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Abstract: This paper reported on the micro-level properties of alkali-activated pastes cured in ambient
conditions. The mechanisms influencing setting time and the microstructure development of fly
ash, slag, and metakaolin were studied. The mortar compressive strength of the binders and their
ultrasonic pulse velocity (UPV) were tested after 56 days of ambient curing. The micro-level properties
of paste cured at ambient conditions for seven days were determined to understand the phases
developed. NASH gel was observed to delay setting and possessed lower compressive strength,
while CASH gel was set early and possessed high compressive strength. The micro-characterisation
of the alkali-activated binder system developed with fly ash and metakaolin showed the presence of
NASH gel. The alkali-activated binder system developed with GGBS contained multiple gels, such
as N, C-ASH, and CSH. The molecular structures of CSH, CASH, NASH, and N, C-ASH are also
presented and were obtained using high score plus software.

Keywords: calcium oxide; aluminosilicates; Alkali activated aluminosilicates; CASH, NASH,
and N, C-ASH

1. Introduction

Concerns about CO2 emissions have drawn the attention of concrete researchers
towards a more sustainable binder system, since OPC emits about 5–8% of total CO2
emissions during the manufacturing process [1–3]. The alkali-activated aluminosilicate
binder system is a promising material that can completely replace conventional cement
(OPC) [4]. It plays a crucial role as an energy-efficient binder system because it has a lower
environmental footprint than ordinary Portland cement [5–8].

Alkali-activated aluminosilicate material can be used in structural applications and
other construction works. Aluminosilicate binders can reduce greenhouse emissions and
energy demand by up to 73% and 43%, respectively [9]. Since the alkali-activated alumi-
nosilicate binder is associated with lower embodied energy and environmental impacts
in terms of a lower carbon contribution, and the reuse of industrial waste products and
agricultural products, these binders may prove to be a novel alternative to ordinary-
Portland cement [10,11].

Generally, alkali-activated aluminosilicate binders are composed of industrial wastes
such as fly ash (FA), ground granulated blast furnace slag (GGBS), and metakaolin (MK).
Additionally, waste from agricultural products rich in silica, such as rice husk ash, bagasse
ash, and biomass ash can also be used [12,13]. Alternative waste products are used ex-
tensively due to their chemical and physical characteristics, which suit the manufacture
of cement-like products. The binders are then activated using alkali metal oxides such as
NaOH/KOH mixed with water glass (sodium silicate) [14–16].

However, disparities in the material design arising from the non-uniform properties
of the base materials mean that the calculation of carbon emissions is quite complicated,
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making the carbon footprint of the aluminosilicate binder controversial. Researchers have
contradicting opinions about the efficiency of alkali-activated aluminosilicate-based materi-
als for possible use as binders [17]. A few combinations of alkali-activated aluminosilicate
binders need heat curing, making the system energy-intensive, one of the most critical
challenges. The development of alkali-activated aluminosilicate products with more envi-
ronmentally sustainable and affordable activators would lead to substantial cost reductions,
along with a significant reduction in the detrimental impact on the environment of the
cement industry, even though energy demand is a highly contested topic [18,19].

Popularly used precursors have been categorised into low calcium (FA and MK)
and high-calcium aluminosilicates (GGBS). Low-calcium aluminosilicate precursors, when
activated using the water glass solution, produce the chemically stable polymerised product
sodium-aluminosilicate-hydrate (NASH), [20–23]. SEM and EDS techniques have shown
the presence of Ca+2, Na+2, Si+4, and Al+3 elements. Researchers have also calculated the
Ca/Si, Ca/Al, Na/Si, and Na/Al ratios, and described the effectiveness of the binder
system [24–26]. The presence of a higher proportion of Na/Si indicates the development
of the NASH gel structure. SEM micro-graph has been used to understand the binder
system’s morphology, surface characteristics, and porosity. The silica and alumina bond
appears in the wavelength range of 900–1100 cm−1 with FTIR [27,28].

Since they have distinct and unique features, both alkali-activated FA and GGBS
gels have been used to develop non-cement binder systems. NASH gels are typically
associated with delayed setting time and comparatively lower mechanical properties;
however, they offer superior durability properties. With microstructure studies, the changes
in the molecular structure of NASH and the development of subsequent phases can be
studied [29,30]. When a low calcium system such as FA is heat cured above 50 degrees
Celsius, the hardened microstructure properties are significantly improved [31–34].

