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Abstract: To reap the most advantages while maintaining the functioning of residential building
projects, sustainability concepts should be included at all stages of the construction decision-making
process. This research identified and investigated the barriers to the employment of cyber technology
in residential construction projects in order to ensure their long-term viability. Prior research identified
cyber technology barriers, which were then contextually explored using a questionnaire survey in the
Nigerian construction business. An exploratory factor analysis (EFA) revealed that cyber technology
hurdles may be classified into five constructs: knowledge, government, culture, project nature,
and regulations. The barriers model was also built using partial least square structural equation
modelling (PLS-SEM). According to the findings, project-related constraints were key impediments
to the implementation of cyber technology. The findings of this study might serve as a guide for
decision-makers in Nigeria’s construction industry looking to decrease costs and boost sustainability
via the use of cyber technology.

Keywords: building projects; construction revolution; cyber technology; project success; sustainability

1. Introduction

One of the pillars of every nation’s society, the residential construction sector helps
to ensure its residents enjoy a good quality of living and a high level of contentment [1].
Developed and developing nations’ residential structures are responsible for as much as
a third of the world’s total power usage and GHG emissions [2]. However, as the globe
evolves and urbanizes, residential allocation will not be able to meet the rising demand [3].
In both developed and developing nations, rapid urbanization is making it harder for
low-income people to find low-cost housing [4].

Around 828 million people are believed to be living in slums and other inadequate
housing conditions in developing countries. It is hypothesized that by 2020, this number
will have increased to 1.4 billion [3,5,6]. For instance, the construction field in some
developing nations to rely on outdated, labour-intensive industrial techniques that are
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linked to high levels of energy consumption, environmental damage, and safety concerns,
as well as low levels of productivity in the actual implementation of projects [7]. With
such rapid development, it is clear that residential building is essential to maintaining the
standard of living in these regions [8]. As a consequence, all of the nation’s governments
have made the construction of inexpensive housing a top priority by enacting various
regulations regarding affordable housing [1]. Nonetheless, there is some controversy about
whether low-income residents can afford to live in these residential buildings [3].

According to a variety of estimates, inefficiencies, mistakes, delays, and poor commu-
nications may raise the cost of construction by as much as 30% [9]. The chance of cost and
schedule overruns is increased if design faults, alterations or revisions to the design model
are not conveyed to the construction site immediately. Hence, providing project managers
with constant access to evolving design models may help them make more wise decisions.
The as-built model used in lifecycle management should also be updated to reflect any
alterations made onsite. The current process for updating as-built models after construction
is complete is laborious and error-prone since not all modifications are captured.

Previous research has brought up the need to develop “sustainable buildings” that are
not harmful to the environment and make effective use of resources [10]. Wolstenholme
et al. [11] call for further transformation of the construction industry via the use of effi-
cient and environmentally friendly building methods. In addition, construction industry
professionals cannot accurately quantify structures’ environmental impacts while being con-
structed [12]. Accordingly, virtual models’ long-term benefits stem from the fact that they
provide as-built information documentation, team communication, and building progress
visualization. Despite these benefits, their use is mostly restricted to the preconstruction
phase at now [13]. Two forms of virtual models are models made using computer-aided de-
sign (CAD) and building information modelling (BIM). If these models are used throughout
the construction, operation, and maintenance phases of a facility’s life cycle, the potential
benefits will be considerably enhanced. Virtual models and physical construction may be
combined to improve information and knowledge management throughout the design,
construction, and maintenance stages, which will ultimately give greater control over the
construction process [14].

Many researchers, including Chin et al. [15,16] and Sørensen [17], used several data
collection technologies, such as laser scanners, digital cameras, and radio frequency identifi-
cation tags, to link virtual models and actual buildings. Current technologies, however, do
not provide two-way integration or communication between physical and virtual models.
Improvements in facility feedback and control are impossible to achieve without this form
of bidirectional integration and communication. Bidirectional coordination in real time
between virtual models and physical structures allows for efficient feedback or control.
The term “bi-directional coordination” refers to the act of synchronizing changes made
to an object’s digital or physical representation [18]. In addition, computing resources
are required for “cyber–physical systems” integration, which involves synchronising the
virtual models with the actual building so that adjustments made in one environment are
reflected in the other to maintain bidirectional coordination.

Cyber–physical system, as used here in this research, is a system in which virtual
models are tightly coupled with and coordinated with their physical counterparts. Cyber–
physical systems using sensors allow for a connection between the virtual world (which
includes information, communication, and intelligence) and the real world [19]. As-built
documentation, construction process management, and environmentally responsible build-
ing practises are just some of the areas that may benefit from a cyber–physical systems-based
approach to improvement. The construction industry, in particular, stands to benefit greatly
from the incorporation of emerging cyber technologies such as the Internet of Things (IoT),
big data, artificial intelligence (AI), and cloud computing [20]. Design enhancement, perfor-
mance evaluation, resource management, risk management, energy conservation, pollution
reduction, and project delivery are just a few of the areas that have benefitted from the
gradual adoption of these technologies in the construction industry in recent years [21].
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Notwithstanding these developments, the construction industry remains behind other
industrial sectors, especially in developing nations, when it comes to the implementation
of intelligent processes [22]. Yet, revolutionary technologies are only being employed in a
select few sectors, and their efficacy in the building industry has only been the subject of
a few large studies. Consequently, the following question for its empirical investigation:
what prevents the construction sector from using cyber technology? This research plans
to employ causal inference techniques such as structural equation modelling (SEM) to
look at the challenges of using cyber technology to reach sustainability goals in residential
construction.

