because the bending moment produced by shear force will
accumulate at the chord end when the stiffness of the connecting plate is high. Finally, the
plastic hinges will be formed at the chord end. The plastic hinges at the arch foot of the
whole structure can be regarded as the sliding bearing. The whole structure becomes a
static one. The arch can continuously bear loads after the chord local failure. The failure
mode and global deformation of the arch at point B are shown in Figure 19, and the global
stress distribution at point B is shown in Figure 20.
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4.2.3. Combined Connecting Plate and Chord Failure

Figure 6 demonstrates that the connecting plate will resist the sum of the bending
moments at both ends of the segment chord. When the connecting plate cannot resist the
bending moment, the bending moment will accumulate at the adjacent segment chord
end at the arch foot. The structure will eventually fail during the combined chord and
connecting plate failure. In the failure process, the parameters of the arch are L = 40 m,
f /L = 0.3, B = 0.9 m, H = 0.9 m, L0 = 2H, D × tc = 0.114× 0.01 m, and bw × tw =
0.1× 0.02 m. The load–displacement curve of the vault is plotted in Figure 21. Figure 22
shows the global deformation and failure mode during the combined chord and connecting
plate failure at point B. Figures 23 and 24 present the stress distribution at point B.
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Figure 24. Chord stress distribution of chord and connecting plate combined failure (Pa).

The load–displacement curve indicates that the arch can also continue to bear loads
when the arch experiences combined chord and connecting plate failure. At point A, the
chord yields initially. The connecting plate will fail when it cannot resist the bending
moment of the chord end, and the bending moment of the cross section will accumulate at
the adjacent segment chord end. Finally, the plastic hinges will form at a further chord end.

4.2.4. Connecting Plate Failure

When the flexural rigidity of the connecting plate is gradually reduced, the elastoplas-
tic failure of the connecting plate will occur. No effective connection exists between the
upper and lower chords, and their cooperative working ability is poor. In this case, the
bearing capacity is weak.

In simulating the failure process, the parameters of the arch are f /L = 0.3, L = 40 m,
B = 0.9 m, H0 = 0.9 m, L0 = 2H, D× tc = 0.114× 0.01 m, and bw × tw = 0.05× 0.02 m.
The load–displacement curves of the vault are plotted in Figure 25, and the global deforma-
tion and failure mode during connecting plate failure is plotted in Figure 26.
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Figure 26. Global deformation during connecting plate failure.

Figure 25 shows that the arch can continuously bear loads when the connecting plates
fail. However, most connecting plates will yield at both ends with the increase in load due
to the small flexural rigidity of the connecting plate in its own plane. After that, the three
chords of the arch will continue to carry independently. The final deformation presents
global antisymmetric deformation.

4.2.5. Comparison of Three Types of Local Failure

The vault load–displacement curves for three types of local failure modes are plotted
in Figure 27 for comparison. The overall stability bearing capacity changes slightly with
the change in the connecting plate stiffness when the chord of the plate-tube-connected
steel arch with an inverted triangular cross section fails.
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When the connecting plate stiffness on its own plane decreases, the bearing capacity of
the arch decreases gradually, and the failure mode of the plate-tube-connected circular steel
arch with an inverted triangular cross section changes from chord local failure to combined
chord and connecting plate failure. When the stiffness of the connecting plate is further
reduced, the failure mode of the arch changes to connecting plate failure.

In the three types of failure modes, the two previous failure modes are superior to the
third one in terms of deformation and bearing capacity. The advantages of chord failure
are as follows: (1) The stiffness of the connecting plate is large. The failure and yield of the
connecting plate will not occur during the whole loading process when the stiffness ratio
of the connecting plate to the chord is constrained. This concept is completely applicable to
elastic calculation and does not involve stress redistribution. (2) The fully elastic connecting
plate can effectively connect the upper and lower chords. As a result, the overall stiffness
and bearing capacity increase. Therefore, chord local failure is preferably designed alone.