High calcium aluminosilicate binders such as GGBS primarily produce calcium-
aluminosilicate-hydrate (CASH) gel. Along with the CASH gel, the presence of various
other types of gels, such as CSH, NASH, and (N, C)-ASH, are also developed in small
amounts [35–37]. The problem associated with CASH gel is the quick setting and leaching
of calcium ions from the binder system. Since CASH gel provides superior mechanical
properties, it attracts many investigators across the globe. Compared to CSH gel, Ca/Al is
higher in CASH gel, which typically has a lower Ca/Si ratio and a higher Si/Al ratio.

Aluminosilicate binder pastes with high-calcium aluminosilicates usually do not
require heat curing. GGBS is one of the promising high-calcium aluminosilicate materials.
Since multiple gels such as CSH, NASH, and (N, C)-ASH are developed on GGBS paste’s
alkali-activation. Each of these gels varies in properties; assessing the micro-properties and
strength plays a critical role in defining its applicability. Two types of binder systems are
developed in GGBS: low calcium N, C-ASH, and high calcium (N, C)-ASH, as reported
by many researchers [38–40]. The amount of heat released in developing these gels also
varies significantly. Heat in the binder dramatically impacts the hardened and long-term
properties of the binder phases developed. Thermodynamic and hydration modelling
of the aluminosilicate paste are powerful tools for studying the micro-level details of the
binder system developed [41–43].

In this study, these three popular aluminosilicates, fly ash, GGBS, and Metakaolin,
were selected for investigation. The low-calcium systems were FA and MK, while the high-
calcium system was GGBS. Micro-level analyses were carried out for all three alkali-activated
aluminosilicate pastes. The obtained results were compared to understand the differences
between the phases developed in high- and low-calcium systems. Similar studies were also
performed on Portland cement paste as a reference since it is a widely accepted binder system.
Advanced techniques such as FE-SEM, EDS, EDS mapping, XRD, and FTIR were used to
investigate the micro-level properties of low- and high-calcium aluminosilicates. XRD data
analysis was carried out using high-score-plus software, while the Rietveld technique was
used to identify the chemical compounds developed in each case. The high-score software
also obtained the 3D molecular structure of CSH, CASH, NASH, and (C, N)-ASH.
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2. Materials and Experimental Program

Setting time, hardened properties, and morphology of the alkali-activated Class F
fly-ash, metakaolin, and GGBS were studied. The three aluminosilicates chosen are readily
available. The physical and chemical properties of raw materials and the experimental
program are discussed below.

2.1. Raw Materials
Aluminosilicate Binders

Class F fly ash was obtained from the Raichur thermal station in Karnataka, India.
Metakaolin and GGBS were received from the Astraa-chemical industry, Chennai, Tamil
Nadu, India. The aluminosilicate binder’s particle size analysis was performed using
CILAS 1064. The particle-size distribution of the studied low-calcium and high-calcium alu-
minosilicates is illustrated in Figure 1. The physical and chemical properties of low-calcium
and high-calcium aluminosilicates are shown in Table 1. The aluminosilicate binders were
found to satisfy the pozzolana activity per clauses prescribed in ASTM C618 [44].
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Table 1. Physical and chemical properties of binders.

Materials Fly Ash GGBS Metakaolin OPC

Physical-Properties Specific-surface area (m2/g) 0.454 0.5 19–20 0.33
Specific Gravity 2.24 2.67 2.6 3.15
Particle Size(µm) d10 2.17 2.33 0.71 3.70

d50 8.72 13.37 3.75 14.83
d90 27.99 33.36 11.37 32.20

Chemical-Properties (wt.%) SiO2 54.11 40 52 20.21
Al2O3 26.51 4.1 46 9.08
Fe2O3 6.4 2 0.6 3.64
Ca O 4.7 42 0.09 59.67
Mg O 1.04 6.2 0.03 2.02
SO3 1.29 0.1 - 2.41