2. Barriers Affecting the Adoption of Cyber Technology in Construction

Previous research has made various contributions to the application of new tech-
nologies; nevertheless, relatively few studies have been conducted on the obstacles that
pre-vent new technologies from being adopted [23]. As a result, the scope of the literature
study was broadened to include research on the obstacles to implementing cutting-edge
technologies, including cyber technology, automation, and robots [23]. This resulted in
17 variables/indicators that might be considered to reflect the obstacles listed in Table 1,
in which the asterisk (*) symbol indicates in which reference these obstacles were listed.
According to the findings of Nnaji and Karakhan [24], there are 13 major obstacles to
using new technology for managing safety and health in the workplace. The results of
a survey sent out to 102 construction industry experts from around the United States
revealed the following five barriers to be the most pressing: “expensive upfront investment
required”, “need for extensive training before achieving optimal performance”, “concerns
regarding the availability of technical support”, “doubts regarding the reliability of these
technologies”, and “client rarely demands the use of these technologies”.

According to Osunsanmi et al. [25], using RFID with mobile technologies for monitor-
ing construction workers on site is restricted in South Africa due to the high cost of these
technologies and their low level of technical expertise. According to the findings of yet
another study carried out in the United States, the primary obstacles to the widespread use
of robotics in construction include the immaturity of the relevant technologies, the nature of
the industry itself, the complexity of the technical processes involved, the lack of economic
feasibility, and the absence of a strong culture of innovation. All these factors combine to
make widespread use of robotics in construction extremely difficult. On the other hand, in
a study carried out in the Malaysian construction industry by Yahya et al. [26], the main
barriers to the widespread use of construction robotics were found as follows: the high
costs associated with the acquisition, upkeep, and modernization of the new technologies.

According to Mahbub [27], financial investments, access to technical knowledge
and equipment, compatibility with current construction practises and operations, the
status of the labour force, and the industry’s characteristics and culture all influence the
degree to which the construction industry is prepared to use construction automation and
robotics. In their examination of the prominent barriers to IR 4.0 adoption among U.S.-based
construction companies, Demirkesen and Tezel [28] found that a lack of uniformity, legal
and contractual difficulties, and the cost of implementation were the most significant
challenges. According to a systematic review by [29], technical limitations, problems with
standardisation, haphazard technology design, development, and implementation, a lack
of studies of the factors influencing the acceptance of new technologies, and a lack of
understanding of the human aspects of technological change are the primary obstacles to
achieving digital skin on the construction site. Following an examination of the various
research studies related to the hindrances in adopting cyber technology in the construction
sector, it is important to note that this particular study primarily relied on the construction
of a barrier model based on the investigation conducted by Yap et al. [23] for two reasons.
First, it is the most recent study in the literature regarding this topic. Second, it gathered
the barriers based on an extensive review of 15 studies on this topic over the past decade.
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Table 1. Summary of barriers affecting the adoption of cyber technology in construction.

References

S/N Barriers [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43]

B1 Uniqueness of construction
finished products * * *

B2 Discreteness of construction
process * * * * *

B3 Uncertainty of construction
resource * * * *

B4 Complexity and huge
uncertainty * * * *

B5 Harsh construction
environment with high risk * * * * *

B6 Lack of awareness * * * * *

B7 High initial cost of
implementation *

B8 Fragmented construction
process * * * *

B9 Lack of standardized tool * * * *

B10 Government regulations * * * *

B11 Lack of interest from clients * * *

B12 Inadequate horizontal and
vertical communication * * * * * * * *

B13 Insufficient government
support * * *

B14 Professional complacency * * * * *

B15 Resistance to change * *

B16 Lack of market familiarity * * * *

B17 Inadequate public-private
partnership * * * * * *

3. Research Method

The review of literature on obstacles related to cyber technology revealed 17 potential
barriers that could impede its progress, as shown in Figure 1. To gain a deeper under-
standing of these obstacles, a questionnaire survey was conducted among residential
construction professionals who possessed industry expertise. The survey provided a list
of the identified cyber technology barriers, and an exploratory factor analysis (EFA) was
conducted to assess their comprehensiveness and clarity, taking into account the various
variables and categories associated with them.
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3.1. Model Development

Partial least squares structural equation modelling (PLS-SEM) has attracted a lot of
attention across different fields, such as business research and the social sciences [44]. In
recent times, numerous studies on the PLS-SEM methodology have been published in major
SSCI publications [45–47]. To evaluate the significance of the identified cyber technological
obstacles using SEM, the acquired data were analysed using the latest version of PLS-SEM
software, SMART-PLS 3.2.7. At first, partial least squares structural equation modelling
(PLS-SEM) was widely lauded for its ability to provide better predictions compared to
covariance-based structural equation modelling (CB-SEM) [48], despite the fact that the
two methodologies have only minor differences [49]. The statistical analysis conducted in
this study encompassed an evaluation of both the measurement and structural models.

