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Abstract: The preparation of recycled concrete aggregate generates a lot of fines, which are obstacles
for implementing the recycled concrete aggregate. In this work, carbonation treatment is applied to
improve the properties of recycled concrete fine, and the influences of carbonated recycled concrete
fine (CRCF) on cement hydration process are evaluated. Both fresh and hardened properties of
the cement paste samples replacing 0 to 30% of the CRCF are measured. The results reveal that
the addition of CRCF obviously accelerates the hydration process of cement, especially during the
early stage, and the initial and final setting times of the cement paste containing 30% CRCF are both
reduced by approximately 25% compared to the control. The CRCF improves the strength gain of
cement, and that influence becomes obvious with longer curing; the relative compressive strength
of cement paste containing 30% CRCF is increased by 18% relative to the control after being cured
for 28 days. At the same time, the early hydration of cement paste is accelerated with the addition
of CRCF and the total hydration heat after 48 h of cement paste is significantly decreased with the
addition of CRCF. Specifically, the total hydration heat after 48 h of cement paste with 30% CRCF is
less than 50% of that with 0% CRCF. Besides that, CRCF consumes CH in cement paste and improves
the pore structure of hardened cement paste. The morphology of hydrated samples shows that the
shape of ettringite formed within the control sample with 0% CRCF is longer than those of the other
ones formed in cement paste with CRCF, and the length decreases as the CRCF contents increase.
In addition, the sample containing 30% CRCF does not show the particles, which means that CRCF
reduces the ettringite forming in hardened paste samples. Thus, the findings from this work provide
a better understanding of the field of waste concrete reuse.

Keywords: carbonated recycled concrete fines; cement hydration; solid-phase composition; microstructure

1. Introduction

The use of recycling materials in concrete has gained attention in recent years due to
its potential to reduce environmental impacts while enhancing the mechanical properties
of concrete. The incorporation of waste materials, such as waste glass, coal bottom ash, and
marble powder, as a replacement for traditional aggregates or cement can contribute to the
sustainable development of the construction industry [1–6]. In addition, several researchers
have investigated the effects of incorporating waste materials such as waste lathe scraps,
recycled steel wires from waste tires, rubber tree seed shells, dispersed coconut fibers, and
recycled PET into concrete on its properties [7–13]. The results have demonstrated that the
incorporation of these recycled materials can not only improve the mechanical properties
of concrete but also enable the recycling of these waste materials, thereby reducing their
negative impact on the environment [14,15]. Therefore, it is important to explore and
promote the use of recycling materials in concrete production for the development of
sustainable and eco-friendly construction practices.

The demolition and upgrading of infrastructure will generate a lot of construction
waste, it is reported that waste concrete makes up about 32% to 75% of the construction
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waste [16]. Thus, the reutilization of waste concrete not only provides resources for con-
struction materials, but also solves the problems of environment pollution [17]. Generally,
it is considered that the application of construction waste as recycled aggregate is a po-
tential way for the reutilization of waste concrete. However, high amounts of fines were
produced during the process of recycled concrete aggregate production, such as crushing,
grinding, and sieving. The produced fines generally constitute about 15% of the crushed
concrete [18,19]. The reutilization of these recycled fines is an obstacle of reusing the waste
concrete. It has been investigated that the application of the recycled concrete fine (RCF) as
fine aggregate or filler in concrete may either reduce the mechanical properties of recycled
concrete or introduce air pollution [20,21].

Generally, recycled concrete can be divided into three types according to particle size:
Recycled Concrete Fine (RCF), Recycled Fine Aggregate (RFA), and Recycled Coarse Ag-
gregate (RCA). The particle size of RCF is less than 0.15 mm and contains a large amount of
hardened cement and unhydrated cement, which has a certain hydration reactivity [22–26].
Due to the small particle size and high calcium content in RCF, the application of RCF as
supplementary cementitious materials has been widely considered. However, the hydration
reactivity of RCF is much lower than those of Portland cement and other supplementary ce-
mentitious materials. Moreover, the porous structure of RCF increases the water adsorption
of the RCF-added system, which results in a high-water requirement for recycled concrete
with RCF to achieve sufficient workability [27,28].