Na2O 2.22 - 0.1 -
K2O 0.87 - 0.03 -
TiO2 - - 0.65 0.45
LOI 2.85 0.25 - 1.45

Phases of the aluminosilicate binders were plotted as a 3D ternary diagram, as shown
in Figure 2, a handy tool to compare CaO, SiO2, and Al2O3 in the aluminosilicates selected
for the present study. Table 2 shows that the OPC’s highest calcium oxide is present while
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the lowest is in the MK. About 42% of calcium oxide is present in GGBS against 4.7% in fly
ash. The FESEM (field emission scanning electron microscopy) of the binders (Figure 3)
indicated that the morphology of the aluminosilicate materials differ from each other in that
fly-ash is spherical, while GGBS exhibits angular morphology and metakaolin appears flaky.
Cement exhibits a combination of angular and flaky morphology. XRD (X-ray diffraction)
of the aluminosilicate materials is shown in Figure 4.
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Figure 3. FE-SEM images of aluminosilicate materials.

EDS spectroscopy of the aluminosilicate materials studied is shown in Figure 3. EDS
mapping of aluminosilicate material is illustrated in Figure 5. EDS mapping identified
calcium, silica, and alumina in the FA, MK, GGBS, cement, and other minor elements. From
Figure 5, the strongest calcium intensity is noticed in the cement, followed by GGBS and
FA, while there is no calcium found in metakaolin. The EDX elements of the aluminosilicate
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binders are tabulated in Table 2. Si/Al ratios of OPC, GGBS, FA and MK are 4.25, 2.03,
1.57 and 0.97, respectively, whereas the Ca/Si ratios are 3.54, 1.14, 0.06 and 0.00, respectively.
The ca/Al ratio is 15.02 in cement, the highest amongst the samples studied, while in GGBS,
it was found to be 2.31, and in FA and MK, it was 0.
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Table 2. EDX elements composition of aluminosilicate binder.

Binders Chemical Element (% by wt.) and, Their Ratio

Mg Al Si Ca Ti Fe S Mn K Si/Al Ca/Si Ca/Al

OPC - 0.84 3.57 12.62 - 0.86 0.51 - - 4.25 3.54 15.02
GGBS 1.88 3.41 6.91 7.91 0.14 - - 0.18 - 2.03 1.14 2.31

FA 0.28 6.07 9.53 0.6 0.25 0.78 - - 0.28 1.57 0.06 0.098
MK - 9.63 9.35 - 0.23 0.22 - - - 0.97 0.00 0

2.2. Water Glass Solution

The water glass solution of 12 molarity and sodium hydroxide to water glass ratio
is 2.5. The detail of the solution used in this study refers to our previously published
article [43]. In Table 3, the proportion of SS/SH and S/B ratio are tabulated.

Table 3. Alkali-activated pastes studied.

Mix ID Designation Content (%) Alkali(M) SH/SS S/B T (◦C)

1 FA 100 12 2.5 0.35 Ambient
2 GGBS 100 12 2.5 0.35 Ambient
3 MK 100 12 2.5 0.35 Ambient
4 OPC 100 - - 0.35 Moist

2.3. Aluminosilicate Paste

Pastes of aluminosilicates such as FA, GGBS, and MK were prepared, along with OPC
in the proportions mentioned in Table 3. The alkaline liquid-to-binder ratio of 0.35 was
applied for all paste sample preparations. The specimens, cast in three-dimensional moulds
of 40 cubic millimetres, were used for characterisation at the micro-level. The samples were
removed from moulds after 1 day, and ambient cured until testing. Cement paste was
cured underwater at ambient conditions.

2.4. Alkali-Activated-Aluminosilicate Mortar

Alkali-activated mortar of 3 aluminosilicate mixes and cement paste were prepared in
the proportions mentioned in Table 3. Alkali-activated mortar contained 1 part of binder
and 3 parts of fine aggregate by weight. Standard fine-aggregate with a specific gravity of
2.65 was used to cast the mortars, according to IS 383-2016 [45]. The alkali-activated mortar
cube specimens were cast in cubic moulds of 70.6 mm.

2.5. Experimental Program
2.5.1. Fresh Properties of Paste

One of the essential characteristics of binder materials is Vicat time. The initial and final times
of the alkali-activated-paste were calculated using the Vicat by the ASTM-C191 [46] specification.

