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Abstract: Due to factors such as casting, mold making, and construction errors, the actual size of the
bridge structure will inevitably deviate from the designed size and dimension, and the amount of
deviation between the two volumes is generally random and the location of the deviation is not fixed.
However, this phenomenon that occurs in the actual practice has not been paid enough attention
within existing studies. From a theoretical point of view, the apparent size of concrete will directly
affect the cross-sectional stiffness, especially for statically indeterminate structures. This effect will be
further reflected in the internal force and stress distribution of the structure. In addition, the variation
of the poured volume of the bridge superstructure can also influence the dead-load effect of the
bridge structure. Therefore, the influence of pouring concrete volume deviation (PCVD) on the cross-
sectional stiffness of large-span continuous reinforced concrete rigid-frame (CRCR) bridges was first
stressed and investigated in this paper. Field data of PCVD were monitored by measuring demolished
sections with tools that ensure accuracy, and a sensitivity analysis was conducted to analyze the effect
of PCVD on the cross-sectional stiffness at different locations. Statistical analysis of the measured
data concluded that PCVD has a significant influence on the internal-force distribution and structural
stiffness of the bridge, up to 30%. Finally, a theoretical method that considers the influence of PCVD
was proposed based on the field monitoring data and the statistical analysis results.

Keywords: volume deviation; cross-sectional stiffness; cantilever casting; continuous rigid-frame bridge

1. Introduction

In recent decades, continuous rigid-frame bridges have been widely used in the
world’s infrastructure construction, especially in China. Figure 1 shows the trend and num-
ber of continuous reinforced concrete rigid-frame (CRCR) bridges constructed in China [1].
CRCR bridges have been built in large numbers, benefiting from many advantages: (i) more
rigidity of the structure; (ii) fewer moments in the deck being partly transferred to the
supporting members; and (iii) no bridge bearings are required to be set since the pier and
the beam are integrated as one solid structure. At the moment, a large number of studies
have been conducted on the mechanical properties and behavior prediction of continuous
rigid-frame bridges. The influence factors, such as shear lag [2,3], shear deformation [4–6],
temperature stress [7,8], shrinkage, and creep [9], are gradually considered in the mechan-
ical analysis of CRCR bridge, and the cracking and the long-time deflection are of great
concern [10,11]. The manual calculation based on formulas is mainly used for theoretical
deduction and simple inspection [12,13], and its application in complex structure design
and verification is limited. The finite-element method has become an important tool for
structural analysis. It has been a research hotspot to reflect the actual performance of
the bridge and predict its future behavior by considering the influence of different action
factors and updating the finite-element model with measured data [14–19]. This paper
shows that the influence of volume deviation caused by construction methods on bridges
is not negligible.
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Due to the factors, such as casting mold making and construction operation errors, 
the bridge structure, inevitably, has the issue of pouring concrete volume deviation 
(PCVD), which is random in the amount and position. The distribution characteristics of 
PCVD are unclear, which brings uncertainty to the internal-force calculation and service 
performance analysis of large-span CRCR bridges. At present, only a few existing studies 
pay attention to the volume deviation of components. Mutashar R. et al. [20] analyzed the 
reasons for the deterioration of concrete at the lower edge of hinge joints of hollow-plate 
small-box girders and believed that the sudden change of contact stress caused by dimen-
sional variation was one of the important reasons. Holicky et al. [21] described the influ-
ence of volume deviation on the structure from the design point of view but did not ex-
plain its causes. Luo et al. [22] investigated the PCVD of prefabricated concrete compo-
nents and found that the deviation of prefabricated components was very small, while the 
PCVD of the cantilever-casting method was unknown. Theoretically, the influence of 
PCVD on the superstructure of CRCR bridge is mainly reflected in two aspects: one is that 
the pouring volume is different from the design resulting in uneven dead-load distribu-
tion, and the other is that the volume deviation of different parts of the structure results 
in the inconsistency of structural stiffness. Existing studies cannot explain the effect of 
PCVD on the service performance of CRCR bridges from the above perspectives. 

