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Abstract: Low-income housing plays an important, but frequently overlooked, role in energy use
reduction. Barriers persist for low-income households to participate in energy efficiency programs
and adopt efficient lifestyles. However, there has been only limited research into energy efficiency
barriers faced by low-income households. Existing energy research studies primarily focus on
homeowners whose demographic and socio-economic profiles are likely to be very different from
low-income households or renters—limiting the applicability of previous findings to low-income
households. This study aims to identify and evaluate the importance of the energy efficiency barriers
faced by low-income households. A questionnaire survey was conducted with 212 low-income
households in Australia. After randomly dividing the data into calibration and validation samples,
an exploratory factor analysis (EFA) of the calibration sample identifies four energy efficiency barrier
factors of financial, decision-making, information, and split incentives. These four factors are then
validated by confirmatory factor analysis (CFA) of the validation sample in terms of goodness-of-fit,
reliability, and validity to confirm financial as the most highly rated energy efficiency barrier. This
research contributes to bridging the knowledge gap of the energy efficiency barriers of low-income
households and providing a validated CFA model as a tool for assessment. The results provide a
better understanding of the barriers involved and research evidence to facilitate the formulation of
policies to overcome them.

Keywords: Australia; energy efficiency; barriers; low-income households

1. Introduction

Climate change is starting to have a dramatic effect on all our lives, with particular
ramifications on cities and their residents, especially the poor [1]. One of the most important
initiatives to address this situation is to reduce greenhouse gas emissions from the con-
sumption of fossil fuels [2], of which buildings contribute a large share both nationally and
globally—their operation accounting for around a quarter of the country’s total. Despite
the huge impact of buildings on greenhouse gas emissions, the majority of buildings are
constructed without regard to sustainability [3].

In recent years, dramatic increases in energy prices have compelled Australian house-
holds to cut their energy use by investing in more energy-efficient appliances, home
improvements, and rooftop solar panels. Otherwise, while most citizens of developed coun-
tries are concerned about climate change, they will only undertake actions that require little
financial effort because they believe that governments, companies, and industries should
take the necessary action [4]—an attitude more obvious among low-income households.

Low-income households are often overlooked for energy use improvements [5] for
obvious reasons of financial hardship together with other monetary and non-monetary
barriers [6]. Nevertheless, significant opportunities remain [7]. In fact, it is estimated that
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a 20% reduction in energy consumption by such households would save at least AUD 1
billion annually.

Previous studies have not gone into great depth about energy efficiency initiatives.
Moreover, rather than considering low-income households or renters, most have been
confined to local surveys and primarily focused on homeowners whose levels of income
and education were usually above the national average [8,9]. There is limited research
identifying the challenges that prevent energy efficiency in low-income households in
terms of unique demographic and socio-economic profiles. Moreover, the importance of an
assessment tool in identifying energy efficiency barriers has gone unnoticed.

In response, the present study provides a theoretical contribution to the existing body
of knowledge regarding the energy efficiency barriers of the low-income households and
a tool to assess them. The findings contribute to developing policies and programs for
mitigating energy efficiency barriers of low-income households. Hence, this study further
contributes to improving their standard of living, making a positive impact on their health,
and reducing the negative impact of climate change on them.

The paper is organized as follows. The literature review in Section 2 offers an overview
of the current literature relating to the major barriers to the household adoption of energy
efficiency measures. The third section explains the methodology used to achieve the
research’s aims and objectives, followed by a justification for the choice of variables in
the models, the questionnaire design, and details of the data collection and data analysis
process. The results of the survey questionnaire are presented in the fourth section, followed
by their discussion in the fifth section. The final section concludes the paper with a brief
summary of the research, its limitations, and prospects for future work.

2. Energy Efficiency Barriers

Using a taxonomy devised by Sorrell et al. [10], this section delves into the nature of
the four major barriers to energy efficiency. Sorrell et al. [10] describe the energy efficiency
gap as the difference between the actual level of energy efficiency obtained in practice
and what seems to be a possible cost-effective level of energy efficiency. The barriers
involved were initially classified into four broad groups: (1) financial, (2) informational,
(3) decision-making, and (4) split incentives [11,12].

2.1. Financial Barriers

One key barrier to energy efficiency emphasized by Sorrell et al. [12] is limited access
to capital. In general, this applies to the restricted access to capital and limited access to
capital for energy efficiency [11]. One other crucial argument against the “efficiency gap”
hypothesis is hidden costs, identified along with access to capital as the most significant
barriers to increased energy efficiency [12]. Energy efficiency is marred by the high up-
front cost of energy upgrades, especially for low-income households [4]. Over the years,
improvements in energy performance in households have been obstructed by financial
barriers, either through dissatisfaction with the payback period or lack of finances. As
Wilson et al. [13] state, the most important financial barriers are capital availability and
extreme dislike of delayed gains. Similarly, according to Murphy [14], failure to adopt
energy efficiency measures can be ascribed to a lengthy payback period and lack of finances.

2.2. Information Barriers

A considerable amount of the literature states that the main obstacle to domestic
energy savings is the lack of energy awareness among energy consumers [15]. Another
is the skepticism or lack of awareness about existing resources. Erroneous perceptions
that households have towards energy saving or consumption are revealed by Ameli and
Brandt [16], who suggest that residents possessed little or no knowledge of the efficiency of
various energy-saving techniques. Investment decisions regarding energy conservation
and renewal energy may be affected by this lack of knowledge. In a survey by Murphy [14],
the failure of energy efficiency adoption measures is attributed to homes being assumed
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to have adequate energy-saving measures; however, the information barriers identified
by Wilson et al. [13] include: (1) misperceptions about energy costs, as well as doubts
about contractor’s reliability and cost-saving outcomes, and (2) unavailability of relevant
information on efficiency measures, a perceived lack of credibility.