2.5.2. Mechanical Properties of Mortar

Mortar cubes were tested for compressive strength as per clause of ASTM-C109 [47]
on the 3rd, 7th, 28th, and 56th day of curing. A UPV test was also conducted on the 3rd,
7th, 28th, and 56th days of curing, as per ASTM-C597 [48].

2.5.3. Micro-Level Properties of Paste

The microstructure studies using FESEM, EDS, EDS mapping, XRD, and FTIR were
performed at 7 days for the aluminosilicate pastes. Table 4 provides a summary of the
experimental programme.
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Table 4. Experimental Program.

Sl. No. Parameter Studied Standards/Instrument

1 Setting time ASTM C191 [46]
2 Compressive strength ASTM C109 [47]
3 UPV ASTM C597 [48]
4 FESEM Carl Zeiss FESEM, Oxford Instrument
5 EDS Carl Zeiss FESEM, Oxford Instrument
6 XRD Rigaku Mini flex
7 FTIR JASCO FT/IR-6300

3. Results and Discussion
3.1. Setting Properties of Alkali-Activated FA, GGBS, and MK Pastes

The setting time test was performed using the Vicat apparatus for three popular
binders fly ash, GGBS, MK, and OPC pastes. The initial setting time of fly-ash, GGBS, MK,
and OPC pastes are 450, 70, 110, and 95 min, respectively. The final setting time of the
fly-ash, GGBS, MK, and OPC pastes were 810, 115, 150, and 295 min, respectively. The
initial and final setting times were noted at 5 min intervals, as illustrated in Figure 6. The
calcium oxide content in the alkali-activated fly-ash, metakaolin, and GGBS pastes were
4.7, 0.09, 42%, respectively, and the OPC paste is 59.67%. The setting time was found to be
significantly influenced by the calcium content. Alkali-activated fly ash, metakaolin, and
GGBS contain higher calcium content exhibited faster-setting characteristics.
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Studies by Dai et al. (2020) have reported the initial setting time of alkali-activated
fly ash as 13, and more than 18 h for the pastes with a solution-to-binder ratio of 0.27 and
0.37, respectively. With the introduction of slag into the system, the calcium increases in the
system, and the setting time reduces significantly [49]. The gel present in alkali-activated
GGBS paste is mainly calcium/sodium aluminate silicate hydrate (CaO/Na2O-Al2O3-SiO2-
H2O), and in the OPC paste it is primarily the calcium silicate hydrates (CaO-SiO2-H2O).
CASH exhibits faster-setting characteristics in comparison with CSH due to bounded water
between the molecules. The final setting times noticed for GGBS and OPC pastes were
115 and 295 min, respectively.

Almakhadmeh et al. (2021) investigated how water temperature affected the setting of
alkali-activated slag paste. The setting time was observed to be decreased by the water’s
temperature [50]. Additionally, OPC final-setting-time is higher due to gypsum (calcium
sulphate dihydrate) in OPC. In alkali-activated fly ash and metakaolin, the gels developed
are primarily the sodium aluminate silicate hydrate (Na2O-Al2O3-SiO2-H2O). NASH gel
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requires more time to set, which is observed in the case of fly-ash paste. NASH gel is
developed because of polymerization and possesses a 3D tetrahedral structure and cross-
linked chain. If NASH gel is supplemented with heat, the setting may be enhanced [51–53].
A chemical element such as calcium oxide may be introduced in the binder system to
liberate heat and strengthen the setting characteristics. On the other hand, the binder’s
surface area and fineness also play a vital role that can be noticed in the metakaolin paste. In
the sections on FESEM, XRD, and FTIR, the critical characteristics of the gel are addressed
in considerable detail.