Currently, hardly any measured data of PCVD about CRCR bridges are available. 
The detection of PCVD mainly adopts the coring sampling measurement method and 
non-contact measurement method [23,24]. The coring sampling method is somewhat de-
structive to the structure. Drilling coring will weaken the section and cause stress redis-
tribution. Moreover, the method can only be used for typical section checks, which is dif-
ficult to reflect the overall condition of the bridge due to the limited feasible sampling 
locations of the bridge. Non-contact measurement mostly adopts a three-dimensional la-
ser point cloud, which is limited by the occlusion of the test perspective, the correction of 
position coordinates, as well as the test-environment conditions. In practice, it has the 
shortcomings of low-test efficiency and difficulty to distinguish the main structure from 
the auxiliary facilities and has not been widely used in the field of bridge dimension iden-
tification. In the current AASHTO [25] specification, for structural design, the dead-load 
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in China [1].

Due to the factors, such as casting mold making and construction operation errors, the
bridge structure, inevitably, has the issue of pouring concrete volume deviation (PCVD),
which is random in the amount and position. The distribution characteristics of PCVD are
unclear, which brings uncertainty to the internal-force calculation and service performance
analysis of large-span CRCR bridges. At present, only a few existing studies pay attention
to the volume deviation of components. Mutashar R. et al. [20] analyzed the reasons for the
deterioration of concrete at the lower edge of hinge joints of hollow-plate small-box girders
and believed that the sudden change of contact stress caused by dimensional variation was
one of the important reasons. Holicky et al. [21] described the influence of volume deviation
on the structure from the design point of view but did not explain its causes. Luo et al. [22]
investigated the PCVD of prefabricated concrete components and found that the deviation
of prefabricated components was very small, while the PCVD of the cantilever-casting
method was unknown. Theoretically, the influence of PCVD on the superstructure of CRCR
bridge is mainly reflected in two aspects: one is that the pouring volume is different from
the design resulting in uneven dead-load distribution, and the other is that the volume
deviation of different parts of the structure results in the inconsistency of structural stiffness.
Existing studies cannot explain the effect of PCVD on the service performance of CRCR
bridges from the above perspectives.

Currently, hardly any measured data of PCVD about CRCR bridges are available. The
detection of PCVD mainly adopts the coring sampling measurement method and non-
contact measurement method [23,24]. The coring sampling method is somewhat destructive
to the structure. Drilling coring will weaken the section and cause stress redistribution.
Moreover, the method can only be used for typical section checks, which is difficult to
reflect the overall condition of the bridge due to the limited feasible sampling locations
of the bridge. Non-contact measurement mostly adopts a three-dimensional laser point
cloud, which is limited by the occlusion of the test perspective, the correction of position
coordinates, as well as the test-environment conditions. In practice, it has the shortcomings
of low-test efficiency and difficulty to distinguish the main structure from the auxiliary
facilities and has not been widely used in the field of bridge dimension identification. In
the current AASHTO [25] specification, for structural design, the dead-load coefficient is
1.25, and the Chinese specification [26] considers the dead-load coefficient to be 1.2 when
it is unfavorable to the structure. The abovementioned specifications only consider the
coefficient that increases the dead load in the calculation and have not yet considered the
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influence of volume deviation at different parts on the stiffness of the structure, which
results in a conservative design.

In this paper, a finite element model was established to compare and analyze the
structural response under dead load and live load, and the influence of PCVD at differ-
ent positions on the performance of CRCR bridge. Combined with the superstructure
demolition and replacement project of four CRCR bridges with main span length of more
than 70 m, the concrete pouring condition of different sections of different parts of the
continuous rigid-frame bridge was obtained by measuring section by section, and the
distribution characteristics of the PCVD of the continuous rigid-frame bridge was analyzed.
The influence of volume deviation on the stiffness of the bridge was analyzed, and the
correction coefficient considering the change of dead load and stiffness was proposed,
which is helpful for the refined design of future bridges and the internal-force calculation
of bridges in service.