3.1.1. Common Method Variance

To assess the discrepancy or inaccuracy in the study’s conclusions due to measurement
techniques rather than the constructs represented by the measures, The common method
bias (CMB) was determined by computing the common method variance (CMV). Unlike
the constructs, CMB focuses on the measurement method used in the analysis [50]. CMV
may also be seen as a variance overlap that can be attributed to constructs and the kind of
measurement devices used. This is another way of looking at CMV [50]. CMV is especially
problematic where data, such as a questionnaire to be filled out by the respondent, are
obtained from a certain source [51,52].

In some situations, self-reported data may overemphasize or limit the extent of the
researched associations, resulting in problems [52,53]. This issue can be important, particu-
larly given that the information is based on self-reporting, subjective, and obtained from
only one source. Thus, it is vital to recognize shared method variances and tackle these
concerns. One approach to achieving this is by conducting a thorough and structured test
focused on one factor, much like Harman’s (1976) test, to establish whether a single factor
is present in the factor analysis. This factor accounts for most variance [52].
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3.1.2. Construct Validity Analysis

Confirmatory factor analysis (CFA) and exploratory factor analysis (EFA) are com-
monly used for factor analysis. In this study, CFA was used to assess the underlying
structure of various variables in hypotheses and theories, while EFA was used to gather
information on relationships between multiple variables and to condense a large number
of variables into a few fundamental structures [54]. EFA is suitable for analysing ordinal or
interval data. A scatterplot illustrates the interrelationships between the variables, whether
they are only partially or fully linked. The purpose of EFA is to reduce the number of
components required to represent a set of variables. The formula for conducting EFA is
presented as Equation (1).

Xi = ai1F1 + ai2F2 + . . . + aimFm + ei (1)

In this formula, “Xi” represents the ith standardized measurable variable, “ai” refers
to the factor loading or score for variable “i”, “F” represents the factor under analysis, and
“ei” represents the portion of the variable that cannot be accounted for by the factors.

Key multivariate analytic methods, such as exploratory factor analysis (EFA), were
employed to aid the researchers in examining the fundamental structures or structure
among cyber technology barrier elements. The primary use of principal component anal-
ysis (PCA) was to evaluate the one-dimensional, reliable, and valid measurement items
for particular constructs, also known as measurement models. PCA was preferred over
other factor analysis approaches such as principal axis factoring (PAF), image factoring,
maximum probability, and alpha factoring due to its greater precision and ease of use [55].

If EFA reveals potential answers but no pre-existing theory or model, PCA may be the
next best step [54]. PCA is often used in exploratory factor analysis (EFA) since it is the
standard implementation in many statistical tools, as stated by Thompson [56]. Instead of
using a simple oblimin or Promax rotation, we opted for Varimax rotation, which balances
the workload evenly across all variables. Furthermore, Varimax is a superb all-around
method for enhancing the clarity of factors and is therefore applicable to basic factor
analysis [57]. It is believed that the chosen sample size of 119 and the number of variables
included in this research, totalling 17, are sufficient for factor analysis [58].

3.1.3. Measurement Model

The measurement model uncovers both the underlying structure of the items and
their present interrelationships [59]. Later sections presented a detailed examination of the
convergent and discriminant validity of the measurement model.

Convergent Validity

The concept of convergent validity refers to how well distinct measures (barriers) of
the same construct agree with one another [60]. It is recognized as a component of construct
validity. To evaluate the convergent validity of the PLS-calculated constructs, three tests
were developed as follows: Cronbach’s alpha (α), composite reliability scores (ρc) and
average variance extracted (AVE) [61]. It was proposed by Nunnally and Bernstein [62]
that a ρc value of 0.7 represents the point at which the composite’s dependability may be
considered “moderate”. Values over 0.70 were deemed appropriate for all studies, whereas
those above 0.60 were deemed suitable for exploratory studies [63]. Finally, the last test
was AVE. Convergent validity of model constructs is often evaluated using this method,
with values over 0.50 indicating sufficient convergent validity [63].

Discriminant Validity

Discriminant validity indicates that the phenomenon under evaluation is empirically
distinct and that the phenomenon cannot be identified by any available measures [64].
When establishing discriminative validity, Campbell and Fiske [65] argued that the degree
to which different measures are alike should not be excessive.
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Structural Model Analysis

In order to determine which constraints on cyber technology are most pressing, this
research used SEM. For this to occur, we must determine the route coefficients between
the observed ones. Based on the data shown later below in Figure 4, it was believed that £
(barriers of cyber technology structures) were directly responsible for µ (barriers of cyber
technology implementation). Here, we may use a linear equation, as shown in Equation (2),
to depict the inner relationship between the £, µ and €1 structures in the structural model
as follows [66]:

µ = β £ + €1 (2)

In this situation, the connection between the cyber technology barrier constructs is
represented by the path coefficient (β), and the residual variance at this structural level is
expected to be present in (€1). The standardized regression weight (β) is similar to the β

weight in a multiple regression model. If the weight is found to be statistically significant,
its sign should align with the prediction of the model.

