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Abstract: Generative Adversarial Networks (GANs) possess a significant ability to generate novel
images that adhere to specific guidelines across multiple domains. GAN-assisted generative design
is a design method that can automatically generate design schemes without the constraints of human
conditions. However, more research on complex objects with weak regularity, such as parks, is
required. In this study, parks were selected as the research object, and we conducted our experiment
as follows: (1) data preparation and collection; (2) pre-train the two neural network, then create
the design layout generation system and the design plan generation system; (3) realize the data
augmentation and enhanced hundred level dataset to thousand level dataset; (4) optimized training;
(5) test the optimized training model. Experimental results show that (1) the machine learning
model can acquire specific park layout patterns, quickly generate well-laid-out plan layout plans,
and create innovative designs that differ from the human designer’s style within reasonable limits;
(2) GAN-driven data augmentation methods can significantly improve the generative ability of
algorithms, reduce generative pressure, and achieve better generative results; (3) pix2pix is prone
to mode collapse, and CycleGAN has fixed rule errors in expressing certain design elements; and
(4) GAN has the ability to mine design rules in the same way as humans.

Keywords: generative adversarial networks; generative design; artificial-intelligence-aided design;
outdoor green space; park layout

1. Introduction

Urban green space is an essential component of the human living environment. In
recent years, with the updating of urban systems and the construction of the ecological
environment, planning the green space system has become extremely complex. Parks
are among the most critical resources in the urban green space system, and most of the
functional areas that provide services to most urban residents can be found in urban
parks. The design mode of parks is also related to City Brand Equity [1,2].Therefore, the
rational layout of various elements of park design is of great significance in enhancing the
comprehensive service function of urban green space and improving people’s health and
well-being [3,4].

Over the past few decades, despite the rapid development of artificial intelligence
in computer science, there has been little exploration of park layout design. The layout
design of a park is a unique and critical design task that involves design issues such as
the coordination of the positions of elements in the design and the construction of the
landscape perception space. The site conditions and design requirements may lead to
multiple schemes. Currently, parametric modeling tools such as grasshopper and rhino,
which are commonly used by designers, aim to find a unique optimal scheme as the
design goal. However, they cannot generate designs independently because they cannot
balance the multi-solution nature of park layout design. The Generative Adversarial
Network (GAN) technology proposed by Goodfellow [5] in 2014 represented a turning
point in integrating artificial intelligence and planning and design due to its excellent
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image generation ability. Initially applied to indoor design in architecture, it has gradually
established a basic research paradigm and has subsequently developed rapidly in outdoor
space planning and design in recent years. Previous research has shown that GANs have
unique generative design capabilities, with the potential to achieve an automatic park
layout design.

However, currently there is a lack of research on parks in the field of automatic design.
Most of them use small sample data and lack discussion on human–machine collaborative
design mode. The research questions are as followed: (1) How to construct generative
models for complex objects; (2) How to enhance small-sample data by effective methods;
(3) How to design experiments to discuss the differences between full algorithms and
human–machine collaboration. Therefore, our research focuses on how to build a full-
process automatic generation system for green spaces based on GAN. Our research goals
are as follows: (1) To construct a complete process for automatic generation of park green
spaces; (2) To construct a data augmentation scheme; (3) To compare and analyze the
research results and discuss the similarities and differences between human and algorithm-
generated outcomes.

We realized our research goal according to the following three steps: first, a small
and medium-scale park green space was selected as the research object, and a full-process
automatic design system for small and medium-scale park green spaces was constructed
based on pix2pix and CycleGAN; second, we constructed a data augmentation module,
and the training was further optimized to solve the data bottleneck problem; finally,
the generation results of the human design were compared to discuss the differences
between algorithm-driven generation design and the work of a human designer. This
paper discusses the advantages and limitations of new design methods that involve human–
machine coordination under the background of new technology. It also proposes a universal
method for data augmentation that can be applied to fields such as architecture and interior
design. This method can promote the intellectual development of urban green space
planning systems.