3.2. Mechanical Properties
3.2.1. Alkali-Activated-Mortar-Compressive-Strength

Alkali-activated fly ash, GGBS, and MK mortar were tested for compressive strength
after curing for 3, 7, 28, and 56 days in the ambient conditions and compared with the
strength of OPC mortar water cured at ambient conditions. Figure 7 shows a plot of the
mortars’ tested compressive strength. The compressive strength of alkali-activated fly-ash,
GGBS, and MK mortar at 56 days is 48.22, 54.65, and 32.42 MPa, respectively, and of the
OPC mortar is 58.14 MPa. The compressive strengths of alkali-activated fly ash, GGBS,
and MK mortar are 17.06%, 6%, and 44.32%, respectively, lower than the strength of the
OPC mortar.
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The alkali-activated fly-ash and MK binders developed lower compressive-strength
than the alkali-activated GGBS compared to the OPC’s reference [54–56]. The mortar
compressive strength at seven days of FA, GGBS, and MK were 34.18, 42.24, and 25.64 MPa,
respectively, while the OPC mortar was 38.35 MPa. The FA and MK mortar compressive
strengths were 12.20% and 49.57%, respectively, lower than that of the OPC mortar, while
the GGBS mortar strength increased to 10.14%. NASH, as the primary reaction product
of alkali-activated FA and MK types of gel, has lower compressive strength than alkali-
activated GGBS. CASH gel exhibited early compressive strength, and later strength is lower
than other gels such as CSH and NASH. However, NASH is chemically more stable when
related to CASH, while in CASH, leaching of calcium was observed. Hence, NASH is more
durable than calcium-based gel [57]. Cercel et al. (2020) studied the alkali-activated slag
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mortar with the inclusion of quartz (glass powder) with the binary activator of hydrated
lime and sodium-carbonate. Alkali-activated-slag mortar exhibits better mechanical and
microstructure properties [58].

3.2.2. Alkali-Activated Mortar UPV Results

The UPV results for the aluminosilicates tested on the mortar samples are shown in
Figure 8. The UPV values for alkali-activated fly ash, GGBS, and MK mortar were 3166,
4020, and 2676 m/s after 56th days of air curing, while after the seventh day of curing, UPV
values were 2456, 3352, and 2346 m/s. The UPV value of OPC mortar at 56 and seven days
were 3689 and 3057 m/s.
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UPV values of all the alkali-activated FA, GGBS and MK binder mortar samples im-
proved with curing duration till 28 days. A high-calcium alkali-activated GGBS mortar
showed the highest UPV values due to multiple gels and the interaction of compounds to
produce a dense microstructure. Higher UPV values of the alkali-activated GGBS binder sys-
tem indicate a higher density than low-calcium binder systems such as alkali-activated FA
and MK. Lower UPV values in low-calcium binders indicate poor interlinking between the
compounds produced. The lowest UPV value was noted in the MK-based alkali-activated
mortar. The compressive strength of the mortar specimen likewise showed a similar type
of observed trend. Farhan et al. 2019 elaborated on the mechanical properties of alkali-
activated fly ash and GGBS mortar. The UPV values of mortar range from 300 to 2400 m/s
at 7th & 28th days of curing. The reported UPV results align with previously published
works [7,59–62].

3.3. Microstructure of Alkali-Activated FA, GGBS, and MK
3.3.1. Alkali-Activated FA, GGBS, and MK Studied Using FE-SEM

FE-SEM analysis was performed to understand the morphology, structure, nature,
density, and orientation of cracks and the pore system of low-calcium and high-calcium
binder systems. Figures 9 and 10 display FE-Sem micrographs with scales of 20 micro-meter
and 1.0 KX resolution and 1 m and 10.0 KX resolution, respectively.
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Activation of the starting raw binders resulted in phases that displayed completely
different morphologies, as observed in the FE-SEM images (Figures 9 and 10). The alkali-
activated fly ash and metakaolin paste contain low ca2+, while high ca2+ appeared in the
alkali-activated GGBS and OPC pastes. The alkali-activated GGBS is denser compared to
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the alkali-activated FA and MK. The 3D dimensional cross-linked structure of NASH gel
is developed in the alkali-activated FA and MK pastes. CSH, CASH, and NASH gels are
formed in the activated GGBS paste. In the OPC paste, CSH gel is produced due to the
hydration of calcium and silica.

OPC paste can be compact and dense, with fewer cracks and tiny pores. The presence
of calcium hydroxide (Ca (OH)2) flakes is observed in GGBS paste while there is almost
negligible FA and MK. MK paste is observed to be least dense with fragmented compounds
and unreacted particles. OPC paste is denser among all the pastes studied, while the
alkali-activated GGBS paste is denser than the FA and MK paste. The alkali-activated
fly ash has a higher crack length than other pastes studied. Furthermore, the NASH gel
(a three-dimensional structure) is more stable than calcium-based gel types [63–65].