2.3. Decision-Making Barriers

Bukarica and Tomšić [17] have studied the ratio and impact of psychology on people’s
decisions pertaining to energy conservation, observing that people’s psychology affects
their decision-making; in most cases, they are unable to make optimal energy-saving deci-
sions even when they have all the relevant information at their disposal. This phenomenon
is described by the term “bounded rationality”. Generally, achieving satisfaction is the
reason people make decisions, which may not be optimal. Thus, people cannot rationalize
their behavior if they cannot make such a connection, especially when the enormity of the
problems involved makes their individual effect seem insignificant [17]. Wilson et al. [13]
highlight the following decision-making barriers: (1) the anticipated stress and disruption
that comes along with conducting renovations in the home, and (2) the cognitive challenge
(or transaction costs) of making irreversible and complicated decisions.

Sorrell et al. [12] identify technical risk as another essential factor that affects decision-
making to enhance energy efficiency. Technical risk is concerned with the technical perfor-
mance and unreliability of individual technologies [11].

2.4. Split Incentives Barrier

Split incentives are an obstacle to investment in the energy efficiency of such fixed
appliances as hot-water heaters and air conditioners, and in improving the thermal per-
formance of rental buildings [6]. The tenant–landlord split incentive is a persistent and
powerful market failure that has been recognized as a major barrier to tenants’ decision
to install energy efficiency products and insulation [18]. In Sorrell et al. [12], the problem
lies in the inability to realize the benefits of an investment, which is a product of the combi-
nation of high transaction costs and asymmetric information. The absence of information
asymmetry would enable landlords and tenants to have a share in the net gains of energy
efficiency investments by entering into a contract [12].

This barrier should also be considered from the Australian perspective. Tax laws
in Australia do not allow landlords to claim a tax depreciation or deduction for energy
efficiency upgrades or embedded generation or installation of solar hot water on their
rental properties. Such upgrades are regarded as capital improvements that are included
in the cost of the property to calculate capital gains during the sale of the property [19].
Conversely, there is a tax deduction for “maintenance” expenses involving “like for like”
replacement of inefficient equipment. Many landlords possibly consider deductions from
capital gains to be less attractive than tax offsets on rental returns. As tenants have no
means or right to upgrade permanent fixtures or the building, they are left to bear the
high cost of running inefficient hot-water systems or cooling and heating leaky homes.
Not installing free energy efficiency upgrades is even evidence of the absence of landlord
involvement in energy efficiency [6]. As seen in the aggregated data from the NSW Home
Power Savings Program, only 10.2% of private homeowners were granted permission to
install free efficient draught strips and showerheads for the low-income tenants taking
part in the program. The Central Victorian Solar City program also had a significantly low
representation for renters, who accounted for just 2% of the beneficiaries of the program’s
energy savings assistance [6].

3. Research Methodology
3.1. Questionnaire Design

A structured questionnaire is used to identify the energy efficiency barriers of low-
income households in Australia. The questionnaire is divided into three sections. The first
section comprises 13 questions designed to extract dwelling characteristics, home tenure,
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and household characteristics. The second section comprises 11 questions concerning
the adoption of energy efficiency measures (EEMs) and knowledge of energy efficiency.
The third section comprises 26 questions about financial barriers, information barriers,
decision-making barriers, and split incentives barriers (Appendix A). The data collected
through this section aims to validate the factors and barriers discovered in the literature.
The last section of the survey is designed to collect data concerning household energy
efficiency plans towards energy saving.

Content validity is a subjective examination of the characteristics of the contained
variables. Statisticians disagree about the appropriateness of the size of Cronbach’s
alpha [20,21]. An alpha of 0.65 to 0.8 is usually regarded to be “adequate” for a scale em-
ployed in human dimension studies [22–24]. Some academic scholars were also assigned to
oversee the questionnaire’s content validity. Convergent and discriminant validities, which
measure the patterns of relations or comparative strengths among several variables, were
often studied jointly.

3.2. Participants and Procedures

The survey was randomly conducted across cities in Australia to ensure that the find-
ings are generalizable and accurate to the greatest possible degree. To obtain valid results,
any common estimation procedure requires a sampling size of at least 200, as recommended
for structural equation modelling (SEM) and standard statistical analysis [25].

The factors affecting EEMs were first assessed by conducting a pilot survey before the
large-scale survey was carried out to determine if the survey questions would be clear to
the participants and relevant to the study, or if there was a need for further action to address
any vague question. A number of 15 respondents, consisting of colleagues and academics,
participated in the pilot study, which was conducted after completing an initial literature
review in September 2020. Suggestions on how to improve the readability, language, and
other aspects of the questionnaire were requested from the pilot study respondents.

The survey was administered by a research panel firm with vast networks of low-
income families. Based on information from the Australian Bureau of Statistics [26], low-
income households in this study are defined as those with a taxable income of less than
AUD 69,999. Hence, the questionnaire was sent to a network of low-income families in
Australia with a taxable income of less than AUD 69,999 with eligible participants invited
respondents who should be a household resident, at least 18 years old, and the household’s
financial decision-maker paying the rent and utilities. A total of 212 participants completed
the questionnaire. The respondents were asked to identify and rank a number of barriers
that impeded the adoption of energy efficiency programs by these households. Table 1
summarizes the demographic characteristics of the respondents.