2. Related work

This section reviews the relevant literature on the application of GANs in planning
and design published after Goodfellow’s [5] proposal in 2014. It divides the previous work
into two categories: small-scale indoor space design generation and outdoor space design
generation, according to the timeline and specific areas, and clarifies the direction of this
research. These two categories will be presented in this section.

Generative Adversarial Network (GAN) is a machine learning algorithm that trains
two neural networks to compete in a zero-sum game. GANs have significantly superior
image generation capabilities compared to previous deep learning models, and are thus
experiencing increased application in the generation of design schemes for human settle-
ment environments [6]. Research on GAN-based generative design was initially applied to
indoor architecture design. It gradually established a basic research paradigm, which has
developed rapidly in outdoor space planning and design in recent years.

Early research mainly focused on indoor design in architecture. Huang [7] and
Zheng [8] explored the layout of single-story indoor space floor plans by generating design
plan from design layout (colour block diagrams) using pix2pix, establishing the primary
research paradigm in this field and laying the foundation for subsequent research. Subse-
quently, Yang [9] and others initially expanded upon this research paradigm by dividing
the generation process into two steps: ‘site conditions–functional zones-design schemes’,
to construct a framework for the automatic generation of design schemes for youth apart-
ments. Chaillou [10] and others approached the design process by breaking it down into
multiple steps and defining constraints step by step, designing a full-process automatic
generation framework for architectural design schemes called Archi-GAN. This essentially
completed the research paradigm of multi-step segmented generation. Subsequent research
primarily focused on the controllability of the generation framework, gradually introducing
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scientific indicators such as the pedestrian flow index. For example, Wang [11], who intro-
duced pedestrian flow indicators into the design process from contour to layout, designed
an indoor layout generation model called ActFloor-GAN that conforms to the pedestrian
flow direction. Nelson [12,13] introduced knowledge graphs into indoor layout generation,
implemented designs that conform to functional flow lines in House-GAN, and further
achieved detailed control over the opening of doors in the development of House-GAN++.
Huang et al. introduced the attention mechanism in layout design, achieving innovation in
the automatic design at the algorithm level. The regularity and clear functional division of
small-scale indoor spaces align more closely with the generation logic of algorithms. In
the past five years, the development has been rapid, forming a basic research paradigm
of ‘site-layout-plan’ and gradually improving the scientific nature of GAN applications in
space layout generation design through the introduction of scientific indices and algorithm
improvements, approaching actual engineering application requirements.

This research paradigm has gradually expanded to outdoor space design in addition
to small-scale indoor space design. Compared to small-scale indoor design, medium-scale
outdoor space is more complex in terms of spatial type, layout content, and design rules.
Previous research found that related studies typically choose research objects with strong
functionality and regularity in outdoor space design, such as residential areas and schools.
For example, Cong [14], Lin [15], Zhang [16], Liu [17], and Pan [18] simplified the design
process to the ‘site-layout-plan’ paradigm and made preliminary explorations into outdoor
space design without affecting the design outcome. In outdoor space design, green lands
in parks are more complex, so there is less related research. This is because landscape
design involves transforming existing sites, rather than re-creating space functions and
forms within the boundaries of building red lines. The spatial boundaries of landscape
design are more ambiguous, the layout content is more diverse, and the design rules are
more flexible. But in existing research, the general research paradigm is also ‘site-layout-
plan.’ For example, Liu [19] and others chose the well-organized and spatially enclosed
private gardens in the Jiangnan region as research objects and explored the ‘site-layout’
design process, proving its feasibility; Zhou [20] and others realized the ‘layout-plan’
design process.

Current research in this field has expanded from indoor space design to outdoor space
planning. Methods have primarily focused on training and generating small samples,
often simplifying the complex design process to a ‘site-layout-plan’ generation process.
The bottlenecks in this field of research are as follows: (1) a focus on clear, regular indoor
space design, with less discussion of complex layout generation problems such as park
green spaces; (2) a lack of sufficient open source data, which limits the effectiveness of
the generated results; and (3) a focus on technical details, with less research comparing
different algorithms and the differences between human designer and algorithm-driven
generated design results.