2. Analysis of Influence of PCVD on Performance of CRCR Bridge
2.1. General

The concrete casting and pouring deviation of the superstructure of a continuous
rigid-frame bridge will lead to the variation in dead load and stiffness. The degree of
dead-load variation is affected by the pouring deviation value. While the degree of stiffness
variation is not only related to the pouring deviation value but also significantly related
to the location of the deviation. It is well-known that the farther the cross-section fiber is
from the centroid, the greater the contribution of the fiber to the cross-section moment of
inertia. A finite element model of an equal-section box girder was established to verify
the effect of stiffness variation and internal-force distribution caused by the same ratio of
pouring volume deviation in different parts of the top slab, web, and bottom slab. The
finite element analysis software ABAQUS is adopted within this paper

2.2. Model Method
2.2.1. Geometric Form

Most long-span continuous rigid-frame bridges adopt beams that vary in height along
the length of the bridge span, and the design value of the height–span ratio is generally
between 1/12 and 1/25. In this model, the height–span ratio is 1/25 [1], which is also the
cross-section form of the main span of bridge B in the Section 3 case study. As shown in
Figure 2, in order to facilitate the analysis of the influence of sectional PCVD on the overall
performance, the cross-section form is properly simplified and the slabs with haunched
ribs and cross slope are eliminated. The main span model with an equivalent equal section
is established as shown in Figure 3, with a span of 100 m. This model only considers the
contribution of the longitudinal prestressed steel strand to the stiffness of the structure,
which is accurate enough to analyze the influence of the pouring volume deviation.
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2.2.2. Material Models

In actual bridge operation, the material is mainly in an elastic working state, and
the elastic constitutive model is often established in the analysis [12,27]. Based on this
fact, this model ignores the influence of material nonlinearity and adopts a linear elastic
constitutive model for both concrete and reinforcement. Concrete modulus of elasticity
E = 3.45 × 1010 MPa, Poisson’s ratio µ = 0.2, ρ = 2400 kg/m3, prestressing tendons
modulus of elasticity E = 2.07× 1011 MPa, Poisson’s ratio µ = 0.3, density ρ = 7800 kg/m3.

2.2.3. Loading and Boundary Conditions

This model is a single-span model, in order to simulate the actual working condition
of the rigid-frame bridge, the consolidation boundary conditions are adopted at both ends
of the box girder for bending moment transfer. In addition, the section of the end is fixed to
the surface of the consolidated rigid body in order to prevent stress concentration at the
end joints.

Load setting includes dead load and live load, and the gravitational acceleration is
set as g = 9.8 m/s2. The bridge has 4 traffic lanes and the loading form of vehicle loads,
according to the Chinese design specification [28], in each lane is shown in Figure 4. The
purpose of referring to the specification is to ensure that the bridge produces a live-load
response that is as close to the actual situation as possible, so the relevant safety factors
are not considered. In order to maximize the mid-span deflection, a concentrated load
Pk = 360 kN is applied to the mid-span on all 4 lanes, and a uniform load qk =10.5 kN/m is
distributed over the entire lane.
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2.2.4. Element Selection and Mesh

The concrete beam adopts the three-dimensional solid element C3D8R, which is an
8-node hexahedral unit and adopts linear reduction integration. Solid elements can provide
the calculation results of three-dimensional stress and more realistically reflect the actual
structural response of box girders, with an acceptable computational cost. Along the
longitudinal direction, the element length is 50 cm. The mesh discretization of the section
is shown in Figure 5. Along the beam height, there are 6 elements of size 54 cm each on the
web. The computational efficiency is guaranteed and the analysis accuracy is ensured by
this meshing method.
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2.2.5. Comparison Model Settings

In order to compare the influence of casting volume deviation at different positions on
the performance, a benchmark model and four comparison models are established. The
descriptions are shown in Table 1. The section area of the four comparison models is 10%
larger than that of the benchmark model. Since the actual bridge pouring deviation mostly
comes from the thickness deviation of each part, and the dimensional deviation of top slab
width, bottom slab width, and beam height is relatively small, the principle of increasing
the model section area is as follows: only the thickness of each part is changed, and the
relative position of the centroid of each part does not change after increasing the area.

Table 1. Detailed description of comparison models and benchmark model.