Additional FE examples are added to study the relationship between the failure mode
and connecting plate size. The parameters of the arch are f /L = 0.3, L = 40 m, H0 = 0.9 m,
and D× tc = 0.114× 0.01 m, and the connecting plate sizes are bw × tw = 0.2× 0.02 m,
bw × tw = 0.2× 0.016 m, bw × tw = 0.2× 0.014 m, bw × tw = 0.15× 0.016 m, bw × tw =



Buildings 2023, 13, 956 20 of 26

0.15× 0.014 m, bw × tw = 0.1× 0.016 m, and bw × tw = 0.1× 0.014 m. The parameters
mentioned before are kept unchanged with L0 = 2H and L0 = 2.5H. The corresponding
results are shown in Figure 28.
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Figure 28. Effect of connecting plate size on the ultimate bearing capacity of local failure mode.

When section modulus ratio Wc/Wt < 0.75, the connecting plate will remain elastic
(where Wc denotes the section modulus of the chord, and Wt denotes the section modulus
of the transverse connecting plate). Meanwhile, the connecting plate will be subjected to
compression and a bending moment. However, the action of compression is smaller than
that of the bending moment. Conservatively, the edge yield criterion is adopted to maintain
the elasticity of the connecting plates.

M
Wn
≤ fy (27)

Integrating the bending moment of the connecting plate end and the chord end into
Equation (27) yields

VLc

8Wc
/

VLcLt

4HWt
≤

fy2

fy1
(28)

where Wc is the modulus of the chord section, and Wt is the modulus of the connecting
plate section. Bringing material parameters into Equation (28) shows that the connecting
plate will be elastic when Wc/Wt < 0.73.

The plate-tube-connected steel arch with an inverted triangular cross section is mainly
supported by chords. The upper two chords bear 1/4 of the shear force V. The lower chord
bears 1/2 of the shear force V. The bending moment of the lower chord is near twice that
of the upper chord. The lower chord will first enter the plastic state, but the upper chord
will also yield if chord local failure occurs.

Conservatively, referring to GB50017-2017, the edge yield criterion is used to check
the upper chord strength at the most disadvantageous position, that is,

Nc

Ac fy1
+

Mc

γxWc fy1
≤ 1 (29)
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where Ac and Wc are the area and section modulus of a single chord, respectively; fy1 is
the yield strength of the chord; and γx is the plastic development coefficient of the chord
section. In the circular pipe section, γx = 1.15, and Nc is defined as follows:

Nc =
Nmax

3
+

δMmax

2H
(30)

Mc is defined as follows:

Mc =
VmaxLc

8
(31)

where Vmax is the maximum shear force obtained from the first-order elastic analysis by
using the simplified beam model when the arch reaches the ultimate bearing capacity qu;
Nmax and Mmax denote the maximum shear force and bending moment within the segment
where the shear force is maximum, respectively; similarly, the values of Nmax and Mmax are
also calculated by a simplified model when the arch reaches the ultimate bearing capacity
qu. δ is the moment amplification factor, δ < 1.4.

Equation (29) is validated by the FE method. The arches with a rise-to-span ratio of
f /L = 0.15–0.5, L = 30–60 m, B = 0.9 m, H = 0.9 m, L0 = 2H, bw × tw = 0.3× 0.02 m,
and D × tc = 0.114× 0.01 m are considered. The ultimate bearing capacity of all plate-
tube-connected steel arches with inverted triangular cross sections under chord failure is
calculated according to Equation (29) and drawn in Figure 29.
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Figure 29. Comparison of Equation (29) with FE results.

Figure 29 shows that the data points deviate to the right side, thereby indicating that
the local chord failure is mainly caused by the bending moment. All data points are above
Equation (30), which can be used to estimate the local failure strength of the plate-tube-
connected steel arch with an inverted triangular cross section under the full-span uniformly
distributed vertical load.