In order to decrease the effects of recycled concrete aggregate and RCF on the prop-
erties of recycle aggregate concrete or concrete prepared with RCF and expand the scope
of application, different approaches have been proposed for the treatment of recycled
aggregate and RCF. Currently, researchers using carbon dioxide to treat recycled concrete
found that the properties of carbonated recycled concrete were enhanced compared with
the untreated one and this approach has a CO2 capture potential [29–31]. Some researchers
found that the modified carbonation process enhanced the micro-structure and surface
texture of the RCA, resulting in improved properties, such as higher compressive strength,
lower water absorption, and better resistance to freezing and thawing cycles [32,33]. The
main component of recycled concrete that can be carbonated is the adhesive paste, which
consists of calcium silica hydrate (C-S-H), calcium hydroxide (CH), calcium sulfoaluminate
hydrates, and unhydrated clinker grains [34]. The reactions between CO2 and CH and
C-S-H in hardened paste are the primary carbonation reactions, and the reaction products
mainly include CaCO3 and silica gel [35–37]. Nevertheless, the primary components of
RCF consist of crushed aggregate particles and partially hydrated cement paste, which
include both unhydrated cement grains and hydrated products of cement [21]. Therefore,
RCF can be carbonated as well.

Thus, it is necessary to investigate the influences of carbonated recycled concrete
fine (CRCF) on cement hydration, the development of pore structure, and the mechanical
properties of cement-based materials, which gives the feasibility of using the CRCF as
an additive in recycled concrete. The aim of this work is to investigate the influences of
different CRCF contents on both the fresh property and hardened property of cement paste,
which indicates the interactions between CRCF and cement particles.

2. Raw Materials and Testing Methods
2.1. Raw Materials

In this study, recycled concrete fine (RCF) was obtained by grinding a hardened cement
paste that was cured in 80 ◦C hot water for 30 days. The hardened cement paste had a
water-to-binder (W/B) ratio of 0.35 and it was placed in an oven at 100 ◦C for two days
before grinding. The 28-day compressive strength of the hardened paste sample was
53.6 MPa. The oven-dried hardened cement paste was placed in a ball grinder machine for
about 30 min for grinding. The carbonated recycled concrete fines are shown in Figure 1.
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Figure 1. Carbonated recycled concrete fine.

Ordinary Portland cement (P·I 42.5) was applied in this study and the chemical
composition of the cement is summarized in Table 1.

Table 1. Chemical composition of cement.

Composition CaO Al2O3 MgO Fe2O3 SiO2 SO3

Content (%) 65.4 5.4 3.4 2.8 21.0 2.0

The particle size of the carbonated/uncarbonated RCF and ordinary Portland cement
was measured using laser particle size analysis, as shown in Figure 2, and the particle size
distributions of the raw materials are shown in Figure 3. Thermogravimetric analyses were
conducted on both carbonated/uncarbonated RCF to identify the composition change dur-
ing carbonation, as shown in Figure 4. The characteristic peak corresponding to Ca(OH)2
disappeared for the carbonated RCF, which was associated with the weight loss from 410
to 430 ◦C on the TG curve. Based on the weight loss calculation, the Ca(OH)2 content in the
uncarbonated RCF was equal to 15.7%.
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2.2. Testing Methods
2.2.1. Carbonation

Recycled concrete fine (RCF) was placed in a carbonation chamber to carbonate for
7 days. The accelerated carbonation test was conducted in accordance with the Chinese
standard GB/T 11974-1997 with the carbonation condition of T = 20 ± 2 ◦C, RH = 60 ± 5%,
and CO2 concentration = 20 ± 2%.