The main concern at present is assessing the significance of the path coefficient (β). As
with CFA, the standard errors of the path coefficients were computed using a bootstrap-
ping technique integrated into the SmartPLS 3.2.7 software. Based on the recommenda-
tions of Henseler et al. [44], the t-statistics for hypothesis testing were calculated using
5000 subsamples. Equation (2) was used to build four structural equations for the cyber
technology barrier constructs in the PLS Model, each expressing an inner relation between
the constructs.

4. Data Collection and Case Study

To explore the impact of cyber technology on operations in the Nigerian residential
building industry, a questionnaire was distributed to a wider range of potential participants.
The survey consisted of three main sections: the first collected demographic information
from the respondents, the second section focused on obstacles posed by cyber technology
(detailed in Table 1), and the third section contained open-ended questions.

The outreach had three key targets: contractors, consultants, and customers. Occupa-
tion is a second method of categorizing them. Quantity surveyors, construction workers,
architects, and engineers. The Likert scale was used to rate the hindrances of cyber technol-
ogy by the participants in this study. Each obstacle was rated by the respondents based on
their knowledge and experience. The scale ranged from 1 (no or very small) to 5 (extremely
high) with the intermediate values being 2 (small), 3 (average), and 4 (high). This rating
system has been implemented in various prior studies [67–72]. The study used a sample
strategy known as convenience sampling. This aims to guarantee that all eligible members
have a fair chance of being chosen. Convenience sampling is a non-probability sampling
technique where the researcher selects participants based on their ease of availability and
willingness to participate in the study. In other words, participants are chosen because they
are convenient to reach, rather than being selected randomly. Thus, the sample size was
chosen by means of purposive sampling. This is due to the fact that surveying building
industry specialists is crucial to the methodology of the research. Purposive sampling is
a non-probability sampling technique where the researcher selects participants based on
a specific purpose or criteria, such as their expertise, experience, or knowledge about a
particular topic. This method is often used in qualitative research when the researcher is
looking for a specific type of participant or when the population is difficult to access.

Furthermore, the sample size for this study was determined by a thorough assessment
of the planned methodology [73]. According to Yin [74], a sample size of 100 or more is
recommended for SEM. The response rate for the study’s in-person (self-administered)
survey was 82%, with 98 respondents out of 119 participating. This rate of return was
considered appropriate for this inquiry [75,76].
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5. Data Analysis
5.1. Common Method Bias

The reliability of research might be compromised by common method bias, a kind of
error (variance) measurement. This refers to the variance in measured and estimated vari-
ables that is due to systematic error [57]. Harman’s single-factor model evaluation shows
how this may be quantified by measuring a number of different structural elements [28].
This study evaluated the standard deviation using the single-factor test [58]. If the total
variance of the components is less than 50%, there is a possibility that the results are not
affected by common method bias [28]. Given that the initial set of components explains
only 22.0% of the total variance, it is evident that the results are not influenced by common
method variance, as it is less than 50% [28].

5.2. Exploratory Factor Analysis (Questionnaire I)

EFA was used to examine the factorability structure of 17 items linked to cyber technol-
ogy barriers. Connections have been made using a wide variety of well-known factorability
parameters. It is usual practice to utilize Kaiser–Meyer–Olkin (KMO), a factor homogene-
ity measure, to ensure that partial correlations among variables are small [77]. When
doing factor analysis, the KMO index should be at least 0.6 to be considered valid [78].
Bartlett’s sphericity test also shows that the identity matrix serves as the association matrix
at p < 0.05 [79,80].

Table 2 shows the KMO and the Bartlett test for the various barriers to adopting cyber
technology in the study area. The KMO statistic is used to determine if the data provided
for factor analysis are suitable for analysis. Bartlett’s test of sphericity is also used to
determine if the data under investigation are appropriate for factor analysis. In this case,
the KMO coefficient is 0.703, which is above the required threshold of 0.70. This indicates
that there are sufficient factors or barriers for factor analysis. Additionally, the p-value
obtained from Bartlett’s test of sphericity (0.005) meets the 5% significance level (p < 0.05)
for a degree of freedom of 105 and an estimated chi-square value of 145.911. This suggests
that the data concerning the identified barriers are appropriate for conducting exploratory
factor analysis. A review of the plot in Figure 2 reveals a clear breakpoint at the eighth
component. The point on the plot where the curve’s slope levels off indicates the number
of components that the analysis should generate. It is evident from the plot that there are
eight groups of factors.

Table 2. Kaiser–Meyer–Olkin KMO and Bartlett’s Test coefficients of the barriers.

Kaiser–Meyer–Olkin (KMO) 0.703

Bartlett’s Test of Sphericity
Approx. Chi-Square 145.911

df 105
Sig. 0.005

Table 3 presents the matrices that show the relationship between the eight identified
barriers for cyber technology and the extracted components. The matrices indicate whether
the relationship between each factor and each component is positive or negative. The
principal component analysis (PCA) extraction method was used to explain the total
variance of the barriers to adopting cyber technology in the construction industry. The
research confirmed the presence of eight components with initial eigenvalues greater than
1, explaining variances of 13.57%, 13.17%, 12.75%, 11.98%, 11.10%, 10.28%, 9.46%, and
9.46%, respectively (as shown in Table 4). Table 5 displays the rotational component matrix
for the hurdles to construction sector use of cyber technology. After 11 iterations, the
matrix was produced, with the rotation convergent on the initial eigenvalues of 1. The
highlighted matrices in the table in bold font reflect the barriers with the smallest initial
eigenvalue variation.
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Table 3. Barrier component matrix.