Model No. Description Increase Method Legend: Red Is the Outline of the Increasing Area

I Benchmark model No increase.
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2.2.6. Operating Condition Setting

In order to examine the influence of the casting volume error of the superstructure
under different loads, three working conditions are defined: dead load only, live load only,
and dead load and live load acting together. The deflection and internal force under live
load can simply reflect the stiffness effect caused by the casting volume deviation, the
dead-load working condition reflects the macroscopic superposition effect of self-weight
constant load change and stiffness change, and the combination of dead-load and live-load
working condition demonstrates the performance of the bridge in daily operation.

2.3. Model Calculation Result

The extreme values of deflection and internal force under each working condition
are calculated and the results are shown in Table 2. Under the live load-only condition,
the deflection of model III with the increase of top slab thickness is the smallest and the
most obvious in stiffness improvement, the deflection is reduced by 40.2%. The stiffness of
model II increased significantly due to the increase in the weighted area of each part, whose
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mid-span deflection is reduced by 18.8%. The increase in web thickness also leads to an
increase in stiffness, the deflection γIII decreased by 10.6% compared with γI. The increase
in bottom-slab thickness has little influence on the stiffness, the deflection decreases by
only 1.9%.

Table 2. Mid-span deflections of box girder under different working conditions.

Working
Conditions Deflection γ (mm) % Ratio of Comparative Model Deflection to

Benchmark Model

γI γII γIII γIV γV
γII
γI

γIII
γI

γIV
γI

γV
γI

Dead load −136.7 −126.7 −108.9 −123.5 −137.6 92.7% 79.7% 90.3% 100.7%
Live load −40.7 −33.0 −24.3 −36.4 −39.9 81.2% 59.8% 89.4% 98.1%

Combined −177.3 −159.7 −133.2 −159.8 −177.5 90.1% 75.1% 90.1% 100.1%

Under the dead load-only condition, the deflection of model V is slightly larger than
that of the benchmark model, and the deflection of the other models is significantly reduced
compared with the benchmark model, indicating that the overall influence of the increase
in volume on the models is the increase in the stiffness, among which the increase in the
volume of the top slab leads to the most obvious stiffness enhancement. The overall effect
of the increase in bottom slab volume is not obvious.

For the casting volume deviation, only considering the change of dead load, the
deflection must be increased. In this model, the variation of dead load and stiffness caused
by pouring volume deviation are considered at the same time, and the mid-span deflection
response is reduced to different degrees. It can be seen that stiffness change caused by
pouring volume deviation cannot be ignored. This result is consistent with the general
beam theory. For Timoshenko beams, the normal stress of cross section is only related to
the calculated position, external force, and cross-section moment of inertia. The further any
fiber of the cross-section is from the neutral axis, the greater the contribution of this area to
the section moment of inertia [29].

The actual large-span CRCR bridge adopts the form of a variable section, and the
height–span ratio and thick–span ratio are related to the position along the span direc-
tion, which is different from this model. Based on the actual case, the following paper
introduces the distribution characteristics of pouring volume deviation and analyzes the
relationship between the pouring deviation of each part of the section and bridge stiffness
by establishing a mathematical model.

3. Case Study
3.1. Engineering Background

Bridge A is a four-span continuous rigid-frame bridge with a span arrangement of
59 m + 105 m + 105 m + 59 m. Bridge B is a three-span continuous rigid-frame bridge
with a span arrangement of 39 m + 79 m + 39 m, both of which were built in 1996. The
section layout and design control dimensions of the two bridges are shown in Figure 6.
The cross-section height varies and follows a quadratic curve along the longitudinal bridge
direction. As existing indirect measurement methods for operating bridges contains a
certain amount of error, with the help of the complete section dimension data obtained
after the demolition of the bridge, the indirect measurement error can be avoided, making
the measurement data result more accurate and more convincing.
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Figure 6. Design cross-section layout (unit: cm). (a) Bridge A, (b) Bridge B.

The demolition of the bridge superstructure adopts the opposite sequence of construc-
tion and installation, which is called the “inverted demolition method”. Due to severe
defects and long-lasting deflection of the two CRCR bridges, for the sake of bridge safety,
the superstructure of the two bridges has been dismantled in 2022. After segment 12#
of bridge A was released, each beam segment was symmetrically cut and dismantled. A
detailed investigation was carried out on the generated cutting surface and the geometric
properties of the sections were calculated according to the measured parameters, and
compared with the design value to determine the amount of deviation.