Table 1. Demographic characteristics of the survey sample.

Variable Description n %

Age

18–24 6 1.9
25–34 12 5.7
35–44 21 10
45–54 18 8.6
55–64 46 21.9
65–74 68 32.4
75–84 39 18.6
85 or older 2 1

Gender
Male 102 48.1
Female 109 51.4
Non-binary 1 0.5
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Table 1. Cont.

Variable Description n %

Annual personal income

Less than AUD 10,000 21 9.9
AUD 10,000–AUD 19,999 36 17.0
AUD 20,000–AUD 29,999 79 37.3
AUD 30,000–AUD 39,999 36 17.0
AUD 40,000–AUD 49,999 24 11.3
AUD 50,000–AUD 59,999 13 6.1
AUD 60,000–AUD 69,999 3 1.4

Annual household income

Less than AUD 10,000 7 3.3
AUD 10,000–AUD 19,999 11 5.2
AUD 20,000–AUD 29,999 51 24.1
AUD 30,000–AUD 39,999 37 17.5
AUD 40,000–AUD 49,999 45 21.2
AUD 50,000–AUD 59,999 31 14.6
AUD 60,000–AUD 69,999 10 4.7
AUD 70,000–AUD 79,999 4 1.9
AUD 80,000–AUD 89,999 3 1.4
AUD 90,000–AUD 99,999 5 2.4
AUD 100,000–AUD 149,999 7 3.3
More than AUD 150,000 1 0.5

3.3. Data Analysis

The data are arbitrarily divided into samples of calibration and validation in order
to analyze the results. An exploratory factor analysis (EFA) is first conducted on the
calibration sample data. EFA is used to decrease the number of variables into factors that
are smaller in size. In order to perform a factor analysis, data must be normally distributed
on the univariate and multivariate levels, and with no outliers [27]. In general, a factor
that has two different variables can be seen as reliable only in cases wherein the variables
have a high correlation among themselves (r > 0.70) but are less correlated with other
variables [27]. Guadagnoli and Velicer [28] propose that a small dataset (n > 150) would
be appropriate if it had several high factor loading scores (>0.80) [27]. In this study, at
least three variables are selected to qualify as factors [27]. A factor loading score is used to
determine whether a variable contributes substantially to a factor; therefore, high scores
indicate that variables and dimensions are more closely aligned [27]. If the correlation r
is lower than 0.30, then the relationship between the variables is quite weak [27]. Cross
loading is defined as a factor scoring 0.32 or more on two or more factors [29]. Cross-loaded
variables may be retained if they are considered latent qualities, but they may also be
dropped if their interpretation is challenging. To make the interpretation easier, it is feasible
to choose a significant loading cut-off. Bartlett’s test (or regression approach) is one way
to produce factor scores. These unbiased scores are only related to their respective factors.
Bartlett’s test is used here because it is generally the easiest to understand. According to
Field [30], 0.5 is considered a good measure of sampling adequacy. As a rule of thumb,
factor loadings of 0.3–0.4 are minimally acceptable for determining factor significance [25].
Variables that have factor loadings of less than 0.4 should be removed from the analysis [25].
In this study, all factor loadings were above 0.4, and therefore no item was removed. The
communalities of all variables were all above 0.33.

Principal component analysis is the first step in data reduction, followed by a “true”
factor analysis. It is important to remember that factor loadings are fairly similar no matter
what extraction technique is selected [31]. It is essential that the extraction method is
appropriate for the research question of this study and easy to interpret [27]. Principal
component analysis (PCA) extraction is used to examine EFA, with 26 items affecting
adoption of energy efficiency measures. Kaiser’s criterion, a scree test, and Horn’s parallel
analysis are then used to identify the number of factors to be extracted. Horn’s parallel
analysis is widely acknowledged as the most precise way for determining the number
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of elements to keep [32]. The number of components to keep tends to be overestimated
by both Kaiser’s criterion and the scree test [32]. Based on this criterion, factors above
eigenvalue 1 should be retained. The use of criteria may overestimate the number of factors
to be extracted [29,30]; therefore, a scree test coupled with eigenvalues is used to define
how many factors to retain. Eigenvalues and factors are used in the scree test [33].

The “component correlation matrix”, which can help choose the best rotation method
by identifying the correlation between the components, was considered. Tabachnick and
Fidell [31] advocated utilizing oblique rotation if factor correlations are greater than 0.32.
Cronbach’s alpha is used to determine each factor’s internal consistency and reliability. The
size of Cronbach’s alpha has been debated for years [20,21]. Cronbach’s alpha is an indicator
of whether a set of items is capable of measuring a single latent construct. A scale’s alpha
should be within the range of 0.65–0.80 to be considered adequate by convention [22–24].