Barriers
Components

1 2 3 4 5 6 7 8

B1 0.009 0.309 0.751 0.344 −0.202 0.017 −0.269 0.015
B2 0.115 0.368 −0.206 −0.586 0.359 0.502 0.145 0.082
B3 −0.014 0.198 0.806 −0.262 −0.066 0.249 0.225 0.302
B4 −0.705 0.179 −0.126 0.477 0.259 0.119 0.224 −0.065
B5 −0.590 −0.609 −0.128 0.165 −0.077 −0.183 0.325 −0.051
B6 0.786 −0.321 0.333 0.081 0.232 −0.005 0.209 −0.021
B7 0.419 0.342 0.088 0.101 0.408 −0.438 0.296 −0.394
B8 −0.074 −0.521 0.062 0.217 0.559 0.395 −0.225 0.125
B9 −0.519 0.310 −0.186 −0.438 0.303 −0.180 −0.474 −0.071
B10 0.544 −0.415 0.014 −0.437 −0.271 0.168 0.274 −0.158
B11 −0.222 0.303 −0.415 0.150 −0.503 0.116 0.214 0.494
B12 −0.082 0.768 0.091 0.129 0.423 0.089 0.229 0.197
B13 0.670 0.142 −0.165 0.532 0.147 −0.204 −0.011 0.352
B14 0.352 0.236 0.000 0.378 −0.294 0.502 −0.347 −0.356
B15 0.198 0.739 −0.302 0.055 −0.250 0.143 0.197 −0.379
B16 0.664 0.246 −0.183 −0.244 −0.071 −0.418 −0.263 0.295
B17 −0.622 0.284 0.525 −0.193 −0.184 −0.315 0.047 −0.086

Table 4. Barriers total variance explained.

Component
Initial Eigenvalues Rotation Sums of Squared Loadings

Total % of
Variance

Cumulative
% Total % of

Variance
Cumulative

%

1 3.719 21.879 21.879 2.308 13.574 13.574
2 2.878 16.929 38.808 2.239 13.170 26.743
3 2.054 12.082 50.890 2.167 12.748 39.491
4 1.797 10.568 61.458 2.037 11.982 51.473
5 1.586 9.328 70.787 1.887 11.099 62.572
6 1.380 8.115 78.902 1.747 10.278 72.850
7 1.110 6.531 85.433 1.608 9.462 82.312
8 1.078 6.340 91.774 1.608 9.462 91.774
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Table 5. Barriers rotated component matrix.

Barriers
Component

Code 1 2 3 4 5 6 7 8

Lack of awareness B6 0.087 0.222 0.015 0.740 −0.005 −0.352 0.395 0.088
High initial cost of implementation B7 0.067 −0.022 −0.134 −0.012 0.019 0.960 0.011 −0.008
Fragmented construction process B8 −0.039 −0.062 0.125 0.930 −0.030 0.259 −0.105 −0.029

Complexity of projects and its huge
uncertainties B4 −0.617 0.700 −0.088 −0.111 −0.016 −0.047 −0.047 −0.113

Harsh construction environment
with high risk B5 −0.637 −0.064 0.019 −0.244 −0.132 −0.408 −0.480 −0.164

Lack of standardized tool B9 0.280 −0.297 0.678 0.109 −0.226 0.042 0.010 0.493
Government regulations B10 0.198 0.248 0.225 −0.081 0.379 0.057 −0.070 0.776

Uniqueness of construction finished
products B1 −0.200 0.091 0.110 −0.125 −0.876 0.085 0.055 0.092

Lack of interest from clients B11 0.075 0.220 −0.911 −0.095 −0.041 0.180 −0.127 0.053
Inadequate horizontal and vertical

communication B12 0.041 −0.820 0.355 −0.040 0.081 0.211 −0.030 0.091

Insufficient government support B13 0.027 0.234 0.116 −0.085 0.365 0.040 −0.052 −0.823
Discreteness of construction process B2 0.089 0.751 0.034 0.252 0.212 0.458 −0.003 0.097

Professional complacency B14 0.633 0.344 0.607 −0.208 −0.037 −0.133 0.116 0.054
Resistance to change B15 0.028 −0.039 0.145 −0.013 0.063 −0.023 0.938 −0.028

Lack of market familiarity B16 0.024 0.187 0.034 −0.140 0.762 0.302 0.466 0.018
Inadequate public-private

partnership B17 0.924 −0.137 0.029 −0.104 0.198 0.035 −0.054 0.047

Uncertainty of construction resource B3 −0.279 0.144 −0.492 0.603 0.306 −0.235 −0.262 0.041

The bold font indicates the barriers with the smallest initial eigenvalue variation close to one.

Table 6 displays the different factors that have similar characteristics, which were
identified through the extracted components. The factors that have comparable extraction
coefficients are grouped into components. Meanwhile, Table 7 presents the various group-
ings of barriers to the adoption of cyber technology in the construction industry, based on
the similarities in their extraction coefficients. The factor loadings indicate the eigenvalues
of each factor relative to the stated eigenvalue of 1. However, not all loading factors exceed
the threshold of 0.5, as only B1, B3, and B12 have loading factors lower than this threshold.
Thus, the exploratory factor analysis of all 17 items yields six accepted groups, which are
Knowledge, Government, Culture, Project, Regulations, and Partnership.

