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Abstract: Urban areas are often warmer than rural areas due to the phenomenon known as the “ur-
ban heat island” (UHI) effect, which can cause discomfort for those engaging in outdoor activities 
and can have a disproportionate impact on low-income communities, people of color, and the el-
derly. The intensity of the UHI effect is influenced by a variety of factors, including urban morphol-
ogy, which can vary from one area to another. To investigate the relationship between outdoor ther-
mal comfort and urban morphology in different urban blocks with varying social vulnerability sta-
tus, this study developed a geographic information system (GIS)-based workflow that combined the 
“local climate zone” (LCZ) classification system and an urban microclimate assessment tool called 
ENVI-met. To demonstrate the effectiveness of this methodology, the study selected two different 
urban blocks in Philadelphia, Pennsylvania–with high and low social vulnerability indices (SVI)–to 
compare their microclimate conditions in association with urban morphological characteristics such 
as green coverage area, sky view factor (SVF), albedo, and street height to width (H/W) ratio. The 
results of the study showed that there was a strong correlation between tree and grass coverage and 
outdoor air and mean radiant temperature during hot seasons and extremely hot days, which in 
turn affected simulated predicted mean vote (PMV). The effects of greenery were more significant 
in the block associated with a low SVI, where nearly 50% of the site was covered by trees and grass, 
compared to only 0.02% of the other block associated with a high SVI. Furthermore, the investiga-
tion discovered that reduced SVF, along with increased albedo and H/W ratio, had a beneficial im-
pact on the microclimate at the pedestrian level within the two studied urban blocks. This study 
provided an effective and easy-to-implement method for tackling the inequity issue of outdoor ther-
mal comfort and urban morphology at fine geographic scales. 

Keywords: urban heat island; outdoor thermal comfort; predicted mean vote (PMV); geographic 
information system (GIS); local climate zones (LCZ); social vulnerability index (SVI) 
 

1. Introduction 
In 2017, human-induced warming was about 1 °C above pre-industrial levels and 

increasing at a rate of 0.2 °C per decade. If the current rate continues, there is a strong 
possibility of a further rise of 1.5 °C in global temperatures between 2030 and 2052 [1]. 
With 55% of the world’s population living in urban areas in 2017, the UN world urbani-
zation prospect [2] estimates the proportion of the population living in urban areas will 
increase to 68% (i.e., 2 of 3 people will live in urban areas) by 2050. As a result of urbani-
zation, most cities worldwide have experienced a significant conversion of natural land-
scapes to built environments that are associated with low vegetation index, the emergence 
of dark surfaces with low albedo, increased heat waste from both buildings and traffic, 
and reduced sky view [3,4]. As a result of these land use conversions, air temperatures in 
urban areas are typically higher than their surrounding rural areas, which is termed the 
“urban heat island” (UHI) effect [5,6], one of the most evident anthropogenic impacts on 
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urban microclimates. Increases in urban air temperature have a severe impact on building 
energy uses and may endanger life and increase mortality rates. 

UHIs have been observed globally in cities regardless of their locations and size [7–
10]. The UHI effect and its direct consequence (i.e., heat stress in cities) cause severe dis-
comfort in outdoor activities, especially for groups of people who are known to be socially 
vulnerable [11]. From 2008 to 2017, extreme heat was associated with higher all-cause 
mortality in the contiguous U.S., with a greater increase noted among older adults, men, 
and non-Hispanic Black individuals [12]. More than 3800 death were recorded to be 
caused by heat-related illness (HRI), and almost 23,000 people were hospitalized for HRI 
between 2016–2020 across the U.S. [13]. Overall, heat island hotspots and mortality rates 
are found to be greater in urban blocks with a socially disadvantaged population [14–16]. 
According to a recent study by Hsu et al. [17], the mean and dispersion of summer day-
time Surface UHI intensity are worse for both people of color and the poor compared to 
white and wealthier populations in nearly all major U.S. cities. 

Due to the significant impacts of UHIs on human health and comfort, several studies 
have been conducted to evaluate these impacts during past decades in cities located in 
different climate zones. Field observation and numerical models are the two main meth-
ods used in these studies to investigate the impacts of the induced temperature on comfort 
sensations. A field study was carried out in outdoor urban spaces of Singapore with a 
focus on the human thermal sensation of urban dwellers from August 2010 to May 2011 
[18]. Solar radiation showed the most significant effect on human thermal sensation, and 
to improve outdoor thermal comfort, a combination of lower-density urban areas with 
higher building height was found to be an effective solution. During the summers and 
winters of 2008 and 2009, a field survey was conducted in two hot and arid climate cities-
Marrakech, Morocco and Phoenix, Arizona. The survey included structured interviews 
using a standard questionnaire, observations of human activities, and microclimatic mon-
itoring [19]. They found that the socioeconomic status and cultural background of at-
tendees showed a significant impact on their thermal sensation and comfort expectation. 
Noticeable differences between the two cultures in the type of outdoor activities were also 
found. Field measurement and surveys were employed by several other studies in cities 
such as Rome, Italy [20], Wuhan and Xi’an, China [21,22], Belo Horizonte, Brazil [23], and 
Tempe, Arizona [24], to name a few. 