Using the validation sample, confirmatory factor analysis (CFA) is employed to con-
firm the four-factor structure derived from the EFA [25,34]. CMIN relates to the chi-
square values, which are traditionally used to test a model for goodness-of-fit. This is
frequently used to assess whether a model differs significantly from a model that fits the
data exactly [35]. The p value indicates the significance. A null of a model fitted exactly
is rejected if p ≤ 0.05. If the χ2 is not statistically significant, the data are not substan-
tially distinct from the hypothesized model. Despite this, several models are assessed
as inaccurate with the rise of sample size, since χ2 is a function of sample size. In light
of this, χ2/df has often been used as an alternative fit index [36]. A good fit is evident,
where χ2/df is less than 2 (df denotes degrees of freedom). A root mean square error of
approximation (RMSEA) is considered an “absolute fit index”, in which a value of zero
denotes the “best fit”, and a value > 0 suggests a poorer fit [35]. Close-fitting models are
generally considered to have RMSEA values of 0.05 or lower. Acceptable values are those
up to 0.08 [37] or 0.10 [38]. Browne and Cudeck [37] propose RMSEA≥ 0.10 as a model that
may have more serious problems in its specification according to Kline [35]. The RMSEA in
the output for this study is 0.051, which is between 0.05 (close fit) and 0.10 (poor fit). Thus,
the RMSEA shows a very good fit for this model. RMSEA, comparative fit index (CFI),
non-normal fit index (NNFI), and χ2 to the degrees of freedom (χ2/df ) are used in to assess
the goodness-of-fit of the SEM model. CFI and NNFI of 0.95 or more indicate a good fit
as determined by the RMSEA value of less than −0.05 (lower value of the 90% confidence
interval is less than 0.05 and upper value is less than 0.08) [39,40].

It is crucial to examine the model’s assumptions for validity before conducting theory
testing. This validity is described as the measuring tool’s capacity to measure the attributes
accurately and consistently. Convergent and discriminant validities are used in this test.
Discriminant validity is investigated to find the unique indicators that measure the latent
construct without being influenced by other constructs in the model [41]. The indicators that
have positive correlations with other indicators measuring the same latent components are
then used to verify convergent validity [41]. Testing the average variance extracted (AVE)
and composite reliability (CR) values accomplishes this and recommends a composite
reliability of 0.70, although Fornell and Larcker [42] advocated a CR value of 0.60 or
higher [25]. An AVE larger than 0.5 is advocated by Fornell and Larcker [42]. All AVE
values in this study are greater than correlation squared, which indicates that they met the
discriminant validity requirements.

4. Analysis Results
4.1. EFA Results

The factorability of 26 items is examined to assess the factorability of correlation being
assessed using a number of well-known criteria. To begin, it is found that all 26 items are at
least correlated, with four having at least one additional item, indicating that factorability
is feasible. The Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy is 0.921, above
the commonly recommended value of 0.6, and Bartlett’s test of sphericity is significant
(χ2

325 = 4000.4, p < 0.001), indicating that the correlation matrix does not suffer from
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multicollinearity and suggesting the correlation between variables to be sufficient for
PCA [30]. The communalities are all above 0.4, further confirming that each item shares
some common variance with other items. Given these overall indicators, factor analysis is
deemed to be suitable with all 26 items. The eigenvalues and factors are used in the scree
test. As Figure 1 shows, the number of components to keep is equal to the number of data
points above the break (i.e., point of inflexion).
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Figure 1. EFA scree plot.

Testing begins by drawing a horizontal and vertical line from each end of the curve
to establish the “break”. Only a sample size of at least 200 people is required for the scree
test to be valid, which is applicable here. The initial eigenvalues indicate that the first five
factors have eigenvalues just over unity. Parallel analysis is then applied to validate the
number of factors, which results in four factors in total (Table 2).

Table 2. Comparison of eigenvalues from PCA and Horn’s parallel analysis.

Component Actual Eigenvalue
from PCA

Criterion Value from
Parallel Analysis Decision

1 11.498 1.725673 Accept
2 2.518 1.592229 Accept
3 1.866 1.510609 Accept
4 1.437 1.435158 Accept
5 1.093 1.373765 Reject

The “component correlation matrix”, which can help choose the best rotation method
by identifying the correlation between the components, is considered. Because the compo-
nents are not correlated, varimax rotation is chosen as the method of rotation [31]. Table 3
signifies the rotated component matrix that shows the number of each of the factors re-
tained. High upfront cost, with a mean score 4.01, is perceived to be the greatest energy
efficiency barrier.

Three items are excluded because they do not contribute to a simple factor structure
and fail to meet the minimum criteria of having a primary factor loading of minimum 0.4 or
they are cross loaded. For example, doubts about the costs of transaction has factor loadings
between 0.5 and 0.6 on both financial and decision-making. Lack of information about
energy efficiency programs has factor loadings between 0.4 and 0.7 on both financial and
information, while physical distance from resources has similar factor loadings between
0.4 and 0.5 on both information and decision-making. The remainder of the 23 items have
primary loadings over 0.5. Cronbach’s alphas are moderate: 0.68 for energy efficiency
adoption (three items), 0.9 for information (six items), 0.8 for financial (seven items), 0.9 for
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decision-making (seven items), and 0.8 for split incentives (two items). Eliminating more
items will not result in a significant boost in alpha for any of the scales.

Table 3. Factor loadings based on PCA with varimax rotation.

Item
Factor Loading

M SD
F1 F2 F3 F4

Factor 1, Decision-making (eigenvalue = 11.498; percentage of variance = 44.529; cumulative percentage = 44.529)

172. Measure implementation comes with too much stress 0.820 2.88 1.16

177. Periods of transition in the household lifecycle 0.783 2.96 1.12

171. Disruption that comes along with conducting renovations in the home
to adopt energy efficiency 0.763 2.89 1.21

176. The stress that comes along with making irreversible and
complicated decisions 0.749 3.17 1.21

174. Technical risk 0.733 2.96 1.09

173. Doubts about the contractor’s reliability 0.682 3.17 1.14

178. Households’ social communication behavior as a particular type of
personal influence 0.674 2.57 1.08

Factor 2, Financial (eigenvalue = 2.518; percentage of variance = 9.402; cumulative percentage = 53.931)