2.2.2. Water Requirement and Setting Time

The water requirement of the paste samples containing 0% to 30% carbonated RCF
with a 5% interval was determined as the paste samples reached the standard consistency.
Tests were conducted in accordance with the Chinese standard GB/T 1346-2011. The
standard consistency is obtained when the 10 mm needle of the Vicat apparatus penetrates
34 ± 1 mm into the paste. The water requirement (P) of the cement mixture equals the mass
of mixing water divided by the mass of cement.

The setting time indicates the cement paste solidification in the early stage [34]. Paste
samples were placed in a control curing room with RH > 90% and T = 20 after the water
requirement test. A 1.13 ± 0.05 mm diameter needle attached to a 300 ± 1 g rod was
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allowed to penetrate into the pastes every 15 min starting 30 min after molding. The initial
setting time referred to the time of the penetration depth of the needle reaching 36 ± 1 mm.
The time from the initial contact of cement and water until the penetration of the needle
did not leave any indent on the cement paste surface, which was reported as the final
setting time.

2.2.3. Flowability

The flowability of fresh paste samples was tested in accordance with the Chinese
standard GB/T 8077-2000. A mini cone, which had a base diameter of 60 mm, a top
diameter of 36 mm, and a height of 60 mm, was utilized in this work to characterize the
flowability of the paste samples.

2.2.4. Compression Test

Fresh mortar mixtures, which were prepared with a W/B ratio of 0.35, were cast into
40 × 40 × 40 mm cubic molds [38]. Samples were demolded after 24 h, and they were
then placed in a curing room with T = 20 ± 2 ◦C and RH = 100% for 3 d, 7 d, and 28 d of
curing since the mixing time for the compressive strength test. The test process is shown in
Figure 5.
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2.2.5. Calorimetry

An isothermal calorimeter was utilized in this work to investigate the influences of
CRCF on the hydration heat release during cement hydration. Samples containing 0% to
30% with a 5% interval of the CRCF were prepared, and the W/B ratio of 0.35 was selected
in this work. The first 48 h measurements of each sample were analyzed.

2.2.6. Thermogravimetric Analysis (TGA)

About 10 mg of hardened paste samples were obtained from the center part of com-
pression test specimens and grinded into powders with a diameter less than 0.08 mm. The
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grinded powders were placed into a 100 ◦C oven until constant mass before conducting
the thermogravimetric analysis. The temperature change was set at a rate of 10 ◦C/min
from room temperature to 1000 ◦C. Both thermal gravimetric (TG) and differential scan-
ning calorimetry (DSC) versus temperature curves were obtained for each sample. The
thermogravimetric analysis process is shown in Figure 6.
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2.2.7. Porosity and Pore Size Distribution of Hardened Pastes

The porosity and pore size distribution of the paste samples were characterized using
a mercury intrusion porosimeter (MIP) with a maximum mercury intrusion pressure of
210 MPa. The paste particles with a diameter around 0.5 cm were obtained from the cubic
specimens for the compression test. The particle samples were vacuum-dried at 60 ◦C for
24 h before the MIP test. The pore diameter d at an applied pressure P was calculated using
d = −4γ cos θ/P, where γ = 0.483 Mm−1 is the surface tension of mercury; θ = 140◦ is the
contact angle between mercury and the pore wall [39].

2.2.8. Microstructure Characterization

The paste particles with 1 cm3 size were obtained from the middle part of the
compressive-tested specimen and applied for the environmental scanning electron mi-
croscope (ESEM) measurement. The size and morphology and other hydration products
can be determined at a given stage.

3. Results and Discussion

The effects of CRCF contents on the hydration heat release, mechanical property,
solid-phase composition, and microstructure of the cement paste are discussed below.