Due to the differences in urban fabrics in the examined cities, as well as the overall 
efforts required to conduct field observations/surveys, this method imposes substantial 
limitations in terms of the applicability of results and the required time and cost to accom-
plish similar studies. Hence, numerical models have become of significant interest to plan-
ners, architects, and environmental assessors to simulate urban microclimate and perform 
comparative analyses based on different scenarios; these methods often use spatial over-
lay and simulation methods to combine both physical/climatic and socioeconomic data 
[25,26]. Urban microclimate modeling tools, especially simulation with Computational 
Fluid Dynamics (CFD), are used both to simulate UHI intensities and to estimate how 
effective it would be to apply different mitigation measures. The yearly number of studies 
on the topic has increased rapidly since 1998 [27]. In recent years, many studies have been 
conducted on modeling urban microclimates using tools such as OpenFOAM, FLUENT, 
STAR-CCM+, PHOENICS, and ENVI-met. Among these CFD-based models, ENVI-met 
was found to be the most popular due to a balance of sophistication, user-friendliness, 
and lower computational costs [28]. From whole microclimate simulation at a neighbor-
hood scale to evaluation of hourly outdoor thermal comfort, ENVI-met has been validated 
by several studies [29–36]. Forouzandeh [37] compared the ENVI-met V4 outputs with 
values measured experimentally under various seasonal conditions inside a courtyard lo-
cated in Hannover, Germany. The ENVI-met model was proved to be accurate in predict-
ing microclimate variables in medium-narrow courtyards with low root mean square er-
ror (RMSE) values for temperature, humidity, and wind speed. RMSE values ranged be-
tween 0.73 °C for air temperature, 3.34% for humidity, and 0.01 m/s for wind speed. 
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ENVI-met’s capacity to estimate Physiological Equivalent Temperature (PET), a ther-
mal index, was evaluated [38] by comparing it to field measurements for various points in 
a street canyon in Port Said, Egypt, throughout the summer and winter seasons. Except 
for the limited air velocity correlation, the results presented a strong agreement, particu-
larly with respect to the final results of the PET, with an index of agreement value ranging 
from 0.81 to 0.95. 

Existing literature adopted urban blocks or master plan developments, normally only 
one in each study, for urban microclimate and/or outdoor thermal sensations studies. As-
sessment of microclimate conditions in multiple urban blocks of a city for a meaningful 
comparison of impacts caused by urban parameters and the effectiveness of heat mitiga-
tion efforts remains limited. In addition, the areas being studied are typically modeled 
with added details for urban parameters and building properties, which often involves a 
time-consuming and resource-intensive process of collecting real data, including man-
power and funding. To overcome these disadvantages, a GIS-based methodology was de-
veloped and used in this study to first identify urban blocks with different socioeconomic 
statuses in U.S. cities and then model urban microclimate inside the blocks creating a set 
of generic inputs eliminating the need for field data collection. The proposed workflow is 
replicable and can be applied by researchers and practitioners, from novices to experts, to 
better address urban microclimate conditions in their designs and urban masterplans. 

2. Methodology and Case Study 
This study investigates outdoor thermal comfort levels in two Philadelphia, PA 

neighborhoods, one with a high social vulnerability index (SVI) and one with a low index. 
In 2021, Philadelphia was the city with the highest poverty rate (with 22.8% of people who 
live below the poverty level) among the United States’ most populated cities [39]. Moreo-
ver, since 2010, Philadelphia experienced a variety of extreme weather events, including 
the snowiest winter, the two warmest summers, the wettest day, and the two wettest years 
on record [40]. Philadelphia’s architectural landscape is mainly composed of narrow, at-
tached rowhouses that have a one-to-four-story structure. The city experienced rapid 
growth during the early 20th century resulting in the construction of numerous high-rise 
buildings and skyscrapers. The city’s street grid layout was established in the late 17th 
century, and its urban structure has undergone several changes. Urban renewal projects 
in the 1950s and 1960s led to the demolition of several historic buildings and the construc-
tion of modernist structures [41]. 