Table 6. Commonalities of the barriers to the extracted components.

Commonalities

Barriers Extraction

B1 0.892
B2 0.944
B3 0.966
B4 0.908
B5 0.911
B6 0.935
B7 0.912
B8 0.862
B9 0.946
B10 0.861
B11 0.892
B12 0.900
B13 0.966
B14 0.908
B15 0.945
B16 0.930
B17 0.923



Buildings 2023, 13, 1052 11 of 21

Table 7. Component factor/barrier groups.

S/N Component Factors Code Barriers Factor Loadings

1
Component 1
(Knowledge)

B6 Lack of awareness 0.740

B16 Lack of market familiarity 0.665

2 Component 2
(Government)

B7 High initial cost of implementation 0.960

B11 Lack of interest from clients 0.620

B13 Insufficient government support 0.762

3 Component 3 (Culture)
B8 Fragmented construction process 0.930

B14 Professional complacency 0.633

4 Component 4 (project)

B4 Complexity of projects and its huge uncertainties 0.700

B15 Resistance to change 0.938

B2 Discreteness of construction process 0.558

5 Component 5
B1 * Uniqueness of construction finished products * 0.110

B12 * Inadequate horizontal and vertical communication * 0.355

6
Component 6
(Regulations)

B5 Harsh construction environment 0.069

B10 Government regulations 0.776

7
Component 7
(Partnership)

B9 Lack of standardized tool. 0.678

B17 Inadequate public-private partnership 0.924

8 Component 8 B3 * Uncertainty of construction resource * 0.303

* These items were excluded due to low-loading.

The study has computed reliability statistics for the factors derived from the ex-
ploratory factor analysis. The variables associated with each factor were chosen based on
their highest loading values in the structure matrix. According to Nunnally’s criterion
(1994), new measurements must have a Cronbach alpha value above 0.6. For instance,
values exceeding 0.75 are considered highly reliable when the average value is 0.7. Since the
obtained Cronbach alpha values are greater than 0.6, the results are reliable. Additionally,
all items have average set correlations above 0.3, which suggests that they share consistent
internal variables [55].

5.2.1. Measurement Model

In the SEM-PLS analysis of reflecting measurement models (CSFs), internal consis-
tency, convergent validity, and discriminant validity must all be assessed. The structural
model will be examined after establishing the validity and reliability of the measurement
model [81]. Table 8 shows that all model constructs are valid since their α and ρc values are
all greater than 0.70 [82].

Table 8. The result of convergent validity.

Constructs Cronbach’s Alpha Composite
Reliability AVE

Knowledge 0.728 0.745 0.550
Government 0.853 0.931 0.872

Culture 0.785 0.788 0.598
Project 0.907 0.941 0.843

Regulations 0.708 0.872 0.774
Partnership 0.715 0.859 0.755
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Table 4 indicates that all constructs meet the criteria for average variance extracted
(AVE) compliance, with AVE values exceeding 0.5, which is considered acceptable [61].
Table 5 displays the results obtained from using the PLS algorithm 3.0, which indicates
that all the constructs in the study have AVE estimates above 50%. This indicates that the
measurement model is internally convergent and consistent, meaning that each construct
is adequately measured by its own set of measuring items within the study model. A
high outer load of an item indicates a strong connection and relationship with its relevant
components. Conversely, items with outer loadings below 0.4 are generally considered to
have poor visibility and should be removed from the scale [49]. Figure 3 displays the outer
loadings of the measurement models for all items. The results indicate that all external
loads, except for B11, which has been eliminated due to its low loading, are satisfactory.
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5.2.2. Discriminant Validity

Table 9 shows that the square root of the average variance extracted (AVE) for each
construct is greater than its correlation with any other construct, which suggests that there
is no significant relationship between the constructs. In addition, the AVE values being high
suggest that each predictor variable has a strong association with its respective construct,
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as depicted in Table 9. This indicates that each construct is measuring a single underlying
dimension or concept with high precision.

Table 9. Discriminant validity.

Constructs Culture Government Knowledge Partnership Regulations Project

Culture 0.742
Government 0.682 0.934
Knowledge 0.612 0.684 0.741
Partnership 0.063 0.066 0.078 0.869
Regulations 0.605 0.764 0.664 0.08 0.88

project 0.709 0.813 0.686 0.038 0.747 0.918

5.2.3. Path Model Validation

The collinearity among the objects in the formative construct of cyber technology
barriers was examined by calculating the variable inflation factor (VIF) values. It was found
that all VIF values were below 3.5, indicating that the subdomains contribute indepen-
dently to the higher-order constructs. To test the significance of the path coefficients, a
bootstrapping method was used, which revealed that all paths were statistically significant
at the 0.01 level [60] (as presented in Figure 4). Figure 4 displays that the partnership
construct had a p-value of 0.477, indicating that it was not statistically significant.
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6. Discussion