156. Financial risks 0.786 3.67 1.11

152. Immediate loss for delayed gains 0.771 3.4 1.02

154. Lack of saving 0.761 3.67 1.11

151. High upfront costs 0.752 4.01 0.96

155. Hidden costs 0.746 3.75 1.07

153. Lack of incentives, subsidies from government 0.649 3.4 1.02

167. Lack of support for low-income or vulnerable households 0.600 3.73 1.2

Factor 3, Information (eigenvalue = 1.866; percentage of variance = 7.205; cumulative percentage = 61.136)

164. Unavailability of relevant information on efficiency measures 0.769 3.16 1.05

165. Lack of trust in available information 0.745 3.18 1.14

161. Lack of awareness or skepticism of existing resources 0.731 3.02 1.12

168. Lack of marketing campaigns 0.681 2.87 1.07

162. Misperceptions about energy costs 0.681 3.02 1.05

163. Doubts about cost-saving outcomes 0.607 3.27 1.06

Factor 4, Split incentives (eigenvalue = 1.437; percentage of variance = 5.141; cumulative percentage = 66.276)

183. Landlord’s unwillingness to adopt efficiency measures 0.853 2.56 1.55

169. Uncertainty about the period of residence at a particular dwelling 0.711 2.9 1.31

Notes: Factor loadings <0.4 are suppressed. Extraction method: principal component analysis. Rotation method:
varimax with Kaiser normalization (N = 204).

4.2. Empirically Tested CFA Model

Figure 2 shows the empirically tested CFA model of the energy efficiency barriers using
the validation sample. The 22 items represented by the item numbers shown in Table 3
are the observed variables. They are shown within the boxes. The ellipses indicate the
latent factors. As a result of the model, four factors are hypothesized to be related to energy
efficiency barriers: (1) information barriers, (2) financial barriers, (3) decision-making
barriers, and (4) split incentives.

There are significant correlations between the observed variables and latent factors.
Ideally, the standardized factor loading must exceed 0.5 [25]. The standardized factor
loadings surpassed 0.5 for all paths except the one from the split incentive barrier to 169
(standardized path coefficient = 0.49). Of all the six observed variables in the information
barrier factor, observed variable 163 (doubts about cost-saving outcomes) has the strongest
standardized path coefficient of 0.80. The strongest standardized path coefficient in financial
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barrier factor are the following: 154 (lack of saving), with a standardized path coefficient of
0.80; and 156 (financial risks), with the same standardized path coefficient of 0.80. Further,
in the decision-making barrier factor, they are 176 (the stress that comes along with making
irreversible and complicated decisions) and 177 (periods of transition in the household
lifecycle), each with a standardized path coefficient of 0.87. Finally, the split incentives
factor has the strongest standardized path coefficient of 0.91, which belongs to the observed
variable of 183 (landlord’s unwillingness to adopt efficiency measures). Table 4 provides an
overview of the items chosen to assess goodness-of-fit (χ2 = 311.092, p < 0.001). The current
model is a good fit to the data based on both factors presented.
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Table 4. Fit indices for the proposed measurement model and their acceptable threshold.

Goodness-Of-Fit Measure Value Acceptable Threshold Results Supporting Model Fit

χ2/df 1.288 <2
√

RMSEA 0.053 <0.06
√

CFI 0.957 >0.90
√

IFI 0.959 >0.90
√

TLI 0.948 >0.90
√

All AVE values are greater than correlation squared, which indicates that they meet
the discriminant validity requirements. The data also meet the converge validity condition,
as all the values meet the requirements. By calculating the factor loadings, composite
scale indicators are used to analyze the structural model. AMOS is used to calculate the
composite scale model by hand-loading factors and error variances. Construct reliability is
assessed using composite reliability (CR) values. The CR ranges from 0.711 to 0.919, which
is higher than the 0.60 threshold suggested by Bagozzi and Yi [43]. Table 5 presents the
specifics of the measuring model. Convergent validity is measured by calculating the AVE.
The AVE values range from 0.461 to 0.653, showing that all constructs have convergent
validity. Discriminant validity is confirmed when the square of the AVE values is greater
than the highest inter-construct correlation value [42]. Finally, all constructs contained in
the conceptual model have convergent and discriminant validity. As Table 5 shows, all AVE
values are greater than correlation squared, which indicates that they meet the discriminant
validity requirements. As Table 6 shows, the data met the convergent validity condition, as
all the values meet the requirements.

Table 5. Discriminant validity table.

Discriminant
Validity Estimate Correlation

Squared
AVE 1; AVE 2

(AVEs Should Be > r2)
Discriminant

Validity

Financial <–> Information −0.055 −0.003 0.593; 0.461 Established
Financial <–>Split incentives 0.347 0.120 0.593; 0.490 Established
Financial <–> Decision-making 0.672 0.451 0.593; 0.653 Established
Split incentives <–> Information 0.158 0.024 0.490; 0.461 Established
Decision-making <–> Information 0.109 0.0118 0.653; 0.461 Established
Decision-making <–> Split incentives 0.641 0.4108 0.653; 0.490 Established

Table 6. Convergent validity table.