According to the U.S. Department of Energy’s Building America Program, Philadel-
phia is located in a Mixed-Humid region, which is characterized by receiving over 20 
inches (50 cm) of yearly rainfall, having around 5400 heating degrees days (based on a 
temperature of 65 °F), and experiencing an average monthly outdoor temperature below 
45 °F (7 °C) during winter [42]. The proposed methodology in this research consists of two 
primary steps, which are outlined below. 

2.1. Step 1: Exploring Social Vulnerability Index to Identify Neighborhoods 
Using U.S. Census data, the SVI is gathered by the Agency for Toxic Substances & 

Disease Registry (ATSDR) at the Centers for Disease Control and Prevention (CDC) to 
identify the United States communities that will likely need support before, during, and 
after a public health emergency [43]. Typical census tracts incorporate 1500 to 8000 people, 
with an optimum size of 4000 people [44], and they are designed to be demographically 
homogeneous. The CDC/ATSDR SVI ranks U.S. census tracts according to 15 individual 
variables, i.e., poverty, unemployment, income, education, age (65 or older and 17 or 
younger), disability, single-parent households, minority, language (speak English less 
than well), housing unit structure, mobile homes, crowding, lack of vehicle, and group 
quarter. These 15 variables are further categorized into four related themes including; 1-
socioeconomic status, 2-household competition and disability, 3-minority status and lan-
guage, and 4-housing type and transportation. 
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The CDC SVI data (2018, the latest version at the time of conducting this research) 
were used to determine the social vulnerability of every census tract in Philadelphia. Fig-
ure 1 shows the tasks to rank the tracts for the four vulnerability themes and the overall 
vulnerability of the tracts as the last task. 

 
Figure 1. The workflow for ranking Philadelphia’s census tract according to their SVI, Source: Au-
thors. 

Census tracts in Philadelphia are compared to one another in order to map and ana-
lyze relative vulnerability as a consequence of the four aforementioned themes called the 
overall vulnerability index across the city. Tract rankings are based on percentiles. Percen-
tile ranking values range from 0 (dark green) to 1 (dark red), with higher values indicating 
greater vulnerability (Figure 2). Tracts for which there is no SVI data available are shown 
as black and white stripes. 

 
Figure 2. Maps show the range of vulnerability in Philadelphia, PA as a consequence of the four 
themes (overall ranking). 

According to the CDC SVI data, census tracts in Philadelphia show significant differ-
ences in 15 socioeconomic characteristics, such as poverty, lack of vehicle access, housing 
type, education, living alone, and disability across the city. Tracts located in northwestern 
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Philadelphia are associated with a low percentile ranking for SVI, 0.1 to 0.2, while tracts 
in the south, central, and a big part of the north sides show a very high percentile ranking, 
more than 0.8 indicating greater vulnerability (Figure 2). Moreover, Figure 3 shows a high 
density of tree canopy in neighborhoods with a low vulnerable population and, on the 
other hand, a low density of trees in tracts with a higher vulnerability index. Accordingly, 
the process of selecting two urban blocks in Philadelphia, one with a low level of vulner-
ability and a high concentration of tree canopy and another with a high level of vulnera-
bility and a low concentration of tree coverage, was achieved by overlaying the SVI and 
tree canopy coverage from GIS shapefiles. 

 
Figure 3. Tree canopy coverage in Philadelphia, PA. 

The outcome of this stage involved the selection of two tracts out of 359 tracts in 
Philadelphia. One tract was chosen from the tracts with the lowest vulnerability index 
(STFID: 42101021700, see Figure 2) and high tree coverage, while the other was selected 
from the tracts with the highest vulnerability index (STFID: 42101004101, see Figure 2) 
and the lowest tree coverage to proceed with the next step: microclimate modeling. These 
two tracts and their snapshots are illustrated in Figure 4. 
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Figure 4. Two selected tracts for microclimate simulation; top left with low vulnerability index and 
bottom right with high vulnerability index, the purple highlights show the exact boundary of each 
census tract. 

2.2. Step 2: Microclimate and Outdoor Thermal Comfort Simulation 
The physical basis and spatial/temporal resolution of urban microclimate models dif-

fer greatly. ENVI-met [45], one of the most widely used tools for simulating urban micro-
climates, can be used to analyze the thermal comfort regime within the street canyon at 
fine resolutions, down to 0.5 × 0.5 m. The user-friendly tool aims at replicating the primary 
atmospheric processes that affect the microclimate on a physical basis (i.e., the fundamen-
tal laws of fluid dynamics and thermodynamics). BioMet is a plug-in for ENVI-met that 
calculates human thermal comfort indices from ENVI-met model output files. ENVI-met 
BIO-met can be used to assess the effects of the presence of vegetation in an urban space, 
local shading on the person, the position of the person in relation to buildings, and the 
albedo of paving materials. 

