

Article

Analytical Assessment of the Structural Behavior of a Specific Composite Floor System at Elevated Temperatures Using a Newly Developed Hybrid Intelligence Method

Shaoyong Han ^{1,2}, Zhun Zhu ^{3,*}, Mina Mortazavi ^{4,*}, Ahmed M. El-Sherbeeny ⁵, and Peyman Mehrabi ⁶

- ¹ School of Information Engineering and Technology, Changzhou Vocational Institute of Industry Technology, Changzhou 213164, China
- ² Postdoctoral Scientific Research Workstation, Bank of Zhengzhou, Zhengzhou 450015, China
- ³ School of Information Engineering, Wenzhou Business College, Wenzhou 325035, China
- ⁴ School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia
- ⁵ Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
- ⁶ Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: zhuzhun@wzbc.edu.cn (Z.Z.); mina.mortazavi@uts.edu.au (M.M.)

Abstract: The aim of this paper is to study the performance of a composite floor system at different heat stages using artificial intelligence to derive a sustainable design and to select the most critical factors for a sustainable floor system at elevated temperatures. In a composite floor system, load bearing is due to composite action between steel and concrete materials which is achieved by using shear connectors. Although shear connectors play an important role in the performance of a composite floor system by transferring shear force from the concrete to the steel profile, if the composite floor system is exposed to high temperature conditions excessive deformations may reduce the shearbearing capacity of the composite floor system. Therefore, in this paper, the slip response of angle shear connectors is evaluated by using artificial intelligence techniques to determine the performance of a composite floor system during high temperatures. Accordingly, authenticated experimental data on monotonic loading of a composite steel-concrete floor system in different heat stages were employed for analytical assessment. Moreover, an artificial neural network was developed with a fuzzy system (ANFIS) optimized by using a genetic algorithm (GA) and particle swarm optimization (PSO), namely the ANFIS-PSO-GA (ANPG) method. In addition, the results of the ANPG method were compared with those of an extreme learning machine (ELM) method and a radial basis function network (RBFN) method. The mechanical and geometrical properties of the shear connectors and the temperatures were included in the dataset. Based on the results, although the behavior of the composite floor system was accurately predicted by the three methods, the RBFN and ANPG methods represented the most accurate values for split-tensile load and slip prediction, respectively. Based on the numerical results, since the slip response had a rational relationship with the load and geometrical parameters, it was dramatically predictable. In addition, slip response and temperature were determined as the most critical factors affecting the shear-bearing capacity of the composite floor system at elevated temperatures.

Keywords: extreme learning machine; radial basis function network; neural network; shear connector; floor system; elevated temperature; metaheuristic algorithms

1. Introduction

Fire safety is a major concern that has not been well developed in recent years. Many studies have been conducted on a range of approaches to mitigate fire-induced damage to steel and concrete members [1–3]. Some research studies have also focused on improving

Citation: Han, S.; Zhu, Z.; Mortazavi, M.; El-Sherbeeny, A.M.; Mehrabi, P. Analytical Assessment of the Structural Behavior of a Specific Composite Floor System at Elevated Temperatures Using a Newly Developed Hybrid Intelligence Method. *Buildings* **2023**, *13*, 799. https://doi.org/10.3390/ buildings13030799

Academic Editors: Carlos Humberto Martins, Alexandre Rossi and Yasin Onuralp Özkılıç

Received: 16 January 2023 Revised: 11 March 2023 Accepted: 11 March 2023 Published: 17 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). the safety of occupants during and after fire occurrences and on reducing the refurbishment and retrofitting costs.