Convergent Validity Information Financial Decision-Making Split Incentives

AVE
value > 0.5 0.461 0.593 0.653 0.490

CR
value > 0.7 0.771 0.897 0.919 0.711

Factor loading√
CR

0.878 0.947 0.958 0.843

Error variance
1 − CR 0.229 0.103 0.081 0.289

Convergent validity Established Established Established Established

5. Discussion

This study identifies the barriers that prevent low-income Australian households from
adopting energy efficiency measures. There is confusion and disagreement regarding the
concept of energy efficiency barriers in the literature. In spite of the wide usage of the
terms, there seems to be no unanimous agreement regarding the importance of barriers
in different contexts, how they should be understood, and ways to address them in low-
income families. The classifications and interpretations of energy efficiency barriers are
therefore numerous, and it is particularly difficult to interpret the empirical literature
due to the lack of both consistency and rigor [44]. In accordance with the literature, this
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study primarily focuses on energy efficiency misconception as a factor that discourages
low-income families from utilizing energy efficiency. As participants need to understand
the terms used in any particular research study before they can partake in it, research
focusing on households becomes complicated due to the misconception and confusion over
the term “energy efficiency” among households, particularly those with low income.

The identified barriers are divided into four categories: information, financial, decision-
making, and split incentives. The questionnaire requires the participants to rate their
willingness to employ EEMs. In the last part of the survey, data were collected in relation
to households’ energy efficiency plans to save energy.

The next section discusses the significance of the four categories of barriers.

5.1. Financial

Financial is a major barrier mitigating against the implementation of technical EEMs
such as retrofitting, purchasing energy-efficient appliances, and investing in renewables.
Approximately 70% of participants state that their adoption of EEMs is highly impacted by
high upfront costs. This shows upfront costs to be a major problem and is consistent with
the findings of several previous studies carried out in the field of energy efficiency [4,12].
“Hidden costs” is another commonly reported financial barrier, with more than half the
participants (61%) reporting that their use of EEMs was highly affected by this. These results
correspond with Sorrell et al. [45], who identified access to capital and hidden costs as the
most relevant barriers to the application of energy efficiency measures. Another financial
barrier found here is the difficulty in obtaining extra capital for investment in energy-
efficient measures. In addition, there is limited access to capital as a result of limitations on
money lending, which corresponds with the results of most previous research [12,13].

5.2. Decision-Making

Decision-making is one of the barriers that could prevent low-income households in
Australia from adopting energy efficiency measures. In reference to the present survey
results, previous studies also traced one of the reasons for not undertaking cost-effective
energy efficiency measures to this barrier [13,44]. Although the findings of this study are
similar to previous studies, only 26% of the respondents agreed that their adoption of
energy-saving measures was impacted in this way.

The finding of Sorrell et al. [12] that technical risk is a crucial element that impacts
decision-making to improve energy efficiency was not consistent with the results found in
this study (which indicates that technical risk had a moderate impact on the application
of energy efficiency measures). It is possible that many dimensions of risk may have
contributed to these results. It is not easy to conduct an objective risk evaluation, and risk
perceptions may thwart investment decisions, even though they may not be reasonable.
Technical risks only exist for some technologies, and the risks associated with many of the
technologies considered in this study are seemingly low. However, this does not make
technical risk a strong basis for rejection, despite the possible existence of site-oriented
reasons [11].

Additionally, social communication behavior is the personal factor that had the least
influence on the decision-making of low-income households, though people were fond
of seeking advice from those on whom they relied and already trusted. In their study,
Lusambili et al. [46] arrived at a different result, in which most older people are likely to
seek advice and assistance from family and friends, indicating that low-income households
may behave differently in this aspect of decision-making. It may be possible to explain this
through the impact of bounded rationality on decision-making, which is equally recognized
in past studies that examine the relationship between EEMs adoption and the decision-
making barrier [11,14,17]. Complex decision-making procedures in the present study are
affected by low-income households’ personal management agendas.
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5.3. Split Incentives

The split incentive barrier is a key factor that hinders low-income households’ adoption
of energy efficiency measures. This finding aligns with the results of past research that
focuses on energy efficiency barriers among renters [6,47]. In Australia, 39% of households
in the lowest 20% of incomes are renters who make up a similar but bigger part (65%)
of households where allowances are their main source of income. Because managers or
owners of rental properties bear the costs of adopting energy efficiency measures, they have
little incentive to invest in them, whereas tenants enjoy the benefits of reduced energy bills
and improved living environment [6,13]. These findings offer the disturbing conclusion
that a split incentive hinders the adoption of energy efficiency interventions despite raising
energy efficiency among the most vulnerable and lowest-income renters, which is a critical
factor. This is most likely explained on the grounds that the party that adopts an investment
is often not the one that pays the energy bill. Another way to explain this is that the potential
adopter does not have enough information about existing cost-effective energy efficiency
measures and, as such, they only adopt these measures if they can recoup their investment
from the party that benefits from the energy savings [47].

5.4. Information

Information is identified as another barrier to the application of energy efficiency mea-
sures in households. Only 15% of the low-income households surveyed in this study agree
that the information barrier significantly affects their decision to adopt energy efficiency
measures. It is possible to explain this from the viewpoint that information becomes effec-
tive when it aligns with people’s key priorities and values, making it unrealistic to disregard
this aspect of the study [48]. The result could be linked to the contextual difference between
low-income households and other households. It is arguable that different households
have distinct values and priorities, and that the research findings can often be significantly
predicted by demographic characteristics [48]. Thus, the information barrier may not
be effective for people who do not have the same priorities. As a result, in cases where
the financial priorities of low-income households allow them to apply energy efficiency
measures, the information barrier may seem irrelevant. The importance of information
accessibility is another interesting aspect of this study’s primary findings. Apart from the
content of the information program, how the information is presented is also important. As
long as the problem-solving processes match the problem representation, decision-making
becomes less stressful, which can be attributed to the impact of bounded rationality on
decision-making [17].