In summary, there is little research on whether neural networks can learn the design
rules of outdoor green spaces, including their layout and plan. As a result, our research
explores the design of complex outdoor space generation achieved using a GANs algorithm
based on existing research results. A data enhancement module is also constructed and
further optimized for training to solve the data bottleneck problem. Finally, human design
generation results are compared to explore the differences between algorithm-driven
generative designs and human design results.

3. Methodology
3.1. Analytical Framework

This study aims to propose a new automated park layout design system (Figure 1); the
overall experimental framework is shown in Figure 2. The dataset is one of the important
influencing factors guiding the process to obtain the desired results, as each sample contains
basic information regarding the park layout within it. At this stage, the amount of publicly
available data for green space design schemes is relatively small compared to architectural
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design schemes, so we adopt multiple sources for data collection. The following labeling
process extracts the layout elements in the park plan, with different labels for each category.
All images are then processed to meet the requirements of the selected neural network.
After that, a data augmentation system is trained based on the neural network, enabling the
original 194 datasets to be automatically augmented to 4047 datasets, constructing a more
robust dataset to explore the relationship between algorithm design and human design.
We have introduced pix2pix [21] and CycleGAN [22], two neural networks used for image
generation. The two datasets are fed into the neural network, and the algorithm outputs
the corresponding arithmetic results. In the evaluation phase, the two algorithm generation
capabilities are evaluated, followed by a comparative analysis of human and algorithmic
designs based on the optimized full-flow automated generation system to examine the
potential of the system for application in human–machine co-design relationships. More
details on each step are developed in the following sections.
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3.2. Data Collection and Preparation

Small to medium-scale parkland was chosen as the target green space for this study.
Community parks (1–10 hectares) are the most prevalent; this includes a small number
of small-scale comprehensive parks (over 10 hectares) and a small number of other green
space types that meet the requirements. Considering that outdoor space types are diverse
and conditions are complex, and that deep learning is a statistical-based probabilistic model,
overly complex and diverse unordered data samples will lead to algorithm training failure.
Therefore, both the suitability of the algorithm features and the study object features were
considered in selecting the study object. We selected the samples based on the following
quadratic aspects: (a) strong regularity, (b) fewer special design conditions, (c) clearer
functional areas, (d) smaller site height differences. In the end, we selected 194 small
and medium-scale parks as training samples in the original dataset and 6 cases as test
samples. The test cases cover as many functions as possible and cover a variety of park
layout organization patterns, such as central, multi-group, and axial, providing a reference
for exploring the generation of complex spatial types for research. Next, as the pix2pix
algorithm requires a one-to-one corresponding annotated dataset for supervised learning,
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which, in CycleGAN, needs to become unsupervised learning of images, this paper unifies
the resolution of each sample to 256 × 256 pixels.

After collecting the small and medium-scale park plan dataset, we used different colors
to label the park layout elements, as shown in Figure 3. The selection and classification of
labeled elements depended on the experiment’s objectives and the objects’ characteristics.
We finally identified eight categories of elements through semantic segmentation and
comparison of different styles of park plans, to represent the key elements of the park
layout. Each plan was segmented into eight categories: green spaces, water bodies, roads,
paved squares, structures, red lines, urban roads, and plants.
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3.3. LandscapeGAN Model

The study relied heavily on pix2pix and CycleGAN to build an automated design
layout generation system.

3.3.1. Working Principles and Implementation of pix2pix

pix2pix is a conditional generative adversarial network (cGAN) that learns mapping
from input images to output images. It was introduced in a 2017 paper by Isola et al. [21],
titled ‘Image-to-image translation with conditional adversarial networks’.