Composite beams have been widely used in a variety of structures and buildings due to a number of positive features such as lower thickness, considerable span length and high stiffness [4,5]. The development of different composite beams is highly valued to mitigate some shortcomings of specific composite structures [6–8]. Steel-concrete composite beams are one of the critical components of high rise and multi-story structures, and different studies have been conducted to improve their performance [9,10]. Moreover, shear connectors (SCs) are one of the most practical elements that are extensively utilized in steelconcrete composite beams to increase shear strength and the integrated behavior of concrete and steel. There are different types of SCs such as channel, angle, stud and perfobond sections. Concrete is cast in different shapes and types such as self-consolidating [11], porous [12], high strength, lightweight and green concrete [13]. Concrete characteristics are divided into two major categories namely fresh and hardened properties. Fresh properties include the most primitive properties of concrete such as slump and workability. On the contrary, hardened properties refer to a range of critical features such as compressive strength, flexural strength, shear strength and corrosion resistance, where many attempts have been made to enhance these properties by surface protection [14,15], the inclusion of fibers and cementitious replacement powders [16].

A few studies have considered push-out tests with various loading patterns to evaluate slip and failure load in channel SCs [17]. Channel SCs have been shown to exhibit ductile performance when exposed to a series of load patterns while equipped with c-shaped connectors; however, this behavior was amplified in more extended channel SCs [18]. In another study, composite beams showed brittle behavior when channel SCs were embedded in plain concrete with no confinement [19]. In contrast, when the channel SCs were embedded in high-strength concrete, the behavior of the composite beam was ductile. In addition, more extended channel SCs demonstrated better flexibility than lower channels [19]. Bearing capacity has a direct linear relationship with length, and therefore, a C-shaped channel SC with 150 mm length has almost 60 percent higher load-carrying capacity compared to a 100 mm channel SC. In addition, failure modes are governed by concrete properties when a C-shaped channel SC is embedded in high-strength concrete [20]. Despite the inevitable slip between an I-beam and slab, this slip can be negligible with appropriate design of the shear connector. Thick channel connectors result in reducing slip and consequently increasing load capacity [21].

Angle SCs present suitable ductility but a noticeable stiffness loss [22]. Using angle shear connectors at elevated temperatures has been shown to protect strength loss by up to 50% of the initial strength [23]. Three main failure modes have occurred during tests: (1) shear connector fracture, (2) concrete crushing and (3) concrete shear plane failure. Based on experimental results, connectors' strength loss and deterioration while exposed to fire can be changed in different situations [24,25]. Several methods have been employed for data validation such as artificial neural networks, whereas extreme learning machine [21,26], genetic programming, neural network and other natural basis functional networks have been reported to be the best methods [27]. Finite element and finite strip methods have also been proven to be reliable approaches for data authentication and prediction [28–33].

The role of AI techniques has recently been highlighted in the. development of engineering goals [25,34,35]. A raw model of artificial neural networks (ANNs) can generally be developed by training and optimization techniques such as backpropagation algorithms [36]. Then, ANNs are able to solve three types of problems: (1) classification, (2) function approximation and (3) time series prediction. However, not being able to proceed with local extrema and complications in crossing plateaus of error function landscape are common defects of classic approaches [37]. Neural networks and some optimization techniques have recently been applied to solve nonlinear and sophisticated engineering problems. In some cases, the performance of an ANN can be improved by using the global search feature of classic methods such as GA and PSO [26]. As a remedy for ANN problems,

a fuzzy technique has been integrated with neural networks, and other algorithms have been developed such as the artificial neuro fuzzy inference system (ANFIS) [38], which has been used for different types of applications including the prediction of experimental results with nonlinear relationships and parameter identification of the test data. Studies have shown that an ANFIS alone has some shortcomings which could be annihilated by incorporating metaheuristic algorithms [39]. Due to the relatively conventional approach of laboratory data in the steel-concrete composite sector, in addition to the studies on different SC applications to develop the structural strength of composite floor systems and raise their ductility, AI techniques can be employed to optimize and to evaluate the structural characteristics of steel-concrete composite structures [19].

In addition, several studies have used different AI techniques in comparative studies to challenge the main algorithm results and to achieve reliable outcomes [40]. In a study, the RBFN approach was selected as a secondary method to challenge the main algorithm prediction which was stochastic gradient descent. The RBFN results were also used to detect landslide susceptibility [41]. The machine learning method is another useful approach as a secondary algorithm for prediction of data and assessment of structural behavior [42]. The ELM method has been performed on data from steel-concrete composite floors at different heat stages along with an ANN and genetic programming technique. Based on the results, the ELM method accurately predicted the target outcomes and achieved superior performance indices [43]. In this study, a comparative AI assessment on data derived from a composite floor system at different heat stages was performed to predict the failure load and to obtain the most critical parameters for slip response.