6. Conclusions, Limitations, and Recommendations

In summary, the energy efficiency barriers that prevent low-income households from
adopting energy efficiency are identified with EFA on the calibration sample, and then
validated with CFA on the validation sample. Four primary categories of barriers are
identified as financial, information, decision-making, and split incentives. The CFA model
has goodness-of-fit, reliability, and validity, thus indicating that these four represent the
main barriers to energy efficiency adoption by low-income households.

This study is limited in relation to location and cultural context. It is conducted in
Australia and, as such, data were obtained from low-income households in Australia only.
Thus, the extent to which findings are applicable to other countries with less similar cultural
contexts remains to be established by further research across different countries. This study
is also limited to the energy efficiency barriers of low-income households to the exclusion
of such other factors as the drivers or critical success factors leading to the better energy
efficiency adoption of this group. A wider scope of factors affecting low-income households’
energy efficiency adoption should also be further investigated to determine whether the
positive effect of drivers could offset the negative effect of these barriers. The number of
survey responses and the number of interviews conducted could be construed as restrictive
because, although the 212 survey responses met the data analysis requirement and nine
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interviews reached data saturation, it would be beneficial to obtain a larger dataset to
produce more representative and generalizable findings.

Despite these reservations, this study has contributed to bridging the gap of very
limited research into the energy efficiency of low-income households and providing a
model to assess the level of energy efficiency barriers involved. This model provides
research-based evidence to design mitigation strategies to overcome energy efficiency
barriers of such households by energy efficiency professionals and policy-makers.
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Appendix A

Table A1. An Extract of the Questionnaire Survey.

How much do the following points influence your decision to adopt energy efficiency? (Such as energy-saving renovations, purchasing
energy-efficient appliances, and adoption of renewable energy.) Please choose the appropriate box.

Very High
Impact

High
Impact

Moderate
Impact

Low
Impact

Very Low
Impact

High upfront cost

Immediate loss for delayed gains

Lack of incentives, subsidies from government

Lack of saving

Hidden cost

Financial risks

Lack of awareness or skepticism of existing resources

Misperceptions about energy costs

Doubts about cost-saving outcomes

Unavailability of relevant information on efficiency measures

Lack of trust in available information

Lack of information about energy efficiency programs

Lack of support for low-income or vulnerable households

Lack of marketing campaigns

Uncertainty about the period of residence at a particular dwelling

Disruption that comes along with conducting renovations in the
home to adopt energy efficiency

Measure implementation comes with too much stress

Doubts about the contractor’s reliability

Technical risk

Doubts about the costs of transaction

The stress that comes along with making irreversible and
complicated decisions
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Table A1. Cont.

Periods of transition in the household life cycle

Households’ social communication behavior as a particular type
of personal influence

Physical distance from resources

Difficulty to access professional services

Landlord’s unwillingness to adopt efficiency measures
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17. Bukarica, V.; Tomšić, Ž. Energy efficiency policy evaluation by moving from techno-economic towards whole society perspective

on energy efficiency market. Renew. Sustain. Energy Rev. 2017, 70, 968–975. [CrossRef]
18. Australian Bureau of Statistics (ABS). The Survey of Income and Housing Australian Government. 2021. Available on-

line: https://www.abs.gov.au/statistics/detailed-methodology-information/concepts-sources-methods/survey-income-and-
housing-user-guide-australia/latest-release (accessed on 5 December 2021).

19. Australian Taxation Office. Rental Expenses You Can Claim Now. 2022. Available online: https://www.ato.gov.au/Individuals/
Investments-and-assets/Residential-rental-properties/Rental-expenses-to-claim/Rental-expenses-you-can-claim-now/ (ac-
cessed on 5 December 2021).

20. DeVellis, R. Scale Development: Theory and Applications: Theory and Application; Sage: Thousand Okas, CA, USA, 2003.
21. Nunnally, J.; Bernstein, L. Psychometric Theory; McGraw-Hill Higher, INC: New York, NY, USA, 1994.
22. Green, S.; Lissitz, R.; Mulaik, S. Limitations of coefficient alpha as an index of test unidimensionlity. Educ. Psychol. Meas. 1977, 37,

827–838.
23. Spector, P.E. Summated Rating Scale Construction: An Introduction Sage University Papers Series. Quantitative Applications in the Social

Sciences; No. 07-082; Sage Publications, Inc.: Thousand Okas, CA, USA, 1992.
24. Vaske, J.J. Survey Research and Analysis: Applications in Parks, Recreation and Human Dimensions; Venture: State College, PA,

USA, 2008.

http://doi.org/10.1080/17512549.2017.1354780
http://www.housingscience.org/html/publications/pdf/37-4-5.pdf
http://www.housingscience.org/html/publications/pdf/37-4-5.pdf
http://doi.org/10.1007/s12053-019-09798-8
http://doi.org/10.3390/su5114561
http://doi.org/10.1016/j.erss.2015.03.002
http://doi.org/10.1016/j.enpol.2013.10.016
http://doi.org/10.1787/5ixwtlchqqzn-en
http://doi.org/10.1016/j.rser.2016.12.002
https://www.abs.gov.au/statistics/detailed-methodology-information/concepts-sources-methods/survey-income-and-housing-user-guide-australia/latest-release
https://www.abs.gov.au/statistics/detailed-methodology-information/concepts-sources-methods/survey-income-and-housing-user-guide-australia/latest-release
https://www.ato.gov.au/Individuals/Investments-and-assets/Residential-rental-properties/Rental-expenses-to-claim/Rental-expenses-you-can-claim-now/
https://www.ato.gov.au/Individuals/Investments-and-assets/Residential-rental-properties/Rental-expenses-to-claim/Rental-expenses-you-can-claim-now/


Buildings 2023, 13, 954 15 of 15

25. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Education Limited: London,
UK, 2009.