There are 136 segments in the double span of bridge A, and 104 segments have been
checked. Bridge B has 76 segments, 75 of which have been checked. As shown in Figure 7,
shaded sections are completed checks.
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Figure 7. Cross-section inspection status. (The gray block represents the checked section. The number
on the beam represents the segment number. The span (·)# is the span number). (a) Bridge A,
(b) Bridge B.

3.2. Measuring Approach

According to the section characteristics of each part, 21 measuring points that reflect
the thickness variation characteristics of the box girder are set up. The specific arrangement
of measuring points is shown in Table 3 and Figure 8.
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Table 3. Notations of sectional dimension and measurement position.

Web Top Slab

W1 Height of left web T1 Thickness of left top slab near slabs with
haunched ribs

W2 Height of right web T2 Thickness at the inflection point of left top slab
W3 Thickness of top of left web T3 Thickness at the inflection point of right top slab

W4 Thickness of bottom of left web T4 Thickness of right top slab near slabs with
haunched ribs

W5 Thickness of top of right web T5 Width between the inflection point of top slab
W6 Thickness of bottom of right web

Flange Bottom slab

F1 Thickness at the edge of left flange B1 Thickness of left bottom slab near slabs with
haunched ribs

F2 Thickness of left flange near slabs with
haunched ribs B2 Thickness of middle of bottom slab

F3 Thickness of right flange near slabs with
haunched ribs B3 Thickness of right bottom slab near slabs with

haunched ribs

F4 Thickness at the edge of right flange B4 Width between the inflection point of
bottom slab

F5 width of top slab B5 Width of bottom slabs outline
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Figure 8. Cross-sectional measurement position layout. (a) Layout of thickness measurement position,
(b) schematic of thickness measurement position on site, (c) layout of outline measurement position,
(d) schematic of outline measurement position.

The thickness is measured with a T-shaped steel ruler, and the basic contour size of
the box girder is measured with a laser rangefinder. The measuring accuracy of the two
methods is less than 1 mm, which can meet the requirements of measuring accuracy. The
two measuring methods are shown in Figure 9.
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Figure 9. Measurement tools and usage. (a) Thickness measurement method, (b) Measurement
method of outline dimension.

3.3. The Status of PCVD of the Whole Cross Section

Compared to the design, the measured dimension is a random variable. In order to
standardize the size of the measured components at variable sections and positions into
samples of the same specification, the ratio of the measured section area to the designed
section area is adopted as the indicator of deviation rate, namely:

Ki =

(
Si
Sk
− 1
)
× 100% (1)

where Ki is the deviation rate caused by pouring concrete volume deviation; Si is the
section area calculated from the measured data; Sk is the design section area. The Ki of each
cross-section of bridge A and bridge B is shown in Figures 10 and 11, respectively.
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Figure 10. Deviation-rate bar chart of bridge A cross sections.
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Figure 11. Deviation-rate bar chart of the bridge B cross sections.

As shown in Figure 12, the Ki of each cross-section was statistically analyzed. More-
over, the total number of samples, mean value, standard deviation, and 95% confidence
interval were obtained, as shown in Table 4.
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Figure 12. Frequency histogram of Ki of each cross-section of bridge A and bridge B, (a) bridge A,
(b) bridge B.

Table 4. Statistical analysis of Ki of bridge A and bridge B.

Bridge Symbol Sample
Size Average Lower

95%
Upper
95%

Standard
Deviation Min Median Max

A KA 116 7.24% 6.33% 8.16% 4.95% −3.38% 7.92% 17.87%
B KB 75 8.89% 7.04% 10.75% 8.06% −3.98% 7.27% 37.88%

The measured sectional size is generally larger than the design size, only a few seg-
ments are slightly smaller than the design size. The mean deviation rate of bridge A is
7.24%, and ranges from −3.38% to 17.87%. The mean deviation rate of bridge B is 8.89%,
and ranges from −3.98% to 37.88%. The 95% confidence intervals of bridge A and B are
[6.33%, 8.16%] and [7.04%, 10.75%], respectively.
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The deviation rate reaches an extreme value of 37.88% for the section at the end of
bridge B, and another extreme value of −3.38% is observed in bridge A. The standard
deviations of the two bridges are 4.95% and 8.06%, respectively. It can be seen that the
variation in the deviation rate along the bridge is huge.