In this study, we conducted a comparative AI assessment of the behavior of a composite floor system at different temperatures. In addition, three different AI methods were performed which was profoundly helpful to identify the most susceptible characteristics of the composite floor system at elevated temperatures. Predicting values for split-tensile and shear connector slip of a steel-concrete composite floor system subjected to a monotonic loading scenario at different heat stages is complicated since empirical testing is difficult and time-consuming and because the effective parameters are somehow hidden from the researchers or the outcomes of test results do not have enough consistency. Therefore, in this study, we aimed to overcome the prediction difficulties by employing an integrating neural network and fuzzy system with a multi-hybrid metaheuristic technique, called the ANPG method. The main algorithm was a hybrid AI technique carried out to predict the shear response in angle shear connectors simultaneously with an investigation of the effect of various inputs on the structural performance of a composite floor system at elevated temperatures. For this purpose, we developed the ANPG algorithm by using a hybrid metaheuristic (combination of PSO-GA) technique which was based on a neuro-fuzzy algorithm (ANFIS) due to the diverse nature of the employed data and its ability to predict the shear behavior of composite systems at high temperatures. Accordingly, some validated data from Davoodnabi et al. [23] were derived from a previous laboratory research study to delineate the shear behavior of the angle shear connectors at different temperatures. In soft computing methods, the above-mentioned methods can provide a compact solution for multi-variable method drawbacks since knowledge of the internal system is not necessary. Two proven and effective artificial intelligence algorithms, i.e., the RBFN and ELM methods, were also employed to verify and to compare the obtained results. In addition, the affect of different parameters on the shear-bearing capacity of the composite floor system were evaluated and the parameters that were the most critical factors were selected.

2. Materials and Methods

For this research, the database was obtained from the study by Davoodnabi et al. [23] regarding a monotonic push-out test on SCs at elevated temperatures to achieve reliable structural behavior of a composite system at high temperatures. The aforementioned shear connectors are shown in Figure 1.

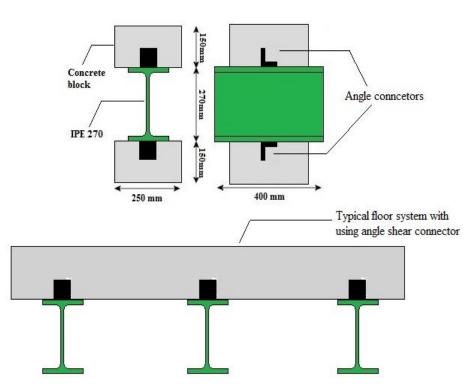


Figure 1. Composite floor system and shear connectors.

2.1. Statistical Data of Samples

In this study, the dataset was the information of experiments that eventually consisted of 584 test results (the specifications of the dataset are shown in Appendix A). The statistical properties of the whole dataset and input variables are indicated in Table 1.

Inputs	Variables	Min	Max	Mean Value	Std
Input 1	Slip (mm)	0.00	73.70	22.87	39.2
Input 2	Length (mm)	30.0	50.0	40.0	10.0
Input 3	Thickness (mm)	5.0	7.0	6.0	0.8
Input 4	Height (mm)	65.0	100.0	80.4	14.8
Input 5	Temperature (°C)	25.0	850.0	568.2	311.9
Input 6	Load (kN)	0.00	126.7	36.8	27.6
Outputs					
Output 1	Slip (mm)	0.00	73.70	22.87	39.2
Output 2	Load (kN)	0.00	126.7	36.8	27.6

Table 1. Details of input variables.

As shown in Table 1, the concrete's compressive strength along with the steel properties remained at constant values with no involvement in the dataset. The database was set for variables such as the height, length and thickness of the shear connectors, which directly affect the split-tensile capacity of the composite floor system, especially at elevated temperatures. Load and slip could be replaced by each other in the placement order either as an input or an output.