ENVI-met BioMet is able to predict outdoor thermal comfort in terms of indices such 
as a predicted mean vote (PMV), physiological equivalent temperature (PET), universal 
thermal climate index (UTCI), and standard effective temperature (SET). In this research, 
the PMV index was adopted to evaluate the outdoor thermal comfort at the street level of 
the selected tracts in Philadelphia. The PMV is a thermal index developed by Fanger [46] 
to assess indoor thermal comfort. The PMV calculated by ENVI-met has been adapted for 
outdoor conditions, including solar radiation and wind speed. To perform a simulation 
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through ENVI-met BioMet, four environmental factors, i.e., air temperature (Ta), mean 
radiant temperature (MRT), wind speed (UV), and the specific humidity (q), were ex-
tracted from the ENVI-met outputs. Moreover, two personal factors, i.e., metabolic rate 
(ISO 8996) and clothing index (ISO 9920) for four seasons were extracted from the litera-
ture [47] and were incorporated into the BIO-met model. 

To simulate the PMV index for the selected tracts, two high-resolution 3-D models 
were created in ENVI-met (Figure 5), with green color representing grass coverage and 
trees in each model. As a main input to ENVI-met, the geometrical data of the models 
were obtained from Philadelphia GIS Shapefile, open-source data provided by Pennsyl-
vania Spatial Data Access (PASDA) [48]. 

 
Figure 5. The exact boundary of selected blocks within the census tracts (left images) and ENVI-
met models created for each block (right images). 

In order to construct three-dimensional models of neighborhoods, Grasshopper 3-D 
and Meerkat, which are based on Rhinoceros software, were utilized. The process of using 
these tools to create urban 3-D models is explained in detail in [49,50]. The resulting raw 
3-D geometries were then imported into Dragonfly, a plug-in created [51] for use in Grass-
hopper, which enables the creation of 3-D models using Envi-met (INX). To incorporate 
specific urban characteristics, such as construction materials, land cover, albedo, and an-
thropogenic heat generated by human activities, the two areas under investigation were 
classified based on the local climate zone (LCZ) system. The LCZs categorize landscapes 
based on a typical range of values for surface cover, urban structure, fabrics (radiative and 
thermal properties of construction materials), and anthropogenic heat flux [52]. The LCZ 
classification scheme consists of 10 built and 7 land cover types, and each of the 17 basic 
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types is associated with typical value ranges for a set of key urban parameters. The defi-
nition and physical properties of all LCZs are provided in 17 illustrative datasheets. Ac-
cordingly, the tract with STFID of 42101021700 (top images in Figure 4, simply Block 1, 
hereafter) was classified as LCZ6: Open low-rise, where buildings are detached and small 
size with 1–3 stories tall. On the other hand, the tract with the STFID of 42101004101 (bot-
tom images in Figure 4, simply Block 2, hereafter) was classified as LCZ 3: Compact low-
rise in which buildings are attached or closely spaced with 1–3 stories tall. Land cover in 
LCZ 3 is mostly paved or hard-packed; LCZ6 is mostly covered by scattered trees and 
abundant plants (Figure 6). In order to balance the need for accurate simulation results 
with the computational time required, the 3-D models were constructed for only a portion 
of the selected tracts. Specifically, the models were created to cover an area with a mini-
mum diameter of 400 m (or a radius of 200 m), which is the minimum size specified in the 
LCZ description. 

 
Figure 6. LCZ description, data adapted from [52], aerial images from Google Earth (Philadelphia, 
PA). 

Table 1 summarizes the details of each model for geometrical data and urban config-
uration. Although the buildings in the two models have almost the same height (6 to 7 m), 
other properties such as greenery area, site coverage by built elements, and pavement 
coverage are substantially different between the two models. Additionally, the canyon as-
pect ratio, height-to-width (H/W), for streets located within Block 1 is consistently 0.25; 
this ratio varies for streets in different directions within Block 2. Specifically, the H/W ratio 
in Block 2 ranges from 0.32 for primary East-West streets to 0.8 for secondary streets in the 
North-South and East-West directions. 

Table 1. Model dimensions and site properties for two blocks. 