The basic structure of the pix2pix algorithm is shown in Figure 4. The pix2pix model
includes a generator and a discriminator, the former being G and the latter being D.
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First, in the input layer, the two are input to the generator D of the pix2pix model
as paired images (x, y); subsequently, generator G generates a fake park plan G(x) and
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merges the fake park plan (G(x)) and the actual park layout (x) into the discriminator
(D). The discriminator (D) outputs a probability value with a threshold of [0, 1], which
indicates whether the input is true (i.e., whether it is true or not), and they are both input
into the discriminator (D). Finally, the discriminator (D) outputs a probability value with a
threshold of [0, 1], which indicates whether the input is true (i.e., whether it is a real “layout
plan” data pair). A probability value close to 1 means that the data are close to the real
‘layout-plan.’ or ‘layout-floor plan,’ and, conversely, a probability value close to 0 means
that the model considers them false data generated by the generator. While the above
three steps are performed, the model is trained in another way: first, the two are entered
as pairs of images (x, y) into the discriminator (D) of the pix2pix model; subsequently, the
discriminator follows a similar process as described above, predicting whether the input
image is true or not, based on the probability values.

In summary, after two rounds of adversarial generation training, the generator and the
discriminator improve their generative and discriminatory capabilities, respectively. When
the capabilities of the generator and the discriminator are balanced (i.e., the Nash equilib-
rium point), the generated results can deceive the discriminator and generate ‘false’ data.

3.3.2. Working Principles and Implementation of CycleGAN

CycleGAN is a type of generative adversarial network (GAN) that enables image-
to-image translation using unpaired training data. It was introduced in a 2017 paper by
Zhu et al. [22], titled ‘Unpaired Image-to-Image Translation using Cycle-Consistent Adver-
sarial Networks.’ It is a conditional GAN framework that learns multi-model mapping
from two image domains to another image domain by labeling multiple pieces of semantic
information. The CycleGAN model is used several times in the automatic generation
system designed in this paper. Taking the design plan generation system as an example,
we find that the two image domains refer to the real park design scheme, image domain
X, and the real park layout scheme, image domain Y, while the semantic information is
the layout elements represented in different colors from the labeled images. The detailed
architecture of CycleGAN is shown in Figure 5.
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design solution Y to park layout solution X. The model includes 2 generators, assumed
to be Generator (X to Y) and Generator (Y to X). As shown in the bottom left of Figure 5,
in the generation process of (X to Y), Generator (X to Y) generates Park Layout Scheme Y
(True Layout→ False Layout) based on Park Design Scheme X, and then Generator (Y to
X) generates Park Design Scheme X (False Layout→ False Layout) based on Park Layout
Scheme Y in reverse. Similarly, as shown in the bottom right of the figure, in the generation
process of (Y to X), Generator (Y to B) generates Park Design Scheme X (True Layout→
False Layout) based on Park Layout Scheme Y, and then Generator (X to Y) generates Park
Layout Scheme Y (False Layout→ False Layout) based on Park Design Scheme X in the
reverse of this process, Generator (X to Y) and Generator (Y to X) are opposite generation
processes, bound by their respective cycle-consistency loss. The model also includes 2
discriminators, assumed to be Discriminator (X) and Discriminator (Y), which are used to
determine whether the input park design scheme X and park layout scheme Y are “true” or
“false”, respectively.

3.4. Training and Testing
3.4.1. Training

This study includes four stages: pre-training, data augmentation, optimization train-
ing, and testing.

Firstly, a pre-experiment (Figure 6) was conducted. Through two neural network
trainings, the design layout generation system and the design plan generation system
were constructed.
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In the next term, the automatic plan optimization system and the semantic segmen-
tation system were trained to realize data augmentation. This workflow is based on the
pix2pix model [21], ROI technique, and 194 original datasets, as shown in Figure 7. The
final enhanced dataset had 4047 images.
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3.4.2. Testing

In the testing section, we conducted two comparative experiments, as shown in
Figure 9. First, we used CycleGAN and pix2pix to establish the design plan generation
system and performed algorithm evaluation during this process.
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Second, we used both designer hand-drawn layouts and algorithm-generated layout
images as inputs for design mode evaluation, as shown in Figure 10.