2.2. Analytical Assessment

Recently, some research studies have been conducted on the performance of welded built-up steel members using AI techniques [25]. The following sections describe the architecture and some background of the employed algorithms in the current study.

2.2.1. ANFIS Algorithm and Architecture

In an adaptive network (AN), nodes are directly connected by links, and every node acts in a defined performance on its receiving signals to produce a single node output; therefore, this procedure is made up of a multi-layer feed-forward system [34]. Notably, the configuration of an AN acts as a static node function on its receiving signals to produce a single node output, and every node performance is a parameterized function with changeable parameters. With any alteration of these parameters, the node functions are altered such as the overall behavior of the AN, Figure 2. In a fuzzy inference system (FIS), membership function parameters are tuned by a specific technique. Indeed, an ANFIS is utilized to delineate the optimal amounts of equivalent FIS parameters through a learning algorithm [44]. Across the training session(s), parameter optimization is performed in a way that the error between actual output and target decreases. A hybrid algorithm is utilized for the optimization that is a combination of gradient descent and the least square estimate method. The optimized parameters are called premise parameters that specify the shape of the membership functions (MFs). To minimize the error measure, each optimization routine could be used after the MFs are generated. The parameter set of the AN permits the fuzzy systems to learn from the modeling data.



Figure 2. Flowchart of the ANFIS network concept.

The ANFIS network has five layers called the fuzzy layer, normalized layer, product layer, total output layer and de-fuzzy layer, as shown in Figure 3 [45]. During this technique, a threshold value between the output and the actual value is set and the following parameters are obtained by the least-squares model, while an error for all data is also received. If the threshold value exceeds the deliberated threshold, using the gradient descent method the premise parameters are updated. This continues until the error turns out to be less than the threshold. Because the parameters are simultaneously obtained by using two algorithms (the decent gradient and least-squares algorithms), the utilized algorithm during this procedure is called a hybrid algorithm.

2.2.2. Particle Swarm Optimization (PSO)

The PSO algorithm is another member of the swarm intelligence algorithms initially generated by Kennedy and Eberhart [46] while sharing many aspects with evolutionary computation models such as GA. Similar to other population-based intelligence models, PSO needs an initial population of random resolutions. The search for optimal values is gained by updating the generations without evolution operators such as mutation and crossover. The potential decisions are generally called particles in PSO, flying through the resolution space by following their own experiences and the current optimal particles. Thus, the performance of PSO is comparable with GA and may be regarded as an alternative approach for GA. Figure 4 indicates the systematic sequences of the PSO algorithm.

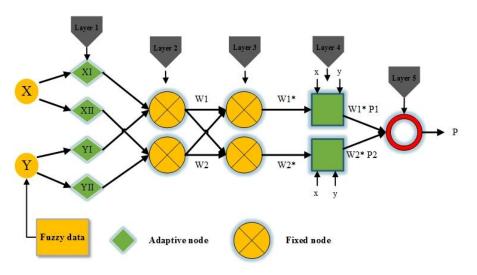


Figure 3. The underlying architecture of the ANFIS.

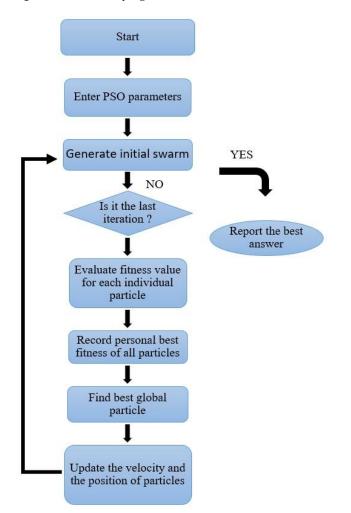


Figure 4. Flowchart of sequential steps of the PSO algorithm.