Census Block 
Model  

Dimensions 

Site Properties 

Site Area Number of 
Buildings 

Average 
Building 
Height 

Site Cover-
age 

Ratio 

Grass Cov-
erage 
Ratio 

Pavement 
Coverage 

Ratio 

Road Cov-
erage 
Ratio 

H/W Ratio 

Block 1 

152 × 184 × 30 
dx = 2 m 
dy = 2 m 
dz = 2 m 

81,182 
(m2) 

183 6 m 0.21 0.48 0.03 0.28 0.25 

Block 2 

132 × 137 × 30 
dx = 2 m 
dy = 2 m 
dz = 2 m 

53,026 
(m2) 

302 7 m 0.42 0.02 0.18 0.22 

Primary E-W: 
0.32 
Primary N-S: 
0.5 
Secondary N-
S, E-W: 0.8 
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In total, 180 h of medium forcing and parallel microclimate simulations were con-
ducted for the two models. Each model was subject to six different weather scenarios, with 
four scenarios for each of the four seasons (winter, spring, summer, and fall), as well as 
two scenarios for extreme hot and cold days. The simulations were conducted separately 
for each scenario, using weather data obtained from the National Oceanic and Atmos-
pheric Administration (NOAA) for the year 2021, which included hourly measurements 
of air temperature, relative humidity, wind speed, and wind direction and are listed in 
Table 2. To represent each season, average data for a month within each season (February, 
May, July, and October) were selected. The literature suggests beginning the simulation 
process during the early hours of the morning, specifically after sunrise, as this time is 
characterized by stable atmospheric conditions and minimal impact from the warming 
effects of the sun on the urban environment [33,53]. Therefore, the simulation for each case 
was started at 06:00 a.m. and lasted for 24 h to accurately reproduce the characteristics of 
the selected day. 

Table 2. Climatology data for 6 defined cases, source: NOAA. 

Cases Tmax (°C) Tmin (°C) TAVG (°C) Average Wind 
Speed (m/s) 

Wind Direction 

Winter Case 4.24 −1.84 1.23 4.35 NW 
Coldest Day 

(2 February 2021) 0 −9.99 −4.99 7.07 NW 

Summer Case 30 21.6 25.98 3.34 SW 
Hottest Day 
(7 July 2021) 35.52 24.42 29.99 3.52 SW 

Fall Case 
(24 October 2021) 17 7.8 12.47 3.7 SE 

Spring Case 
(12 May 2021) 20.1 8.48 14.13 4.11 NW 

3. Results and Discussion 
To determine the climate variables and outdoor thermal comfort in various seasons, 

fine-level (2 m × 2 m) microclimate and the PMV index were simulated using the ENVI-
met and BIO-met models, respectively. As it has been mentioned, 24 h microclimate sim-
ulation for six scenarios (winter, spring, summer, fall, extreme hot, and extreme cold) was 
run for the two models. It means, for example, the PMV inside one model was simulated 
144 times to cover 24 h of the six scenarios. After conducting simulations for all six scenar-
ios, the ENVI-met Leonardo tool was employed to visualize the results. 

Figure 7 depicts the mean radiant temperature (MRT) simulated at a height of 1.5 m 
above the ground level at noon for the two blocks. MRT is considered the most important 
meteorological factor for evaluating outdoor thermal sensation under sunny conditions, 
regardless of the comfort index used [54]. The MRT range for both models is almost iden-
tical, with values exceeding 60 °C for streets that are fully exposed to solar radiation and 
constructed with asphalt. However, the effects of shading and evapotranspiration from 
trees result in a range of MRTs between 47 °C and 51 °C for areas below or close to trees 
(yellow to green areas), leading to an average MRT of 54.5 °C at street level in Block 1, 
while a very low number of trees in Block 2 led to an average simulated MRT of 61.5 °C. 
It should be noted that the average values are calculated for the entire street surfaces, in-
cluding areas under trees and other surfaces made of asphalt and concrete pavement. The 
influence of grass coverage on MRTs was negligible, with grassy areas exhibiting MRTs 
that were at most 2 °C lower than other surfaces in the two blocks. Additionally, the sim-
ulations revealed a minimum MRT of 35.41 °C and 38.47 °C and a maximum of 66.45 °C 
and 67.12 °C for Block 1 and Block 2, respectively. 
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Figure 7. Simulated MRT at noon and 1.5 m above the ground level, summer case. 