3.1. Water Requirement and Setting Time

The water requirement of the cement paste with different replacement levels of CRCF
to cement is shown in Figure 7. It can be seen from the figure that the water requirement of
cement paste generally increases with the increase in replacement level of CRCF between
0% and 15%, and no significant differences are noticed with a CRCF content above 15%.
The addition of CRCF generally changes the particle packing mode of the cement particles,
which may change the water requirement in the pastes [40]. Moreover, the porous structure
of recycled fines generally enhances the water adsorption of CRCF and results in the
increased the value of the standard water requirement. However, both initial and final
setting time decrease as the CRCF content increases (Figure 8). The addition of CRCF
accelerates the hydration of cement, which consumes water and shortens the setting time.
Moreover, the increased CRCF content reduces the cement content in the paste, which
hydrates the cement grains more efficiently and also contributes to the shortened setting
time of the paste samples. The results agree with those of similar studies [41,42].
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3.2. Flowability

The influences of CRCF on the flowability of fresh cement paste were measured
immediately after mixing. It can be seen that the flowability of fresh cement paste slightly
decreases as the CRCF increases (Figure 9). It has been reported that the flowability of
cement-based materials is affected by the W/B ratio, water evaporation rates, and hydration
rates [43]. As the W/B ratio and water evaporation rates are the same in this work, it can
be concluded that the decreased flowability is caused by the accelerated hydration rate.
However, this effect is not significant when the CRCF dosage is lower than 15%.
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3.3. Hydration Heat

The heat evolution of cement paste specimens with different CRCF contents are shown
in Figure 10, and the first heat flow peaks are observed about ten minutes after mixing with
water. The first heat flow peak increases as the CRCF dosage increases. The carbonation
product CaCO3 in CRCF can rapidly react with C3A and C3S upon mixing and form
monocarbonate hydrate (Ca4Al2O6 •CO3 •11H2O) and carbosilicate hydrate (Ca7(Si6O18)
(CO3) •2H2O), respectively [44]. Moreover, the calcium carbonate particles can also be
nucleation sites and accelerate the hydration of cement, especially for the hydration of C3A
and C3S, which can be confirmed by the larger heat release peak around 10 min after the
mixing. The second heat flow peaks appear about 12 h after mixing.
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The cumulated hydration heat curves of cement paste specimens with different re-
placement levels of CRCF are shown in Figure 11. It can also be clearly seen from the
figure that the early hydration of cement paste is accelerated with the addition of CRCF.
However, due to the reduced cement content, the total hydration heat after 48 h of cement
paste is significantly decreased with the addition of CRCF. The results obtained in this
study suggest that CRCF can effectively accelerate the early hydration rate of cement-based
materials while the total hydration reaction and the content of hydration products are
reduced. The decreased total hydration product can bring negative effects to the pore
structure and mechanical properties of the cement paste with CRCF, which is discussed in
the following sections [45–47].
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To further explore the influences of CRCF on cement hydration, the Krstulović–Dabić
kinetics model was utilized in this research, which is the widely used hydration kinetic
model [48,49]. The model divides the hydration process into three stages according to
the hypothesis of nucleation and growth of hydration products and cement particle dis-
solution [50]. The total heat release of cement can be calculated based on the exothermic
condition measured during the cement hydration process, and the cement hydration degree
α and cement hydration rate dα/dt in different hydration periods can also be obtained [51].
Thus, the dynamic parameters can be obtained by substituting α and dα/dt into the
Krstulović–Dabić model. After that, the relationship between the hydration rate and hy-
dration degree at each stage can be obtained by substituting the dynamic parameters into
the differential equations. Figure 12 shows the relationship between the hydration rate
and hydration degree of the cement paste with different CRCF contents in each stage. The
intersection of the simulated curves of F1(α) and F3(α) with F2(α) (α1 and α2) represents
the turning point of the dominant factor from nucleation and crystal growth (NG) to inter-
actions at phase boundaries (I) and from I to diffusion (D), respectively. The value of α1
in the figure reflects the quality of nucleation and growth of hydration products. It can be
seen from the figures that the value of α1 gradually increases with CRCF contents, which
shows that the addition of CRCF can improve the hydration degree between the period of
NG and I. However, such an influence is not that obvious compared with the influence of
CRCF on α2, which indicates that CRCF extends the NG and I procedure and postpones the
D procedure during cement hydration. In that case, CRCF improves the cement samples to
form a homogeneous microstructure during hydration.
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Figure 12. Relationships between hydration degree and hydration rate for paste samples with various
CRCF contents.