2.2.3. Genetic Algorithm (GA)

Holland (1992) [47] introduced the GA based on the extended evolution theory of Darwin that was developed by Goldberg and Holland (1988) [48]. As a member of the larger group of evolutionary algorithms (EAs), the GA is a metaheuristic algorithm based on the principles of biological evolution in nature. After many evolutions, the best individual is

obtained. Compared with other optimizing methods, the GA includes good robustness and convergence. With the same accuracy of calculation, the GA takes the least time to find an optimal resolution [49]. Figure 5 represents the step-by-step platform of the GA algorithm.

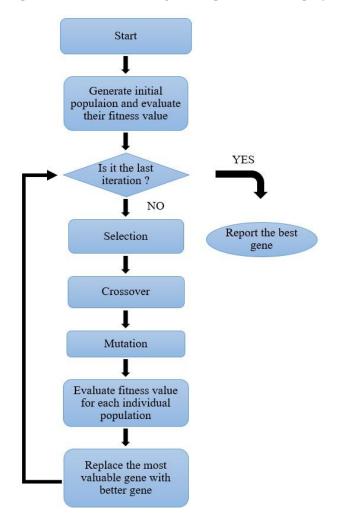


Figure 5. Flowchart of the sequential steps of the GA algorithm.

2.2.4. Hybrid ANPG Architecture

For the first time, a hybridized ANFIS using PSO and GA techniques was applied to solve a composite floor system problem. The combination of the sequential PSO-GA and ANFIS is depicted in Figure 6. In order to identify the best weights and to select suitable functions, the ANPG method was performed several times to predict one specific outcome with a variety of input scenarios. First, in PSO, swarm is initiated by a group of random resolutions as a particle, while showing the particle's position. Then, the specific velocity is identified, the transmitting function is triggered, and the GA procedure initiates to optimize the final problem space. Finally, a particular velocity is gained for any *i*th particle in every cycle by using Equation (1) where w represents the inertia weight.

$$v_i(t+1) = wv_i(t) + c_1\phi_1(p_i(t) - x_i(t)) + c_2\phi_2(p_i(t) - x_i(t))$$
(1)

 c_1 and c_2 represent the positive acceleration coefficients. $\vec{\phi}_1$ and $\vec{\phi}_2$ show uniformly distributed random vectors [0, 1], in which a random value is tried for each dimension. \vec{v}_i limited to $\left[-\vec{v}_{\max}, \vec{v}_{\max}\right]$ series is reliant on the problem. In some cases, the velocity

exceeds the mentioned curb and is rearranged within its suitable limits. Based on their velocities, every particle alters its position based on the following Equation (2):

$$s(t+1) = s(t) + v(t+1)$$
 (2)

Based on \vec{v}_i and \vec{s}_i , the particle population tends to cluster around the best number.

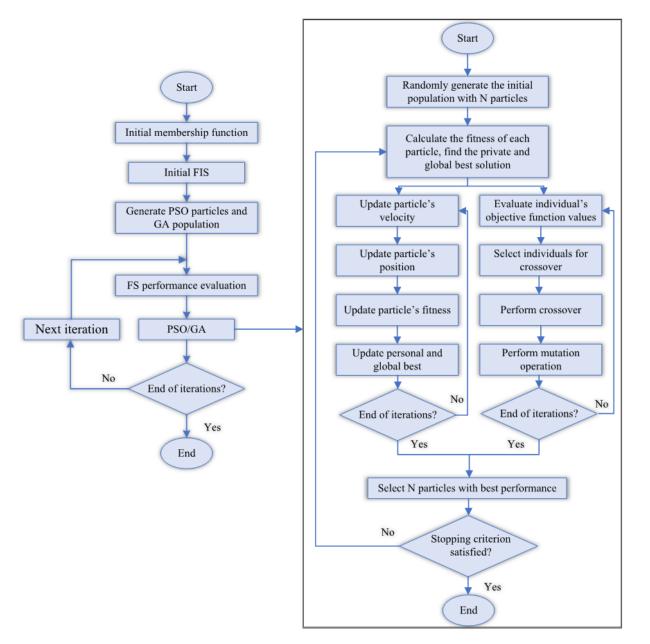


Figure 6. The sequential combination of the hybrid ANPG algorithm.