4.3. Failure Mechanism under HSUVL

Under HSUVL, the plate-tube-connected circular steel arch with an inverted triangular
cross section is in a state of compression and bending. The distribution law of the internal
force along the axis is calculated by the simplified beam model, as shown in Figure 30. The
corresponding refined model parameters are f /L = 0.3, L = 40 m, H = 0.4 m, L0 = H,
D× tc = 0.114× 0.01 m, and bw × tw = 0.2× 0.02 m. The numerical value in Figure 30
indicates the relative value of internal force. The maximum value is set to 1.
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Figure 30. Distribution law of the internal force of arch under HSUVL: (a) axial force; (b) bending
moment; (c) shear force.

Figure 30 shows that the maximum shear force of the arch under HSUVL is located in
the midspan. The maximum axial force is located at the arch foot. The maximum bending
moment is located at 1/4 and 3/4 spans. The distribution characteristics of the internal
force along the axis manifest that the plate-tube-connected steel arch will have the same
elastoplastic and local failure modes of the arches under FSUVL.

4.3.1. Global Failure Mechanism under HSUVL

The parameters are f /L = 0.3, L = 20 m, B = 0.5 m, H = 0.4 m, D× tc = 0.14× 0.01 m,
bw × tw = 0.2× 0.02 m, and L0 = 2H. The overall stress distribution when the arch reaches
the stable ultimate bearing capacity is shown in Figure 31 for large deflection elastic–plastic
analysis. Figure 31 shows that the lower chord will yield at the 1/4 and 3/4 span positions
of the arch, and the arch will undergo global antisymmetric deformation.
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Figure 31. Global stress distribution of global failure under HSUVL (Pa).

In the supplementary example, the FE model parameters are f /L = 0.15–0.5, L =
20–50 m, B = 0.5 m, H = 0.4 m, L0 = H, and bw × tw = 0.2× 0.02 m to verify if Equation
(24) can be used to check whether the strength of the overall failure of the arch under
HSUVL is suitable. Figure 17 presents the calculation result, which indicates that adopting
Equation (24) to verify the stability bearing capacity is safe.

4.3.2. Local Failure Mechanism under HSUVL

The parameters of the unified arching are f /L = 0.3, L = 35 m, B = 0.9 m, H = 0.9 m,
L0 = 2H, D× tc = 0.14× 0.01 m, and bw × tw = 0.2× 0.03 m in studying the chord local
failure of the plate-tube-connected circular steel arch with an inverted triangular cross
section under HSUVL. Figure 32 plots the load–displacement curve at the vault. Figure 33
presents the global deformation and failure mode at point A. Figure 34 show the global
stress distribution and chord stress distribution.
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Figure 34. Stress distribution during chord local failure (HSUVL): (a) global stress distribution at
point A(Pa); (b) chord stress distribution at point A(Pa).

The comparison result of Figures 32–34 indicate that the arch can still bear loads
continuously when the arch reaches the stable ultimate bearing capacity because the plastic
hinge will form when the chord end yields, and the chord in mid-span is similar to sliding
bearings. The whole structure will then become static, and can thus bear loads continuously.

In studying the two other types of local failure progress of the arch under HSUVL,
the parameters of the models are f /L = 0.3, L = 35 m, B = 0.9 m, H = 0.9 m, L0 = 2H,
D× tc = 0.14× 0.01 m, and connecting plate sizes bw × tw = 0.15× 0.03 m and bw × tw =
0.05× 0.03 m. A full progress analysis is conducted. The load–displacement curves of the
two types of local failure are shown in Figure 35. The failure mode and global deformation
of the combined chord and connecting plate failure and connecting plate failure are shown
in Figure 36.
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Figure 36. Global deformation and failure mode of the arch under HSUVL: (a) combined chord and
connecting plate failure; (b) connecting plate failure.