In order to ensure that all experiments are conducted on the same basis, this paper
selects six cases with distinctive features in the park layout as test samples to observe the
applicability and accuracy of the trained neural network in different scenarios.

Figure 11 shows the six test samples. They exhibit various layout characteristics: Sam-
ple 1 and 2 are more general, featuring regular land contours and relatively straightforward
building and water features. Samples 3, 4, 5, and 6 are more specific and unique in their
layout. Cases 3, 4, and 5 have irregular site contours and complex building and water
conditions. Case 6 has a central axis arrangement of the original building conditions.
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4. Results and Analysis
4.1. Data Augmentation Result

We tested the design plan generation system before and after optimization using the
six test samples shown in Figure 12 as objects. The algorithm could generate results similar
to the actual design plans and handle the connection between different land types well.
The algorithm generated results that were more unified and stable in style.

In our qualitative evaluation of the expression of standards, we found that the results
generated after data augmentation improved significantly in the following two aspects:
(1) The algorithm yielded sharper tree shapes, and the differentiation between trees and
grass was more discernible. (2) The algorithm was closer to the actual results regarding the
color of buildings, paving, and water bodies.
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The data enhancement system designed in this paper quickly and efficiently expanded
the data volume, effectively improving the training quality and generating the plan diagram
of the functional system for small- and medium-scale community parks. The results have
high authenticity and rationality.

4.2. Evaluation
4.2.1. Algorithm Evaluation

Based on the original dataset, we trained a design layout generation system and a
design plan generation system in sequence. We used pix2pix and CycleGAN algorithms
as models during the training. Afterward, the six test samples were input into the two
generation systems, one after the other, to compare and analyze the scenarios suitable
for each algorithm. In testing the design plan generation system, we selected the layout
program generated by CycleGAN as the test sample. We present the results in Figure 13.
Next, we will conduct a detailed analysis of the test results.

In the layout generation experiment results (Figure 13), the machine learning results
differ from the actual situation. The pix2pix and CycleGAN algorithms showed logical
coherence in terms of the performance of the path, space, planting, waterfront design, and
element associations. Thus, we gained a clearer understanding of the design patterns by
using both pix2pix and CycleGAN algorithms to generate park layout designs.

(a) The area occupied by each element is reasonable. The road system runs through
the entire park (Figure 14a), forming a more fluid and reasonable park road flow. The
distribution of the plants shows natural (Figure 14b) and regular (Figure 14c) planting,
which can be adapted to different areas of plant elements according to the surrounding
environment (Figure 14d). The paving area presents adaptability with the surrounding
environment (retained buildings, retained water bodies, urban roads, and design scope),
which can be designed with different areas such as banded and dot-shaped paving ac-
cording to the waterfront environment and building area. As depicted in Figure 14e, the
algorithm designed a large amount of pavement around the building, with a minimal
amount around the lawn.
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(b) The position relationship between the various elements is reasonable (Figure 15).
The design reflects the relationship between the building, road, and paving: the pavement
connects to the building (Figure 15a,b) and the road system connects the building and the
paving to form a landscape node (Figure 15c). At the same time, in the waterfront area, the
pavement, vegetation, and water body present a harmonious and coherent spatial layout,
forming a rich waterfront space The unique point is that, in Figure 15e,f, the algorithm
creates a water-separated correspondence between the landscape node and the building
along the long axis of the water surface, reflecting the waterfront design’s approach of
using the view.
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In the test results of the plan generation experiment, the results of the pix2pix and
CycleGAN algorithms present differentiated styles, as shown in Figure 16.
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Figure 16. Plan generation experimental results.