The difference (∆α) between α1 and α2 represents the degree of phase boundary
reaction, and a greater ∆α indicates a better phase boundary reaction. The relationship
between ∆α and the CRCF content is plotted in Figure 13. It can be noted from the figure
that ∆α gradually increases with the CRCF content, which suggests that CRCF improves
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the cement phase boundary. Nevertheless, such an influence is reduced as the CRCF dosage
increases. In the three stages of the hydration, both NG and I consist of fast hydration rates,
which are significantly faster than the D process. Due to the influences of CRCF, both NG
and I processes are accelerated, which also reveals that the addition of CRCF accelerates
cement hydration and increases the heat release during the early stage.
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3.4. Compressive Strength

The compressive strength of cement pastes after 3, 7, and 28 days of curing are shown
in Figure 14, and three samples were tested for each mix. The compressive strength of
the hardened cement paste gradually decreases as the CRCF content increases for all
three curing period samples, except for samples containing 20% CRCF. However, the
decrease in compressive strength with the addition of CRCF is not that obvious. For cement
paste with 30% CRCF, the 28-day compressive strength is just 18.1% lower than that of
cement paste with 0% CRCF. With the increase in CRCF content, the decrease in cement
content results in the decrease in hydration products and affects the pore structure of
cement paste. By dividing the compressive strength by the cement content, we can obtain
the relative compressive strength. The relative compression strength per cement is shown
in Figure 15, and it can be noted that the relative compressive strength increases as the
CRCF content increases, which can be attributed to the accelerated cement hydration due
to the dilution effects from the replacement of CRCF. The increase in relative compressive
strength with CRCF content is more obvious for samples with longer curing age. This
indicates that the CRCF contributes little to the compressive strength at the early curing
period, and the influence of CRCF in strength gain of the paste becomes stronger with
longer curing time. The accelerated cement hydration may come from the reaction between
the carbonation products of RCF and the cement hydration products, which results in the
formation of the secondary hydration products. The main components of CRCF are calcite
and aragonite [52], and these components can either promote the cement hydration and
the growth of hydration products by the nucleation effects or act as a filler in the paste
samples [53–55]. The influence of adding CRCF on the compressive strength of paste is
similar to adding fly ash in the paste system [56,57].
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3.5. Thermogravimetric Analysis (TGA)

The weight loss versus temperature relationships for paste samples that were cured
for 3, 7, and 28 days during the TGA test are shown in Figure 16. The Ca(OH)2 (CH) in
the paste sample can be roughly quantified on the basis of the mass loss between 450 and
550 ◦C [54]. The CH content can be calculated based on the following equation [35]:

Ca(OH)2 → CaO + H2O, and CH% = 4.11 dh

where dh is the mass loss of CH that can be estimated based on the TG data. Figure 17 shows
the CH content of cement paste with different CRCF contents, and it clearly indicates that
the CH content (%wt per gram of cement) gradually decreases with the increase in CRCF
content. Generally, the replacement of CRCF to cement can generally enhance the hydration
of cement due to the dilution effect. However, it can be obtained from the experimental
results that CRCF in cement paste can consume CH in the system during cement hydration.
The unhydrated cement within CRCF can react with CH and produce extra C-S-H gel with
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the pozzolanic reaction. With the extended curing age, the continuous cement hydration
results in a gradual increase in CH content.
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Figure 17. CH content in relation to CRCF contents.