3.3.2. Alkali-Activated FA, GGBS, and MK Studied Using EDS

Energy dispersive spectroscopy (EDS) and mapping were explored to understand the
chemical composition of low-calcium alkali-activated (fly ash and MK) and high-calcium
alkali-activated (alkali-activated GGBS and OPC) pastes. The EDS elements are tabulated
in Table 5. The elemental spectrum of pastes is shown in Figure 11. Elements identified
in alkali-activated FA, and MK pastes were Na, Si, Al, and Ca. The GGBS paste contained
insignificant Na, Si, Al, and Ca proportions. For the OPC paste, the elements present were
Si, Al, and a high ratio of Ca was observed in the binder system.

Table 5. EDS analysis of alkali-activated paste.

Mixes Spectrum Elements (% by wt.) and Their Ratio

Na Al Si Ca Si + Al Si/Al Ca/ (Si + Al) Na/ (Si + Al) Ca/Si Na/Al Na/Si Ca/Al

FA 1 5.84 3.08 9.57 0.36 12.65 3.11 0.03 0.46 0.04 1.90 0.61 0.12
2 6.04 3.2 9.97 0.37 13.17 3.12 0.03 0.46 0.04 1.89 0.61 0.12

GGBS 1 8.88 1.77 5.42 1.63 7.19 3.06 0.23 1.24 0.30 5.02 1.64 0.92
2 9.06 1.97 5.47 1.58 7.44 2.78 0.21 1.22 0.29 4.60 1.66 0.80

MK 1 2.97 6.37 7.46 0.02 13.83 1.17 0.00 0.21 0.00 0.47 0.40 0.00
2 4.84 6.18 7.21 0.02 13.39 1.17 0.00 0.36 0.00 0.78 0.67 0.00

OPC 1 0.12 1.07 4.34 15.14 5.41 4.06 2.80 0.02 3.49 0.11 0.03 14.15
2 0 1.09 4.41 15.31 5.50 4.05 2.78 0.00 3.47 0.00 0.00 14.05

Lothenbach et al., 2019 have, through studies, reported that the Ca/Si ratio of the C,
N-ASH is closer to 1 and an Al/Si ratio lower than less than 0.25 [66]. Table 5 shows the EDS
analysis of the pastes studied. The alkali-activated FA paste, with one area spectrum, shows
the Ca/(Si + Al) and Na/(Si + Al) ratios as 0.04 and 0.46, respectively. The ratios Ca/Si,
Na/Al, Na/Si, and Ca/Al are 0.04, 1.90, 0.61, and 0.12, respectively. The ratio of elements
indicated the presence of the NASH gel binder system, and the area 2 spectrum is almost
similar. The alkali-activated GGBS paste with one area spectrum showed the Ca/(Si + Al)
ratio and Na/ (Si + Al) as 0.23 and 1.24, respectively, while the Ca/Si, Na/Al, Na/Si and
Ca/Al ratios were 0.30, 5.02, 1.64 and 0.92, respectively. The elemental ratio of various GGBS
pastes suggests multiple gels such as CASH, NASH, CSH, and (C, N)-ASH are responsible
for high mortar compressive strength. In the MK paste, Ca/(Si + Al) and Na/(Si + Al) ratio
were 0.0 and 0.21, respectively. Also, the ratios such as Ca/Si, Na/Al, Na/Si and Ca/Al
were 0.00, 0.47, 0.40 and 0.00, respectively. The gel produced on activation of MK showed
no presence of CASH or CSH in the system. The binder system primarily contained NASH
gel, reflecting the lower compressive strength than other pastes studied [67]. The Si/Al
ratio of the alkali-activated FA and MK were 3.07 and 1.17, respectively. The higher the
Si/Al ratio, the higher the compressive strength, which is observed in the case of GGBS
and OPC pastes with Si/Al ratios of 3.06 and 4.06, respectively.