In contrast to many developed countries where the construction industry heavily
relies on cyber technology, the adoption of such technology in the building sector is
still in its early stages in developing countries, including Nigeria. The potential benefits
of cyber technology and its impact on stakeholders, different phases of a construction
project’s lifecycle, and key components of the supply chain are not yet fully understood,
despite the anticipation that emerging technologies will revolutionize the construction
industry. Additionally, Nigeria has faced construction quality issues and paradoxes [83].
For this reason, concepts of cyber technology must be used to address these issues. Cyber
technology as a core platform or element in projects is more likely to be authorized by
higher management if practitioners are familiar with cyber technology and its necessary
construction activities. According to the proposed model, six distinct elements of cyber
technology have a negative impact on its broad adoption, five of which were statistically
significant. This will have a beneficial effect on the long-term sustainability of residential
development projects. The obstacles associated with cyber technology can be rated using
the components of the PLS-SEM model, as explained in the next section. Money and time
can be saved while enhancing quality in the construction sector by using cyber technology,
without compromising the project’s essential competencies.

6.1. Project Nature

According to the PLS-SEM model, the characteristics of a building project play a
crucial role in determining the barriers to implementing cyber technology. The “Project”
component has the highest impact on these barriers, with an external coefficient of 0.380.
This principal component includes barriers related to project complexity, uncertainty,
resistance to change, and the unique nature of the construction industry. Compared to the
assembly line approach used in manufacturing, the construction business is characterized
by its high degree of discreteness, lack of structure, and non-linear workflow. It is unusual
for tasks to be linked in a linear sequence [84]. Instead, tasks and current activity are
linked to one another via resource sharing or dependencies. Tasks are routinely delegated
to subcontractors with varying expertise, making it challenging for project owners and
general contractors to collect reliable data from them.

Construction organization and management are hindered by incompatible information
flows because of the time and energy needed to coordinate them and the resulting discrep-
ancies in participants’ knowledge of the project [36]. Each variable in a dynamic building
process may be considered autonomous, and the complicated and unpredictable results
that emerge from their interactions result from this. Certain construction management
concepts and its associated implementation tools, such as the work breakdown structure
(WBS), critical path method (CPM), and earned value management (EVM), have been
criticised for their inability to handle the complexity of today’s building projects [85].

Even when managers have created a comprehensive construction plan, the high unpre-
dictability of a project usually results in numerous changes to the plan as it progresses [86].
When it comes to building practices, many companies are staunchly unyielding [42]. They
are set on using just one standard method of building. Ref. [30] states that one of the biggest
challenges to integrating cyber technology into the building sector is people’s reluctance to
adapt to new ways of doing things.

6.2. Government

The second principal component is related to “Government”. It comprises barriers,
such as high initial cost of implementation, lack of client interest, and insufficient govern-
ment support. With an external coefficient of 0.255, the “Government” seems to have a
significant influence on cyber technology barriers. This suggests that the success factors for
implementing cyber technology notwithstanding government constraints are bigger than
the typical range of success factors (which is considered to be high to medium). Wang [87]
claims that, with the exception of the construction sector, the introduction of new technol-
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ogy is accompanied by substantial financial outlays across the world’s economies. This is
because the cost of their adoption, purchase and implementation are usually very high as
there are little or no alternative to their adoption and implementation. For the vast majority
of developing nations, this is a show-stopper when considering its implementation [88].

Clients are the initiator of any construction project. Their contribution is essential
to guarantee the project’s success [89]. However, their lax attitude toward adopting tech-
nologies such as cyber technologies undermines its intended purpose [20]. Over the years,
government support for technology adoption has been insufficient [90]. This is seen in the
low budget and poor enabling environment provided for such sectors of the economy. This
scarcity makes the adoption of cyber innovations a herculean undertaking for all parties
concerned, and, as a result, decreases the expectations of innovators [38].

6.3. Regulations

The component with the third-highest eigenvalue is associated with “Regulations”,
which pertains to obstacles such as government regulations and challenging construction
conditions. It has an external coefficient of 0.215, making it the third most significant barrier
to the adoption of cyber technology. Construction sites are frequently plagued by noisy,
dusty, and muddy conditions, and certain subterranean ventures may be susceptible to
geological risks, such as water inrush and collapse [32]. The challenging construction
environment presents significant obstacles to acquiring data and network communication
for intelligent systems, as well as the reliability of precision equipment, which have external
coefficients of 0.215 in the “Regulations” component. In addition, workers in such an
environment may not always be able to concentrate on their surroundings, and the lack of
real-time information may prevent them from responding promptly to dangerous situations.
This insecurity also hinders their willingness to collaborate with mechanical equipment,
which are the primary enablers of cyber technology [84]. However, inefficient governmental
regulations make adopting and implementing cyber technologies cumbersome and difficult
for professionals. Some of them make offensive laws that are tantamount to technological
advancement [33]. In addition, lack of necessary skills is most important. This implies that
government has a huge role to play in adopting technologies in the construction industry.

6.4. Knowledge

“Knowledge” is the fourth subscale on the scale of hurdles to implementing cyber
technology. It has a 0.138 external coefficient. These includes obstacles such as a lack
of awareness and market familiarity. The lack of understanding about cyber technology
is a significant impediment to its adoption in the construction business, particularly in
developing nations. This might be caused by a negative attitude towards technology [33].
New technologies are hard to be well known in the construction market [31].