Figure 35 shows that the arch will not lose its bearing capacity when the two other
local failure modes occur. Arches will present global antisymmetric deformation with the
increase in vault vertical displacement. The load–displacement curves of three types of
local failure modes are plotted in Figure 37 for analysis.
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Figure 37 demonstrates that when local failure occurs under HSUVL, the bearing
capacity of local chord failure is better than that of the two other types of local failure
mode. Similarly, local chord failure is chosen as the allowed local failure mode. The results
of FE and Equation (29) are compared in Figure 29 to verify whether Equation (29) is
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suitable for checking the strength of the arch during chord local failure. The parameters
of the FE models are f /L = 0.1–0.5, L = 20–60 m, B = 0.9 m, H = 0.9 m, L0 = 2H,
bw × tw = 0.4× 0.03 m, and D× tc = 0.14× 0.01 m.

Figure 29 shows that Equation (29) can predict the strength of local chord failure under
HSUVL. The numerical points are on the right of the curve, thereby indicating that the
bending moment plays a major role during chord local failure.

5. Design Recommendations

When the plate-tube steel circular arch with an inverted triangular cross section
experiences local failure, the bearing capacity will not be lost immediately. The bearing
capacity of the chord will also be higher than that of the two other local failure modes.
Accordingly, the chord local failure can be selected as the control design. The section
modulus ratio of the connecting plate and the chord should be guaranteed Wc

Wt
< 0.7 to

ensure that the connecting plate is in an elastic state when the chord is in chord local
failure. The parameters of the arch can be determined according to the actual ventilation
and lighting requirements. Equations (23) and (24) are used to verify the in-plane global
stability when the arch is under pure compression and compression bending, respectively.
Moreover, when the chord local failure is allowed, the design Equation (29) can be used to
verify the strength of the arch.

6. Conclusions

In this work, the in-plane elastic buckling of plate-tube-connected steel circular arches
with inverted triangular cross sections under FSURL is discussed. The failure mecha-
nisms under FSURL, FSUVL, and HSUVL are studied comprehensively. The following
conclusions are obtained.

• The limiting conditions to avoid local failure of structural members are discussed.
When the slenderness ratio of the chord to the arch under FSURL satisfies λc/λg <√

4/3, the chord can be prevented from becoming unstable before the global buckling
of the arch occurs. When the slenderness ratio satisfies Equation (18), the connecting
plate can be prevented from buckling before the global elastic buckling of the arch
occurs. The formula for calculating the shear stiffness of the cross section of the arch is
derived theoretically and combined with Equation (6), and the elastic buckling load of
the arch when it is subjected to global antisymmetric elastic buckling can be calculated.

• The global elastic–plastic failure of the arch will occur under FSURL, FSUVL, and
HSUVL. Under FSURL, the arch is subjected to uniform compression and will yield at
1/4 of the span and the upper chord at 3/4. The ultimate bearing capacity under pure
compression can be verified by Equation (23). The reduction factor ϕ is calculated
according to column curve b of GB50017-2017 or Eurocode 3. When the arch undergoes
global elastoplastic failure under FSUVL, it will yield at the lower chord of both arch
feet. Meanwhile, the lower chord yields near 1/4 L and 3/4 L under HSUVL. The
proposed Equation (24) can be performed to check the global stability of the arch under
the action of FSUVL or HSUVL.

• Under FSUVL and HSUVL, three types of local failure modes of the plate-tube-
connected steel circular arch with an inverted triangular cross section are observed.
The main influencing factor in the local failure mode of the arch is the change in the
stiffness of the connecting plate. A comparison of the three failure modes shows that
the chord failure mode is better than the two other types. Therefore, the design of the
arch can be controlled by the local failure of the chord. The proposed Equation (29) is
used to check the strength of the chord local failure, and the ratio of Wc

Wt
should be less

than 0.7 to ensure that the connecting plate remains in an elastic state.
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