Figure 8 provides a visual comparison of surface temperatures for the summer case 
at noon. It should be noted that the dark blue areas represent the footprint of buildings 
and are excluded from the surface temperature analysis. These areas are not reflective of 
the surface material or vegetation cover and, therefore, would not provide accurate infor-
mation on surface temperatures. However, the maps show significant differences in sur-
face temperatures across various materials, such as asphalt, concrete pavement, and grass 
areas. Among these materials, the largest temperature difference is observed in asphalt, 
where the temperature exceeds 47 °C (purple and red areas). In contrast, the lowest tem-
perature of 23 °C (blue areas) is recorded on the surface right below trees. Additionally, 
the surface temperature of grass areas was simulated at a range between 34.5 °C to 38 °C 
(yellow areas). Accordingly, Block 1, with almost 48% covered by grass, benefits from 
shading and cooling effects that mitigate heat buildup on surfaces compared to Block 2, 
with only 0.02% grass coverage but 40% covered by impervious surfaces such as asphalt 
and concrete pavement. 

 
Figure 8. Simulated Surface temperature at noon, summer case. 

The output files from ENVI-met, along with two personal factors, i.e., metabolism rate 
and clothing index for each season were incorporated into ENVI-met BioMet to simulate 
the PMV indices. The PMV model is based on heat balance principles and connects six 
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crucial elements of thermal comfort to the average human response on a specified scale. 
Normally, the PMV scale is defined on a seven-point thermal sensation scale ranging from 
cold (−3) to neutral or comfort (0) to hot (+3). 

In Figure 9, the output of the ENVI-met model is shown as PMV index maps for the 
summer scenario at four different hours of the day: 10:00 am, 02:00 pm, 06:00 pm, and 
10:00 pm. Maps in Figure 9 serve as examples to demonstrate the variations of comfort 
index across the models’ area at different hours, and findings are explained in the follow-
ing sections. 
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Figure 9. Simulated PMV inside the two models during the summer case for every 4 h starting at 10 
am and ending by 10 pm. 

PMV values at 10:00 am, summer 
According to the results of the simulations, the PMV values at street level and grass 

areas that were fully exposed to the sun were above 3, which indicates a hot environment 
and is represented by red to pink colors in the output maps of both models. For areas near 
or directly below trees, PMV values were recorded in a range from slightly warm (PMV = 
1.5) to warm (PMV = 2.5), as indicated by the blue to yellow colors in the maps. For areas 
located 2 to 4 m to the north or northwest of the building geometries, the PMV values were 
recorded at the lowest value, below 2, which represents a slightly warm environment. 
However, no spot was found within the two models that had a PMV value lower than 1, 
which is the comfort range. 
PMV values at 02:00 pm, summer 

Based on the ENVI-met output maps at 2:00 pm, it can be observed that the entire 
areas of the two blocks showed PMV values higher than 2.5, which indicates a warm en-
vironment. These PMV values were recorded in a few spots located under trees or in areas 
2 to 4 m to the north or northeast of the buildings, as shown by light to dark blue colors 
in the maps. However, spots located on grass areas, asphalt, and concrete pavement all 
showed PMV values higher than 4, which represents a very hot environment. This indi-
cates that the shading effects of the trees were able to provide some relief from the heat, 
but other areas that were fully exposed to solar radiation experienced extremely hot con-
ditions. 
PMV values at 06:00 pm, summer 

During the simulation at 6:00 pm, there were still no spots found in both Block 1 or 
Block 2 with PMV values within the comfort range. However, spots that were affected by 
trees or located at a distance of 2 to 10 m on the east side of the buildings showed PMV 
values between 1 and 2, indicating a slightly warm environment. Based on the results, the 
shading effect of trees and buildings had a significant impact on reducing the PMV index 
compared to spots on the street level, which had PMV values higher than 3, indicating a 
hot environment. 

Upon comparing the maps of the two blocks, it was observed that Block 1, which had 
more trees, had more areas with blue color (light to dark), indicating a lower average of 
PMV values compared to Block 2. 
PMV values at 10:00 pm, summer 

The simulation results for 10:00 pm indicate that nearly all spots within Blocks 1 and 
2 have PMV values ranging between −0.5 to +0.5, which is within the comfort range. This 
suggests that trees and buildings have no significant impact on the PMV values after sun-
set. It should be noted that this result is observed regardless of the location of the spot 
within the two blocks, whether it is influenced by trees or buildings. Overall, the PMV 
values at 10:00 pm suggest that the thermal comfort conditions have improved signifi-
cantly within the urban environment of the two blocks. 