In the test results of pix2pix, the algorithm can differentiate between different colors
of water bodies, vegetation, and paving. However, it also shows certain deficiencies:
(1) A more pronounced red striped texture appears in the rendering of roads. (2) Some
areas showing mode collapse for highly similar samples were generated, as shown in
Figure 17. Mode collapse is a problem in generative adversarial networks, which means
the generator can only produce a few or one mode of data, instead of reflecting the true
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diversity of data. This leads to unrealistic and repetitive results. For example, when
generating designs, the algorithm may create similar image patterns in the complex areas
of the image.
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The test results of CycleGAN can reflect the site type more accurately and show
a specific rendering style: (1) lavender is selected for the representation of structures,
(2) yellow is dominant in the representation of plazas and paving, (3) the grass and trees
can be distinguished more clearly with different depths of green, and (4) the water surface
can be accurately represented in blue. The main defects of the model plan are as follows:
(1) the clarity of the trees could be better; (2) the colors of the structures, paving, and water
bodies are still very different from the actual results.

Currently, pix2pix (pix2pixHD) or CycleGAN is mainly used as the training algorithm
in automatic generation research in the field of planning and design; it has been used by
Liu [19], Zhou [20], andYe [23], among others. However, fewer studies have conducted
a comparative analysis of the application scenarios of the two algorithms. Based on the
experimental analysis in this section, CycleGAN outperforms pix2pix in terms of both
stability and accuracy in target generation and has more potential for generative design.

4.2.2. Design Mode Evaluation

Generative design methods based on deep learning are emerging, with specific dif-
ferences from traditional design. The system’s efficiency has been dramatically improved,
reducing the time needed to complete the task. However, this improvement in efficiency
comes with a trade-off: the designer’s role needs to be more prominent, and the algorithm
can be difficult to control. Therefore, in this subsection of the evaluation, we compare and
analyze the similarities and differences between the results generated by AI-assisted design
and AI full-flow automatic design (shown as Figure 18) and explore the human–computer
interaction working mode under the full-flow automatic design generation system.

When analyzing the homogeneity and differences between the two model classes,
Sample 5 (shown as Figure 19) and Sample 6 (shown as Figure 20) are used as examples.
As shown in the red boxes of Figure 19, Sample 5’s upper waterfront area design utilizes
the waterfront walkway and central lawn as its foundation. Both the algorithm and the
designer have participated in this design. Despite the variations in the way of space
enclosure, the algorithm opts for a combination of paving and lawn to shape an open space.
The human designer, On the other hand, has adopted a semi-open space with a grouping
of plants and a scattered arrangement. The perception of space differs between the two
design approaches, but both comply with the basic design principles and are logically
self-consistent. In designing sample 6, shown as the red boxes of Figure 20, symmetrically
distributing the landscaping following the buildings’ axial distribution was adopted by the
designer. The results generated by the algorithm show a certain degree of symmetry in the
design of the green space paving, but not yet to the high degree of symmetry presented in
the designer’s design.
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In summary, GAN demonstrates a unique ability to generate designs. The similarity
between the results generated by GAN and the designs created by the designer indicates
that GAN also has the ability to mine implicit patterns in design. In conclusion, an
automatic design system based on GAN has the potential to be integrated with human–
machine collaborative design process.
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5. Discussion

With the optimization of algorithms and the improvement of computational capabili-
ties and data resources, deep learning technology is expected to achieve a closer combina-
tion with automatic planning and design. This paper, based on the unique characteristics of
the outdoor medium and small-scale green spaces, explores the advantages and limitations
of new human–computer collaborative design methods through interdisciplinary research
in the context of new technologies.

This paper proposes a novel intelligent generation system for park layout based on
GANs algorithms. The system realizes the ‘construction, optimization, and validation’
of complex outdoor space generation design. It is constructed based on pix2pix and
CycleGAN and includes a data augmentation module to solve the data bottleneck problem.
The generation results of human design are compared to discuss the differences between
algorithm-driven generation.

In recent years, GANs have been widely used in image recognition and generation,
and a research paradigm has gradually been established in architecture, extending from
indoor space to outdoor space. However, no comprehensive research paradigm exists for
complex spaces such as parks and green spaces from site to design.