Assume that the deviation rate Ki follows a normal distribution N
(
µ, σ2). Skewness

and kurtosis are one of the methods to measure whether a distribution follows a normal
distribution [30–33]. According to Demir [34], the kurtosis and skewness of distribution
are affected by the sample size, thus the thresholds of skewness and kurtosis should be
adjusted accordingly. In this paper, the absolute values of skewness and kurtosis are set to
be less than 2.5 and 6, respectively. The skewness and kurtosis are calculated according to
Formulas (2) and (3), and the results are shown in Table 5.

Skew(K) = E

[(
K− µ

σ

)3
]

(2)

Kurt(K) = E

[(
K− µ

σ

)4
]

(3)

where µ and σ is the mean value and standard deviation of Ki, and E [·] is the mathematical
expectation.

Table 5. Normal distribution checklist.

Symbol Skewness Kurtosis

KA −0.02537 −1.04462
KB 0.16332 1.69674

According to the results of skewness and kurtosis, the deviation rate Ki of bridge A
and bridge B conforms to the normal distribution KAi ∼ N

(
0.0724, 0.04952) and KBi ∼

N
(
0.0889, 0.08062), respectively.

3.4. The Status of PCVD of Each Part in Cross-Section

According to the model analysis in Section 2, the impact of pouring deviation on the
stiffness of different parts is different. The deviation-distribution characteristics of each
part of the two bridges are shown in Figures 13 and 14, and Tables 6 and 7.

Table 6. Statistically analysis of Ki of each part in the cross-section of bridge A.

Symbol Average Standard
Deviation Lower 95% Upper 95% Min Median Max

Flange KAF 7.83% 10.35% 5.93% 9.73% −15.71% 5.64% 32.10%
Top KAT 7.68% 8.84% 6.05% 9.31% −15.47% 5.27% 35.89%
Web KAW 6.38% 7.20% 5.05% 7.70% −5.82% 5.10% 35.82%

Bottom KAB 7.70% 7.78% 6.27% 9.13% −16.06% 7.14% 28.65%

Table 7. Statistically analysis of Ki of each part in the cross-section of bridge B.

Symbol Average Standard
Deviation Lower 95% Upper 95% Min Median Max

Top KBT 10.15% 12.26% 7.33% 12.97% −10.58% 8.67% 56.46%
Web KBW 5.70% 9.30% 3.55% 7.86% −17.45% 4.74% 36.28%

Bottom KBB 10.20% 11.85% 7.48% 12.93% −9.54% 8.52% 58.27%
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Figure 13. Frequency histogram of Ki of each part in cross-section of bridge A.
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Figure 14. Frequency histogram of Ki of each part in the cross-section of bridge B.

The average deviation rates of the different parts of the cross-section are close to each
other. The average deviation rates of the flange, top slab, web plate, and bottom slab of
Bridge A are 7.83%, 7.68%, 6.38%, and 7.70%, respectively. The average deviation rates
of the top slab, web plate, and bottom slab of Bridge B are 10.15%, 5.70%, and 10.20%,
respectively. The deviation rates of different parts of the bridge A cross-section are within
the range of −16% to 35%, and the deviation rate of the bridge B cross-section is within the
range of −15% to 40%.

The kurtosis and skewness of the deviation rates of the different parts of bridge A and
bridge B cross-sections are shown in Table 8. It can be considered that the deviation rates of
different parts of a cross-section conform to the normal distribution.

Table 8. Normal distribution checklist.