The findings from the summer scenario and the other five weather scenarios demon-
strate a strong correlation between tree and grass coverage and outdoor air temperature, 
mean radiant temperature, and surface temperature during hot seasons and extreme heat 
events. Areas with a higher concentration of tree canopies experienced a maximum reduc-
tion of 1.5 °C in outdoor air temperatures and up to 31 °C in mean radiant temperatures 
during the daytime of summer and extremely hot conditions. The effects of greenery were 
more significant in Block 1 (associated with a low SVI), where nearly 50% of the site was 
covered by trees and grass, compared to only 0.02% of Block 2 (associated with a high 
SVI). However, the benefits of tree and grass coverage were limited to their immediate 
surroundings, with areas without green coverage exhibiting significantly higher mean ra-
diant temperatures. 
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Furthermore, the results showed a strong relationship between PMV and MRT, with 
a Pearson correlation analysis indicating a significant correlation of 0.987. A significant 
correlation of 0.859 was also found between air temperature and PMV. The study also 
found that a higher tree canopy cover in Block 1 was associated with lower outdoor heat 
exposure in that area, while more impervious surfaces such as streets and pavements in 
Block 2 were linked to higher heat exposure in that area. 

To obtain a more accurate representation of the simulated climate variables and com-
fort index in the two models, the study included nine specific points for closer investiga-
tion, as shown in Figure 10. These points were strategically placed in primary and second-
ary streets, on asphalt surfaces, sidewalks, and under trees, with the street direction either 
running from North to South or East to West. The nine specific points were named as 
follows: 
• North to South primary street, on asphalt (N-S)PA 
• East to West primary street, on asphalt (E-W)PA 
• North to South secondary street, on asphalt (N-S)SA 
• East to West secondary street, on asphalt (E-W)SA 
• North to South primary street, on pavement (N-S)PP 
• East to West primary street, on pavement (E-W)PP 
• North to South secondary street, on pavement (N-S)SP 
• East to West secondary street, on pavement (E-W)SP 
• Under Tress (TRS) 

 
Figure 10. Location of nine points inside the two models. 

By selecting points in different locations, the study was able to gather data on the 
varying effects of different surface types and orientations, which allowed for a more nu-
anced analysis of the simulated climate variables and their impact on human comfort. 
Figures 11 and 12 illustrate hourly MRTs simulated at each point inside Block 1 and 2 dur-
ing the summer case, respectively. The simulation was programmed to take measurements 
every hour, starting at 6:00 am and ending at 6:00 am, 24 h overall. 
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Figure 11. MRTs during summer case at nine points inside Block 1. 

 
Figure 12. MRTs during summer case at nine points inside Block 2. 

The points located under trees showed lower mean radiant temperatures (MRTs) 
throughout the daytime compared to other points. For further investigation of the impact 
of other factors on MRT and PMV, the other eight points were selected at places without 
tree and greenery effects. The urban morphology parameters, including Sky View Factor 
(SVF), Albedo, and H/W ratio, were recorded at each point and analyzed for their effect 
on MRT and PMV (Table 3). These parameters describe the physical characteristics of ur-
ban environments, and they can affect various aspects of the urban environment, includ-
ing microclimate and human comfort. 

In Block 1, six points showed the approximately same amount of MRT during the 
daytime, while the other three points, including (N-S)PA, (N-S)SP, and TRS, showed lower 
MRT values at certain times between 7:00 am and 7:00 pm. For instance, the point located 
on the primary asphalt in the North-South direction, (N-S)PA, showed a value of 45 °C at 
7:00 am, 37 °C at 8:00 am, 40 °C at 9:00 am, and 45 °C at 10:00 am. For the rest of the day, 
MRT recorded at this point was similar to that of other points, which was above 65 °C. 
The MRT at the point located on the pavement surface of the secondary street in the North-
South direction, (N-S)SP, fluctuated between 65 °C at 9:00 am and 50 °C at noon, returning 
to the same amount as other points after 3:00 pm. The point located under a tree (TRS) 
had lower MRT throughout the daytime, with a maximum value of 20 °C at 9:00 am com-
pared to the other points. 



Buildings 2023, 13, 1040 15 of 19 
 

In Block 2, MRT recorded at two points was lower than other points, including the 
TRS point, during the morning. These two points were both in the North-South direction 
and located on both asphalt and pavement surfaces in a secondary street. These two points 
were well-shaded by the surrounding building, especially buildings on the right side that 
blocked east sun radiation. 

Although the H/W ratio was constant (0.25 for all the points) inside Block 1, SVF and 
albedo showed a strong effect on MRTs and PMV. A Pearson correlation of 0.61 was found 
between SVF and MRTs inside Block 1, while it was found up to 0.75 inside Block 2. It 
means that points with higher SVF have more exposure to heat, resulting in higher MRTs 
and PMV. Conversely, the urban morphology parameter of albedo displayed a negative 
correlation of −0.60 with MRTs inside Block 1 and −0.55 inside Block 2, indicating a signif-
icant yet inverse relationship. Thus, it can be inferred that higher albedo values corre-
spond to lower MRTs. In Model 2, where different streets had varying H/W ratios, the 
coefficient with MRTs was −0.39, suggesting that this parameter also has a notable impact 
on MRT values. 