The ANPG hybrid method operates in regard to random population generation and is based on avian mass flight behavior modeling and simulation of fish mass movement. A global minimization method can deal with questions whose answers are a point or surface in n-dimensional space. A random population is assumed in this space, and an elementary velocity is defined for it and between the particles to the communication channels. The particles move through the response space, and the outcomes are computed on a "merit basis" after each time interval. Then, particles speed up toward the particles of higher competence that are in matching communication groups. Although each method is performed satisfactorily in a range of problems, it demonstrates pronounced capability in resolving continuous problems in optimization. The GA, by using evolutionary biology methods, tries to find the optimum formula for predicting or pattern matching. The GA could be an effective choice for regression-based prediction techniques, while its modeling is a programming technique based on genetic evolution to problem resolutions. The solved problem possesses inputs converted into solutions through a patterned process of genetic evolution. Afterward, by using the fitness function, the solutions are verified as candidates.

2.2.5. Extreme Learning Machine (ELM)

As a single-layer learning tool, the ELM method was introduced which is similar to a feed-forward neural network [50]. In the ELM method, the output weights are analytically determined while the weights of input are defined randomly. The superiority of the ELM method is its extremely fast ability to find target weights. Additionally, without exterior interference, the ELM method is able to determine all the network parameters. In the case of prediction and characteristic estimation for concrete products, the ELM method is efficient and reliable [51] and because of these benefits it has gained high popularity and applicability.

The ANPG algorithm terminates in case the condition of problem exit is arranged. Generally,

it is an iteration-based algorithm in which most of its parts are randomly selected.

2.2.6. Radial Basis Function Network (RBFN) Method

Generally, in each RBFN architecture, a set of D-dimensional radial activation functions estimate the input function $f_{(x)}$. The architecture consists of the D neuron input layer, the P neuron output layer and the M neuron hidden layer. The biases at each output neuron and adjustable weights between the hidden and output layers are shown in Figure 7 [52,53]. The system is represented by the *n*th input vector, and as described in Equation (3), the approximation function $f_{(x)}$ can be represented as a linear combination of radial basis functions in which the output of the *k*th network consists of the sum of weighted hidden layer neurons plus the bias [41]:

$$\hat{f}(X) = wh(X) + w, k = 1, 2, \dots, P$$
 (3)

where:

 w_{kj} = weight of the *j*th basis function and *k*th output; $h_j(X^n)$ = output of *j*th hidden neuron for the input vector (x^n) ; $w_{(k0)}$ = bias term at *k*th output neuron.

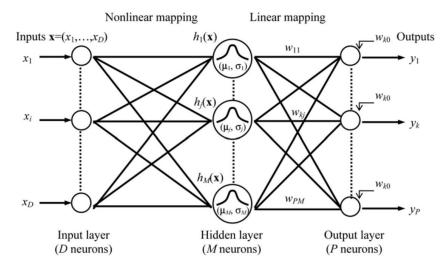


Figure 7. The architecture of the RBF network.

2.2.7. Performance Evaluation

Models of all the developed methods were evaluated by using evaluation criteria namely, root mean squared error (RMSE), determination coefficient (R^2) and Pearson correlation coefficient (r) as follows:

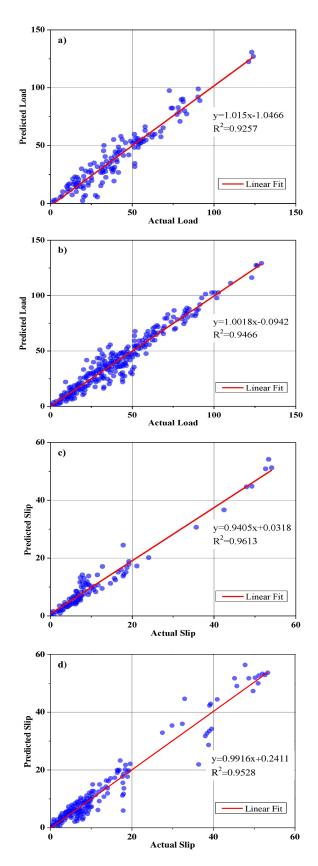
$$RMSE = \sqrt{\frac{\sum\limits_{i=1}^{n} (P_i - O_i)^2}{n}}$$
(4)