EDX mapping was carried out to map elements in the paste system and is shown in
Figure 12. In the alkali-activated fly-ash paste, Na, Si, Al, and Ca were mapped. Si and
Al color intensities are higher than Na and Ca, while the Ca has the least intensity. For
the GGBS paste, the intensity of all the elements, such as Na, Si, Al, and Ca, is equally
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distributed throughout the spectrum area. In the MK paste, the mapped elements show the
high intensity of Si and Al but the lower intensity of Ca elements. Lastly, Ca, Si, and Al
elements are seen in the OPC paste with a higher Ca intensity. The ternary plot of Ca vs. Al
vs. Si and Na vs. Al vs. Si is illustrated in Figures 13 and 14.
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3.3.3. Alkali-Activated FA, GGBS, and MK Studied Using XRD

The chemical composition of the paste specimens after a seven-day ambient curing
were identified by XRD. Figures 15–17 show the XRD results for materials such as alkali-
activated FA, GGBS, and MK, respectively, and Figure 18 shows the results for the OPC
paste. The base binders were transformed into complex crystalline peaks on the FA, GGBS,
and MK activation. FA and MK have more impurities in the compounds present in the
system than the GGBS and OPC paste.

The quartz chemical compound is mainly an inert crystalline mineral in alkali-activated
FA and MK. The peak of SiO2 is observed at 26.70◦, and 26.56◦ in the FA and MK
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pastes. The compounds present in the alkali-activated FA are quartz Si3O6, Reyrite
Na1.6Ca14Si22Al2O72H8, and natrolite Na16Al16Si24O96H32; the PDF number is shown in
Table 6. With the higher content of silica-alumina and low calcium in the FA, after the
activation with the water glass solution (NaOH-Na2SiO3), the system was transformed
into the 3D NASH structure. MK pastes’ activation resulted in the development of com-
pounds such as NASH Na32Si64H32O160 and Na24Si8H40O48, quartz Si3O6, and sillimanite
Al8Si4O20. The NASH peaks were observed at 27.06◦,32.47◦ and sillimanite peaks were
positioned at 31.22◦, 33.54◦ in the MK pastes.

In the alkali-activated high calcium (GGBS paste), the compounds present were
chabazite Ca6Al12Si24O108H0 and clinotobermorite Ca5Si6O18H0. The chabazite and cino-
tobermorite peaks are observed at 29.85◦ and 30.90◦, respectively. Finally, the OPC paste
hydration products are clinotobermorite, Portlandite, ettringite, vaterite, calcite, and quartz,
which were observed at 29.34◦, 34.02◦,32.64◦, 27.62◦,28.58◦ and 26.95◦ respectively. The
molecular structure of CSH, CASH, NASH, and N, C-ASH, is shown in Figure 19 as ob-
tained from High Score Software Plus. The CSH and CASH are cubic molecular structures,
while NASH and N, C-ASH are rhombohedral molecular structures [68–70].

Table 6. Compound Name and Chemical Formula used in the XRD.

Samples PDF Card No. Compound Name Chem. Formula

Fly Ash
96-900-9667 Quartz Si3O6
96-900-9471 Reyerite Na1.6Ca14Si22Al2O72H8
96-900-5048 Natrolite Na16Al16Si24O96H32

GGBS
96-101-1270 Chabazite Ca6Al12Si24O108H0

96-100-0047 Clinotobermorite Ca5Si6O18H0
MK

96-153-3379 NASH Na32Si64H32O160
96-210-7160 NASH Na24Si8H40O48
96-901-2602 Quartz Si3O6
96-900-1409 Sillimanite Al8Si4O20

OPC 96-100-0047 Clinotobermorite Ca5Si6O18H0
96-100-8782 Portlandite Ca1O2H2
96-901-5085 Ettringite Ca12Al4S6O100 H128
96-901-6216 Vaterite Ca4.00 C4.00 O12.00
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Figure 18. XRD of OPC paste at 7 days of ambient curing.