Symbol Skewness Kurtosis

Bridge A

KAF 0.3826 −0.84707
KAT 0.70596 0.64497
KAW 2.24166 5.53851
KAB 0.2462 0.38215

Bridge B
KBT 1.28908 3.40778
KBW 0.82647 2.63577
KBB 1.37295 2.96537

The deviation rate of the same part varies greatly in different positions along the
bridge, and occasionally large deviation rate appears. The deviation rate of the bottom
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plate of the side span at the end of bridge B reaches 58.27%, and the deviation rate of the
web near the pier of bridge B reaches −17.45%

It can be seen that all the high deviation rates of bridge B occur at the end of the side
span. A possible reason for this result is that in the bridge design, the section at the end of
the bridge span has a different form and dimension than the rest of the sections and needs
to be constructed separately. The construction technology at that time is relatively poor
and caused problems such as formwork deformation and inaccurate formwork lofting,
which in turn led to insufficient fulfillment of the design requirements [35,36]. Additionally,
the side span is located on the pier and the deviation has a relatively small impact on the
superstructure, making the pouring volume deviation neglected during construction.

3.5. Absolute Quantity Analysis of PCVD of Each Part

The deviation rate characteristics of each part have been described in detail. The
deviation rates of each part represent the deviation degree of the actual size relative to
the design size. The area of different parts in the box-girder section is different, and the
absolute excess square amount varies greatly under the same deviation rate. According to
Formula (4), the weighted mean deviation area at different sectional parts is calculated to
reflect the contribution degree of deviation at different positions.

∑
( −

Ki × ϕi

)
× Sk = SMi (4)

where
−
Ki and ϕi are the mean value of deviation rate and weighted area of one part in the

cross-section, respectively; ∑(·) is the sum of this particular sectional part over the whole
bridge; and SMi is the weighted mean deviation area of this part.

As can be seen from the calculation results in Figure 15, the influence of both variable
and equal-thickness webs on dimensional variation is limited. The weighted deviation area
of the bottom slab near the pier are large, indicating that the bottom slab near the pier has a
great influence on the deviation of the whole bridge.
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Figure 15. Weighted deviation area at different sectional parts.

3.6. Coefficient of Variation of Dead Load Due to Casting Size Deviation

The cross-section casting deviation rate follows a normal distribution. When consider-
ing the dead-load variation caused by the casting size deviation, the design and operation
period calculation of continuous rigid-frame bridges should adopt the probability limit
state design method to ensure that the load value takes into account the influence of casting
deviation within a certain probability. The load value should be calculated according to
Formula (5):

Wk = W0 + W0(µW + αWσW) (5)

where Wk is the value of dead load considering the PCVD, W0 is the standard value of dead
load, µW is the average deviation rate of the whole cross-section, αW is reliability coefficient
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corresponding to the specified probability of Wk, and σW is the standard deviation of the
deviation rate of the whole cross-section.

Let cW be the coefficient of dead load due to casting deviation, and the calculation
formula of cW is as follows.

cW = 1 + µW + αWσW (6)

When the specified probability Wk is set to 95%, the corresponding reliability coefficient
αW = 1.645, and the cW of bridge A and bridge B are 1.15 and 1.22, respectively. It is
necessary to consider cW when considering the variation of dead load caused by casting
deviation.

4. Analysis of the Influence of PCVD on Stiffness

The deflection of the beam with variable section is closely related to the external force
and the section moment of inertia. The calculation formulas of deflection in literature [12,13]
all show that the deflection is related to the section moment of inertia. The cross-section
moment of inertia is selected as the index to reflect the macroscopic stiffness of the bridge,
and the stiffness deviation coefficient c is defined to reflect the influence of pouring volume
deviation on the bridge stiffness. The stiffness deviation coefficient c calculated as shown
in Formula (7).

I
I′
− 1 = c (7)

where I and I′ are section moment of inertia calculated by measured value and designed
value, respectively.

The frequency distribution histogram of c of bridge A is shown in Figure 16, and the
descriptive statistics are shown in Table 9.
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Figure 16. Frequency histogram of c of bridge A.

Table 9. Statistically analysis of c of bridge A.