$$\mathbf{r} = \frac{n\left(\sum_{i=1}^{n} O_i \cdot P_i\right) - \left(\sum_{i=1}^{n} O_i\right) \cdot \left(\sum_{i=1}^{n} P_i\right)}{\sqrt{\left(n\sum_{i=1}^{n} O_i^2 - \left(\sum_{i=1}^{n} O_i\right)^2\right) \cdot \left(n\sum_{i=1}^{n} P_i^2 - \left(\sum_{i=1}^{n} P_i\right)^2\right)}}$$

$$\mathbf{R}^2 = \frac{\left[\sum_{i=1}^{n} \left(O_i - \overline{O_i}\right) \cdot \left(P_i - \overline{P_i}\right)\right]^2}{\sum_{i=1}^{n} \left(O_i - \overline{O_i}\right) \cdot \sum_{i=1}^{n} \left(P_i - \overline{P_i}\right)}$$
(5)

where P_i and O_i are the predicted and observed variables, and n is the total number of considered data. Alternatively, MATLAB (2019) was used to compare the code performance of the ANPG, RBFN and ELM methods in one computer system with no external compiler or toolbox implementation.

3. Results


In this study, the employed algorithms (the ANPG, RBFN and ELM methods) were separately tuned. To optimize the coefficients of specific parameters for each algorithm, the other parameters were considered to remain constant. By changing the coefficient value, the best value was determined and used for different parameters. Therefore, all the algorithms were repeatedly used and revised to develop the algorithms, as explained below.

3.1. ANFIS-PSO-GA (ANPG) Method

The parameters of the ANPG method were adjusted and are summarized in Table 2. The inputs of the dataset were initially defined and predicted, while the predition values of split-tensile load and slip were obtained separately in different analyses (Table 2). The results of the regression and comparative graphs are shown in Figures 8 and 9, respectively. As shown in Figure 8 and Table 3, the ANPG method is more successful for predicting values of slip than for predicting tensile load, which could be due to the properties of this type of NN or simply to the output being more predictable. In addition, the test results of slip and load prediction demonstrate good consistency with the training results, indicating the reliability of this method for predicting complex and nonlinear test results. Despite the acceptability of the outputs of the other employed ELM method, the inconsistent test and training results reduced the reliability of the output(s).

Table 2. Parameter characteristics used for the ANPG method.

FIS	Population	PSO-	GA-Sub-	MAX-	Inertia	Damping	Learning C	oefficient	Conducted
Clusters	Size	Iterations	Iteration	Iteration	Weight	Ratio	Personal	Global	Fuzzy Function
10	90	50	45	150	1.00	0.988	1	2	bell-shaped

Figure 8. ANPG vs. experimental results regression for: (**a**) Ultimate shear load test phase; (**b**) ultimate shear load training phase; (**c**) slip test phase; (**d**) slip training phase.