Early research focused on interior design [7–11], and in recent years there has been a
gradual emergence of automatic generation design for outdoor spaces, but mainly focuses
on functional areas with regular layout, such as residential areas [14]. To be more specific,
Liu et al. [17] studied generative design, focusing on the selection of research objects with
strong regularity and enclosed space in Jiangnan private gardens. Zhou et al. [20] et al.
focused on the rendering of line drawings in the generation design of outdoor spaces. Ye
et al.’s [23] research focused on the urban scale. Therefore, our research chose parks, which
are currently less studied but have important significance for outdoor green space, as the
research object. At the same time, a full-process system for generation and rendering was
constructed.

Based on the pix2pix and CycleGAN approach, this paper improves the model’s
conversion efficiency. It enhances the complexity and accuracy of the output design,
forming a complete design mode for green park spaces and generating a complete, readable,
and fundamentally reasonable medium and small-scale park design plan.

Understanding design patterns and the creativity of the generated results is integral
to the entire experimental process. In the layout generation phase, CycleGAN and pix2pix
understand the design patterns of functional zoning and landscape elements in terms
of form, position, and relationship by reading and learning the RGB values carried by
each sample in medium–small-scale park design. In the plan rendering phase, CycleGAN
understands the correspondence between actual colors and RGB values in layout diagrams
by learning from each sample and renders the plans flexibly. At the same time, the data
augmentation method driven by the algorithm designed in this experiment also has general
applicability to related fields such as architecture and interior design.

The GAN-based generative design model deviates from the conventional design
approach of “analyzing site problems and finding solutions” and instead emphasizes
obtaining design experience from numerous plans and rapidly generating plans according
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to input parameters, making the design process less transparent and manageable. This
method is highly efficient and achieves the expected human–computer interaction, but it
also challenges traditional planning and design concepts.

The above conclusions demonstrate the vast potential of GAN in the field of green
space system planning. However, the study still has certain limitations: the results of
data augmentation still have some irrationality and lack of control over details. Com-
pared with the current development of indoor and outdoor architectural design, there
are still significant limitations in terms of the scientific introduction of constraints and the
completeness of the generative process in current green space automatic design. As such,
further research in this field should include comprehensive external and three-dimensional
spatial constraints by enhancing the dataset, conducting targeted design experiments, and
refining the algorithms. It should also involve connecting the front-end and back-end with
three-dimensional analysis and site model construction, working towards generating more
functional outcomes for mechanical design.

6. Conclusions

This research constructed a novel intelligent generation system for park layout based
on GANs algorithms, achieving full-process automation of design generation for complex
outdoor spaces. We also studied the adaptability of pix2pix and CycleGAN algorithms in
generating designs and promoted further integration of artificial intelligence and planning
and design fields. In the meantime, this paper discussed the co-design models for humans
and GANs.

Data insufficiency and poor quality are the most important factors limiting this field’s
development. The data enhancement module proposed in this research provides a general
solution to break through this bottleneck.

With the continuous update of related technologies such as GANs, we expect this
research to stimulate the development of human–computer collaborative design methods,
introducing systematic and scientific thinking into traditional planning and design fields.
In our future research, we will pay more attention to the relationships between design
elements, rather than merely the image layout, at the design logic level. We are trying
to constrain the algorithm’s generation results with more site information conditions,
such as introducing external environmental information or more scientific indicators for
the park. At the technical method level, we are updating our existing techniques and
attempting to apply novel deep learning techniques such as Stable Diffusion, VQGAN
(Vector-Quantized Generative Adversarial Network), and so on, to pursue better generation
effects. In the meantime, this research incorporates urban green space planning from a
macro perspective. For designers, obtaining a scheme generated from a design layout in
seconds is more intuitive and efficient. For managers, the human–machine collaborative
design mode involves the reform of the design work business flow, which will provide
a new workflow. This will have profound impacts on the production mode, personnel
structure, and enterprise management framework. In the meantime, city green space
information can be collected to achieve city-scale applications by using large-scale urban
data. There are still many factors to be investigated, tested, and experienced in the future.
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