3.6. Pore Size Distribution of Hardened Pastes

The hardened cement paste particle with a diameter around 0.5 cm was oven-dried
under vacuum conditions before conducting the MIP test. As shown in Figure 18, the
cumulative porosities of cement paste generally decrease as the CRCF content increases,
except for the sample containing 10% CRCF. Cement pastes with 30% CRCF have the
lowest porosity, which is about 15% lower than that of the cement paste without CRCF
(Figure 19). The carbonation products of RCF are CaCO3 and silica gel, which can either fill
the voids of hardened cement paste or participate in cement hydration. The latter can be
confirmed by the decreased CH content with the increase in CRCF content as shown by
DTG analysis [58].
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Figure 19. Total porosity of hardened cement pastes in relation to CRCF content.

However, it can also be seen from Figure 17 that the addition of CRCF increases
the percentage of large pores within the cement paste. The increase in CRCF content
decreases the total cement content in the system, which can lead to a decrease in total
formed hydration products. The filler effects of CRCF effectively decreases the small pore
volume, while the decreased hydration products result in the increase in the total volume
of larger pores. The increased volume of large pores may be the reason for the decreased
compressive strength of cement paste with the increase in CRCF content, as shown in
Section 3.4 [59–61].

3.7. Morphology

Figures 20–23 show the morphology of the 7-day-cured cement paste with different
CRCF contents at 2000× and 5000× magnitude. The shape of ettringite formed within
the control sample with 0% CRCF is longer than those of the other ones formed in cement
paste with CRCF, and the length decreases as the CRCF contents increase. The SEM images
of the sample containing 30% CRCF do not show the “needle-like” particles, and such an
observation indicates that CRCF can react with ettringite. It is noteworthy that the sample
containing 30% CRCF shows a denser and less porous microstructure than the control
sample, which is consistent with the result from MIP measurements [62,63].
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Figure 20. SEM images of 7-day-cured controlled sample: (A) 2000×; (B) 5000×.
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4. Conclusions

This work investigated the influences of carbonated recycled concrete fine (CRCF)
on cement hydration as the CRCF was added in cement paste. Both fresh properties and
hardened properties of the cement paste with different CRCF contents were measured.
Based on the experimental results, the following conclusions can be drawn:
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(1) The CRCF reduces the setting time and flowability of fresh paste, and the initial
and final setting times of the cement paste containing 30% CRCF both reduce by
approximately 25% compared to the control. However, CRCF increases the water
requirement in general. This indicates that the CRCF can accelerate cement hydration
after mixing with fresh paste, which can be revealed from the flowability measurement
as well.

(2) The compressive strength of hardened paste decreases as the CRCF content increases
due to the reduced cement content in samples. However, the relative compressive
strength per cement increases as the CRCF content increases, except for the 3-day-
cured sample with 15% CRCF, and the relative compressive strength of cement slurry
containing 30% CRCF increases by 18% relative to the control after being cured for
28 days. The influence of CRCF on the strength gain of cement is similar to fly ash.

(3) The hydration heat analysis of cement samples with different CRCF dosages indicate
that CRCF can reduce the total cement hydration heat and improve NG and I processes
at the same time, which accelerates the cement hydration rate and increases the early
hydration heat release.

(4) CH in the hydrated paste samples decreases as CRCF increases, which means that
CRCF consumes CH in the cement paste. This indicates that the carbonated RF may
introduce a pozzolanic reaction when it is mixed with cement paste.

(5) The porosity of the hardened paste samples generally deceases as the CRCF con-
tent increases, which illustrates that adding CRCF improves the pore structure of
cement paste.

(6) The SEM images show that the ettringite formed in the hydrated paste becomes
shorter and smaller as the CRCF content increases. Thus, CRCF indeed changes the
morphology of hydrated cement paste.

This research converts the powder waste generated during the crushing process
of recycled aggregates into a valuable resource, which holds significant importance for
enhancing the utilization efficiency of recycled aggregates and promoting sustainable
development.
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