26. Australian Bureau of Statistics (2019–2020). Household Income and Wealth, Australia. Available online: https://www.abs.gov.
au/statistics/economy/finance/household-income-and-wealth-australia/2019-20 (accessed on 7 March 2023).

27. Yong, A.G.; Pearce, S. A Beginner’s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis. Tutor. Quant. Methods
Psychol. 2013, 9, 79–94. [CrossRef]

28. Guadagnoli, E.; Velicer, W.F. Relation to sample size to the stability of component patterns. Psychol. Bull. 1988, 103, 265–275.
[CrossRef]

29. Costello, A.B.; Osborne, J.W. Best practices in exploratory factor analysis: Four recommendations for getting the most from your
analysis. Practical Assessment. Res. Eval. 2005, 10, 7.

30. Field, A. Discovering Statistics Using SPSS: Introducing Statistical Method, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2009.
31. Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Allyn & Bacon: Boston, MA, USA, 2007.
32. Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis for Windows, 3rd ed.; Open Univ.: Maidenhead, UK, 2007.
33. Cattell, R.B. The Scientific Use of Factor Analysis in Behavior and Life Sciences; Plenum: New York, NY, USA, 1978.
34. Hon, C.K.H.; Chan, A.P.C.; Yam, M.C.H. Determining safety climate factors in the repair, maintenance, minor alteration, and

addition sector of Hong Kong. J. Constr. Eng. Manag. ASCE 2013, 139, 519–528.
35. Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2016.
36. Ullman, J.B. Structural equation modeling: Reviewing the basics and moving forward. J. Personal. Assess. 2006, 87, 35–50.
37. Browne, M.W.; Cudeck, R. Alternative ways of assessing modelfit. In Testing Structural Models; Bollen, K.A., Long, J.S., Eds.; Sage:

Newbury Park, CA, USA, 1993; pp. 35–57.
38. Hu, L.T.; Bentler, P.M. Evaluating model fit. In Structural Equation Modeling: Concepts, Issues and Application; Hoyle, R.H., Ed.;

Sage: Thousand Oaks, CA, USA, 1995; pp. 77–99.
39. Diamantopoulos, A.; Siguaw, J.A.; Siguaw, J.A. Introducing LISREL: A Guide for the Uninitiated; Sage: Thousand Oaks, CA, USA, 22

September 2000.
40. Hon, C.K.H.; Chan, A.P.C.; Yam, M.C.H. Relationships between safety climate and safety performance of building repair,

maintenance, minor alteration, and addition (RMAA) works. Saf. Sci. 2014, 65, 10–19.
41. Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial least squares structural equation modeling. In Handbook of Market Research; Springer

International Publishing: Cham, Switzerland, 2017; Volume 26, pp. 1–40.
42. Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res.

1981, 18, 39–50. [CrossRef]
43. Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. Acad. Mark. Sci. 1988, 16, 074–094.
44. Cattaneo, C. Internal and external barriers to energy efficiency: Which role for policy interventions? Energy Effic. 2019, 12,

1293–1311.
45. Sorrell, S.; Mallett, A.; Nye, S. Barriers to Industrial Energy Efficiency: A Literature Review; United Nations Industrial Development

Organization (UNIDO): Vienna, Austria, 2011.
46. Lusambili, A.M.; Tod, A.M.; Homer, C.; Abbott, J.; Cooke, J.; McDaid, K.A. Keeping Warm: Social Connectedness and Technology-

A Case Study of Rotherham, England ‘Technology and Health in the Elderly’. Int. J. Health Wellness Soc. 2011, 1, 27–42.
47. Ugarte, S.; van der Ree, B.; Voogt, M.; Eichhammer, W.; Ordoñez, J.; Reuter, M.; Schlomann, B.; Lloret, P.; Villafafila-Robles, R.

Energy Efficiency for Low-Income Households. 2016. Available online: https://www.europarl.europa.eu/RegData/etudes/
STUD/2016/595339/IPOL_STU(2016)595339_EN.pdf (accessed on 5 December 2021).

48. Davison, R.M.; Martinsons, M.G. Context is king! Considering particularism in research design and reporting. J. Inf. Technol.
2016, 31, 241–249.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.abs.gov.au/statistics/economy/finance/household-income-and-wealth-australia/2019-20
https://www.abs.gov.au/statistics/economy/finance/household-income-and-wealth-australia/2019-20
http://doi.org/10.20982/tqmp.09.2.p079
http://doi.org/10.1037/0033-2909.103.2.265
http://doi.org/10.2307/3151312
https://www.europarl.europa.eu/RegData/etudes/STUD/2016/595339/IPOL_STU(2016)595339_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2016/595339/IPOL_STU(2016)595339_EN.pdf

	Introduction 
	Energy Efficiency Barriers 
	Financial Barriers 
	Information Barriers 
	Decision-Making Barriers 
	Split Incentives Barrier 

	Research Methodology 
	Questionnaire Design 
	Participants and Procedures 
	Data Analysis 

	Analysis Results 
	EFA Results 
	Empirically Tested CFA Model 

	Discussion 
	Financial 
	Decision-Making 
	Split Incentives 
	Information 

	Conclusions, Limitations, and Recommendations 
	Appendix A
	References