Sample Size Average Standard Deviation Skewness Kurtosis Median Lower 95% Upper 95%

116 0.1338 0.0819 −0.2876 0.5849 0.1367 0.1187 0.1488

From the value of eccentricity kurtosis, it can be estimated that the stiffness correction
coefficient c ∼ N

(
0.13377, 0.081872), the mean stiffness correction coefficient is 0.013377

and ranges from −0.138 to 0.327, and the 95% confidence interval is [0.11871, 0.14882].
As mentioned above, the variation of the moment of inertia of the section is affected

differently by the deviation of each part. With the deviation rate of each part of each section
as the independent variable and the deviation coefficient of stiffness of each section as
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the dependent variable, a multiple linear regression model was established, as shown in
Formula (8), and the least-square method was used for fitting.

c = β1KAF + β2KAT + β3KAW + β4KAB + C (8)

where β1, β2, β3 and β4 are regression coefficients, C is the intercept.
There are 116 observed values, and the fitting results are as follows: β1 = 0.130121,

β2 = −0.00244, β3 = 0.110192, β4 = 0.75923, C = 0.058293.
Multiple R = 0.748, indicating that the casting size deviation of each part has a strong

correlation with the change of section moment of inertia. F-test was used to determine
whether the global linear relationship of the independent variable was significant. F = 35.3,
significance F = 5.2 × 10−19 < 0.01, in general, the pouring deviation ratio of all parts had a
strong correlation with the stiffness-deviation coefficient, indicating a strong significance.

An Independent sample t-test was conducted for each parameter. The hypothesis was
set as βi = 0, i = 1, 2, 3, 4. The t statistic and the hypothesis probability p-value of each
parameter are shown in Table 10. At the 95% confidence level, β2 and β3 both have poor
significance and cannot meet the standard, so it can be concluded that the hypothesis is
true, that is, β2 and β3 = 0.

Table 10. Statistical analysis of parameters.

Coefficients Standard Error T Stat p-Value

C 0.058 0.010 5.882 4.36 × 10-8

β1 0.130 0.059 2.192 0.030
β2 −0.002 0.070 −0.035 0.972
β3 0.110 0.073 1.517 0.132
β4 0.759 0.068 11.163 7.44 × 10-20

The fitting formula is shown in (9). It can be seen from the parameter values that the
casting size deviation of the flange and the bottom slab has a significant impact on the
stiffness deviation coefficient. Due to the change of the actual CRCR bridge section along
the bridge direction, it can be seen from the analysis of the absolute value of the casting
size deviation in Section 3.5 that the deviation of the bottom slab dominates near the pier
position, so it is reasonable that the bottom plate has a significant impact on the stiffness
deviation coefficient.

c = 0.13KAF + 0.75KAB + 0.06 (9)

Based on the survey results mentioned above, for the inspection of an existing con-
tinuous rigid-frame bridge, the mean value can be considered, that is, cS = 0.13; for the
design of cantilever cast continuous rigid-frame bridge, the lower limit value in the 95%
confidence interval of the statistical quantity can be considered, that is, cS = 0.12.

5. Conclusions

In this paper, the finite element method, actual case investigation and statistical
analysis were used to analyze the structure performance impact on the variation of dead
load and cross-section stiffness caused by PCVD of CRCR bridges. The main conclusions
are as follows:

1. The influence of volume deviation at different positions within the cross-section on
the cross-sectional stiffness varies. The structural stiffness is more sensitive to the
thickness of the top slab and the flange. The combined effect of dead-load variation
and cross-sectional stiffness variation on structural performance is uncertain and may
be beneficial or detrimental to structural performance. Specific analysis of the actual
research object is required.

2. The section deviation rate is in the range of 6.33~10.75% at the 95% confidence interval,
and the deviation rate of different sectional parts is in the range of 5.05~12.97%, which
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indicates that the cast-in-place concrete bridge with cantilever generally has PCVD.
The maximum standard deviation is 12.26%, which indicates that the amount of
deviation is random and scattered.

3. The weighted mean deviation value of each part was calculated, and the results
showed that the near pier bottom slab, mid-span bottom slab and top slab have larger
deviation values, which may have a more pronounced effect on the dead load. Among
them, the near pier bottom slab is most likely to a produce larger deviation value and
should be the part of primary concern when studying dead-load variation.

4. In this paper, the dead-load deviation coefficient cW and the stiffness deviation coeffi-
cient c have been proposed for the assessment procedure of the influence of PCVD on
existing bridges’ performance. This case study can serve as a benchmark for guiding
the internal-force calculation and service state analysis of bridges of the same type.
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