3.3.4. Alkali-Activated FA, GGBS and MK Studied Using FTIR

Fourier transform infrared spectroscopy (FTIR) was performed to find the chemical
bond present in the low-calcium and high-calcium paste cured at seven days. FTIR spectra
of the low calcium (FA and MK) and high calcium (GGBS and OPC) paste are shown in
Figure 20. The presence of various chemical bonds in the pastes included H-OH (bending
and stretching band), OCO (absorption band), TOT (T: tetrahedral Si or Al), and Si-O-Si
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bonds. In FA, GGBS, MK, and OPC, the H-OH water bond is observed at the intensities
of 3615, 3634, 3610, and 3336 cm−1, respectively. The structural water bond is noticed at
1664, 1671, and 1659 cm−1 for FA, GGBS, and OPC, respectively, while there is no structural
water bond in the MK [71].
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Sun et al. 2021 studied the variation of white mud in the blend of FA and GGBS. All
the aluminosilicate paste samples showed a broad intensity band at roughly 970 cm−1.
The vibrations of Si-O-T bands (T: tetrahedral Si or Al) from gel products are responsible
for this (1020 cm−1 NASH and 950 cm−1 CASH). The Al/Si ratio of gel products in AAM
is commonly acknowledged as having a significant impact on the wavenumber of the
Si-O-T band. The bands are located between 971 and 959 cm−1, which is greater than the
wavenumber of the C-A-S-H gel (950 cm−1) and lower than the wavenumber of the NASH
gel (i.e., 1020 cm−1), showing the existence of numerous types of gel products [64].

The OCO band was observed in the OPC and GGBS at 1446 and 1498 cm−1, respec-
tively. The existence of the OCO bond is related to carbonate groups, indicating the calcium
carbonate compound. Additionally, asymmetric stretching of OCO is related to CO3

2− a
bond that shows the carbonation takes place during the ambient curing condition. Si-O-Si or
Si-O-Al or Al-O-Al bonds are present in the OPC, GGBS, MK, and FA at the intensity of 1132,
1104, 1085, and 1110 cm−1. Si-O bond also suggests the presence of the silicate glass group,
which developed due to the replacement of (SiO4)4− to (AlO4)4−. The alkali-activated MK
showed the lowest wavenumber at 1085 cm−1, attributed to minimum geo-polymerization;
this leads to less compressive strength [21,72,73]. The FTIR results are in strong agreement
with the XRD and FESEM interpretations.

4. Conclusions

Studies on the properties of popular aluminosilicate pastes, such as fly ash, GGBS, and
MK, activated using a water glass solution cured under ambient conditions, revealed the
mechanisms that control the setting and hardening characteristics as well as the strength devel-
opment mechanisms. The following are the concluding points from the experimental program:

• Alkali-activated FA and MK pastes have a prolonged setting time, whereas the alkali-
activated GGBS paste possesses quick-setting characteristics;

• Mortars made of alkali-activated FA and MK binder systems showed lower com-
pressive strength, while slag and OPC-based mortars showed higher compressive
strengths. The compressive strength showed that a binder system containing more
calcium exhibits superior compressive strength;

• UPV values of mortar prepared with alkali-activated FA and MK based binders showed
lower values, which means the matrix is less dense. The alkali-activated GGBS mortar-
prepared binder had values of UPV slightly higher than that of the OPC-based mortar;

• FESEM images indicated the presence of NASH gel in the low calcium pastes such as
FA and MK, and the CASH gel dominated in the slag-based high-calcium system. The
CASH gel was characterized by a compact morphology, while the NASH gel displayed
a fragmented morphology and contains unreacted particles;

• EDX elemental analysis revealed the Ca/(Si + Al), Na/(Si + Al), Ca/Si, Na/Al, Na/Si,
and Ca/Al ratios that define the binder paste’s efficacy in comparison to OPC. The
presence of NASH gel was observed in fly ash and MK, whereas multiple gel types in
the GGBS such as CASH, NASH, C, NASH, and CSH were noted. EDX mapping of
the paste also showed a similar pattern;

• XRD and FTIR confirmed the existence of NASH in the FA and MK and (C, N)-ASH in
the GGBS paste was present only in traces.

Future Scope

Future studies can be extended to understand the rheological properties of the alumi-
nosilicate paste. Thermodynamic modelling, hydration modelling, and nanoindentation
can be carried out to understand the paste’s thermodynamics and properties. The durability
of other natural pozzolanic pastes is another aspect that can provide more insight and
improve applicability.
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