6.5. Culture

The last subscale on the scale of barriers that should be avoided for implementing
cyber technology relates to “Culture”, with an external coefficient of 0.138. This involves
barriers, such as fragmented construction processes and professional complacency. This is
a major feature of the construction industry. There are work processes that require many
forms of sub-contracting, making the use of cyber technologies very difficult [36]. Cyber
technologies are not streamlined for many fragmentations, making their usage difficult
for professionals. According to Chen et al. [20], many divisions in construction processes
inhibit the adoption of any technology. Many construction professionals are complacent
and unserious with their professional ethics [87]. Many do not seek current knowledge
in their areas of expertise, making them lag in developmental strides in the construction
industry [89]. With all-around technological advancement, cyber technologies are affected
greatly by this complacency.
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7. Managerial Implications

The implementation of cyber technology can greatly benefit the building industry by
overcoming the obstacles that currently hinder its adoption. Building stakeholders can
use the insights gained from this study to efficiently introduce cyber technology into their
projects, while a benchmark can be established to systematically and efficiently incorporate
it into the construction process. By eliminating the barriers identified in this study, the
Nigerian construction industry and other developing nations can become more productive
and sustainable, resulting in stable, sustainable, and effective construction. This study also
suggests that the use of robotics can be increased in other developing nations with similar
building techniques, resulting in faster project completion and reduced costs, ultimately
leading to greater success for the construction sector.

The study contributes to our understanding of the construction industry by providing
a database of obstacles to adopting cyber technology, as well as a robust framework for
evaluating the use of robots in planning and executing construction projects. The benefits
of cyber technology, such as cost-effectiveness and reduced construction expenses, are also
emphasized, highlighting the potential for increased profitability and success of projects.
Finally, the study proposes a prediction approach for assessing the use of cyber technology
in the Nigerian construction industry and other developing countries, providing decision-
makers with greater confidence in adopting cyber technology in the following ways:

• Our research has compiled an exhaustive database of the obstacles that impede the
application of cyber technology and its numerous components.

• A sophisticated platform is offered for building owners and other significant construc-
tion industry players to assess and adopt robots, which may improve the planning
and implementation of construction projects.

• Our research provides credible scientific data and recommendations for the implemen-
tation of cyber technology in Nigeria and other developing nations.

• Although the majority of study on deploying cyber technology has concentrated on
the construction sectors of developed countries, there are few studies available for
developing nations such as Nigeria. Thus, our research has studied the obstacles to
using cyber technology in Nigeria and highlighted the advantages of enhancing the
quality of local initiatives. In addition, we have emphasized how cyber technology may
considerably cut construction costs and promote the proper distribution of expenses
to make projects more lucrative and successful.

• In order to assess the application of cyber technology in the Nigerian construction
industry and other emerging countries, we have developed a partial least squares
structural equation modelling (PLS-SEM) prediction method. Hence, decision-makers
may rely on the outcomes of our research in order to use robots.

8. Theoretical Implications

The use of cyber technology to improve project success has gained popularity in many
industries. In the Nigerian construction sector, our study has developed a model to assess
the implementation requirements of cyber technology and analysed various barriers that
impede its application. The research bridges the gap between the theoretical and practical
use of cyber technology and is the first to completely investigate and evaluate the hurdles
to using cyber technology in the Nigerian construction industry.

This study offers a good basis for future research on the obstacles to integrating cyber
technologies in comparable developing nations. The PLS-SEM approach has been used to
determine the five most significant components of these obstacles. The results and analysis
of this research may aid policymakers in formulating plans for adopting robots into the
building industry.
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9. Limitations and Future Work

This study presents a valuable connection between academic research and practical
application in industry. However, there are some limitations that could be addressed in
future research endeavours, for example:

• Increasing the sample size could improve the robustness of the findings.
• Additionally, future studies could focus on modelling the interactions among different

user groups in the industry.

Despite these limitations, this study recognizes that research is an ongoing process
and recommends future investigations in the following areas:

• This study presents the application of cyber technology for construction projects in
Nigeria and attempts to address related issues. However, there is room for further
investigation into implementing cyber technology for construction projects.

• Another area of research may consider assessing the effect of cyber technology on
students’ performance in Nigerian universities.

10. Conclusions

This research has offered useful insights into the obstacles preventing the deployment
of cyber technology in the Nigerian construction industry. The study has modelled the
priority of these barriers using SEM and analysed them through EFA analysis. The results
of the study will serve as a guide for building professionals in Nigeria and other developing
countries to effectively adopt cyber technology and overcome the identified barriers to
improve project outcomes. This study has also demonstrated the potential of cyber technol-
ogy to enhance project success in the construction sector. However, the implementation
of cyber technology in developing economies is still modest. Thus, the research advises
that construction industry stakeholders raise their awareness and knowledge-sharing in
order to promote the implementation of cyber technology. Future research can build on the
findings of this study by exploring the inter-relationship between different industrial user
groups and assessing the impact of cyber technology on construction project outcomes.
Overall, this study contributes to bridging the gap between theory and practice in the
application of cyber technology in the construction sector in developing countries. By
adopting cyber technology, building professionals can reduce costs, enhance sustainability,
and ultimately improve the quality of housing in these countries.
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