Table 3. SVF, Albedo, and H/W ratio at each point inside two blocks. 

 Blocks 
Sky View Factor 

(SVF) Surface Albedo H/W Ratio 

(E-W)PA 
Block 1 0.84 0.2 0.25 
Block 2 0.78 0.2 0.32 

(E-W)PP 
Block 1 0.75 0.35 0.25 
Block 2 0.68 0.35 0.32 

(E-W)SA 
Block 1 0.84 0.2 0.25 
Block 2 0.62 0.2 0.8 

(E-W)SP 
Block 1 0.81 0.35 0.25 
Block 2 0.52 0.35 0.8 

(N-S)PA 
Block 1 0.61 0.2 0.25 
Block 2 0.70 0.2 0.5 

(N-S)PP 
Block 1 0.72 0.35 0.25 
Block 2 0.52 0.35 0.5 

(N-S)SA 
Block 1 0.66 0.2 0.25 
Block 2 0.61 0.2 0.8 

(N-S)SP 
Block 1 0.45 0.35 0.25 
Block 2 0.51 0.35 0.8 

4. Conclusions 
This research presented a method that integrates a climate classification system with 

a 3-D microclimate model to investigate the correlation between outdoor urban climate 
and the socioeconomic status of urban blocks, using two urban blocks in Philadelphia, 
Pennsylvania, USA, as the study case. The study involved creating and simulating micro-
climate models in two urban blocks, which were extracted from two census tracts with 
varying vulnerability indices. The results demonstrated that urban morphological factors 
such as vegetated areas, sky view factor (SVF), albedo, and height-to-width (H/W) ratio 
have an influence on air temperature, mean radiant temperature (MRT), and predicted 
mean vote (PMV). 

The study revealed that trees have a significant cooling effect on outdoor air temper-
ature, MRT, and PMV index during the summer day scenario. These findings are con-
sistent with previous research [55–57] that highlighted the beneficial impacts of urban 
vegetation and roadside trees on the microclimate by reducing surface temperature and 
MRT, increasing evapotranspiration, providing shading, and reducing PMV. However, 
the study also found that the benefits of trees are limited to their immediate surroundings, 
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with areas lacking green coverage exhibiting significantly higher MRTs. Consistent with 
the finding from [56], this study shows the effect of trees on air temperature decreases 
with increasing distance from the tree canopy. 

The study also revealed that the impact of the H/W ratio and surface albedo on out-
door thermal comfort is significant, with higher H/W ratios and albedo leading to lower 
MRT and greater comfort levels, which is consistent with findings from [53,58,59]. Fur-
thermore, the results presented in this research align with those of a study conducted by 
[60], which also indicated that factors related to urban morphology, such as building den-
sity and orientation, play a notable role in influencing microclimate parameters and ther-
mal comfort. 

In conclusion, it is recommended that the utilization of taller and denser buildings 
with higher albedo pavement surfaces should be considered to enhance thermal comfort 
conditions, particularly in urban blocks with limited vegetation coverage. The proposed 
workflow provides evidence to support incorporating urban climate knowledge into the 
planning and design of healthful and resilient urban environments. Overall, the study 
highlights the importance of considering urban morphology and vegetation coverage in 
the design of sustainable and livable urban environments. 

This research could be extended in four directions. First, the research involved a 24-
h simulation cycle, while it is recommended for future studies to extend the timeframe to 
48-h or 72-h cycles to obtain a more comprehensive understanding. Second, the ENVI-met 
models were supplemented with generic data from the LCZ datasheet for building typol-
ogy and properties. However, to improve accuracy, genuine information on building ma-
terials, A/C types, green roofs and walls, and blue (water) surfaces, if available within the 
studied blocks, can be added to the models. Third, the research solely concentrated on 
outdoor weather variables and comfort levels. However, researchers in this era are inter-
ested in indoor comfort, which can be investigated in future works. Last, the research con-
centrated on Philadelphia, PA, from the U.S. Northeast region. However, to gain a better 
understanding of the effects of urban properties on outdoor climate variables and thermal 
comfort inside urban blocks with varying social vulnerability indexes, this research 
should be expanded to incorporate more cities from other climate zones, including hot 
and dry or extremely cold. 
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