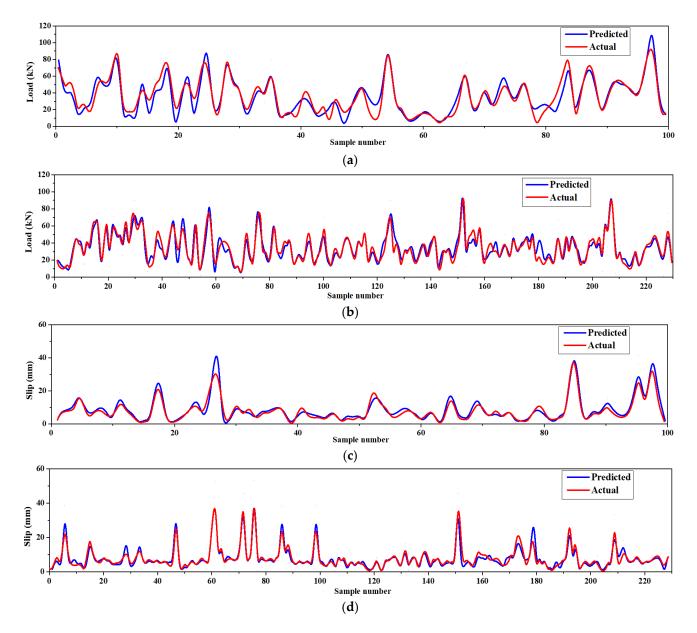
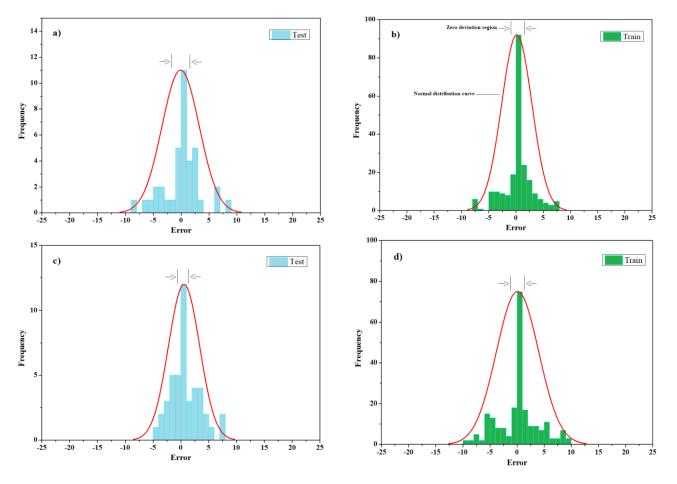



Figure 9. ANPG vs. experimental diagram for: (a) Ultimate shear load test phase; (b) ultimate shear load training phase; (c) slip test phase; (d) slip training phase.

Table 3. Output and input database.	
-------------------------------------	--

		Test	Train
	Std *	3.869	3.1884
Split-tensile load prediction	e _{mean}	-0.014	-0.081
opini tenenie nous presidenti	R ²	0.925	0.946
	r	0.962	0.973
	RMSE	3.869	4.868
		Test	Train
	Std *	0.954	1.136
Slip prediction	e _{mean}	-0.012	-0.049
	umean	0.0	0.017
Ship prediction	R ²	0.961	0.953
Shp prediction			
Shp prediction	R ²	0.961	0.953

* Std, standard deviation.

For the tensile load, the standard deviation of the two test and training phases is 18%, and the standard deviation is 16% for slip value outputs, indicating less error concentration in the first output than the second output, Figure 10.

Figure 10. ANPG vs. experimental results regression for: (**a**) Split-tensile load test phase; (**b**) split-tensile load training phase; (**c**) slip test phase; (**d**) slip training phase.

3.2. RBFN

Table 4 shows the settings used for the combination of a hybrid grid. The results of the RBFN method are presented in Table 5 and Figures 11 and 12. In this method, the results for the lateral load output were much better than the compressive strength. In addition, the test and training phase results for the first output were very similar.

Table 4. The parame	er characteristics use	ed for the RBFN method.
---------------------	------------------------	-------------------------

FIS	Population	MAX-	Cross over		Mutation	Selection
Clusters	Size	Iteration	Percentage		Rate	Pressure
10	180	200	1.00	0.5	0.1	8

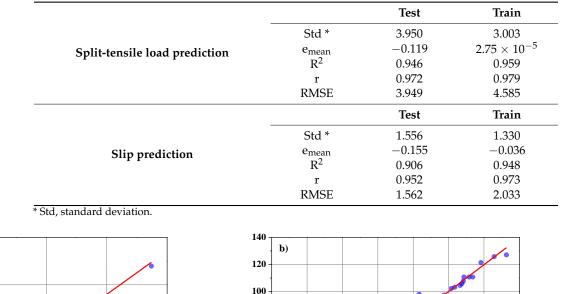
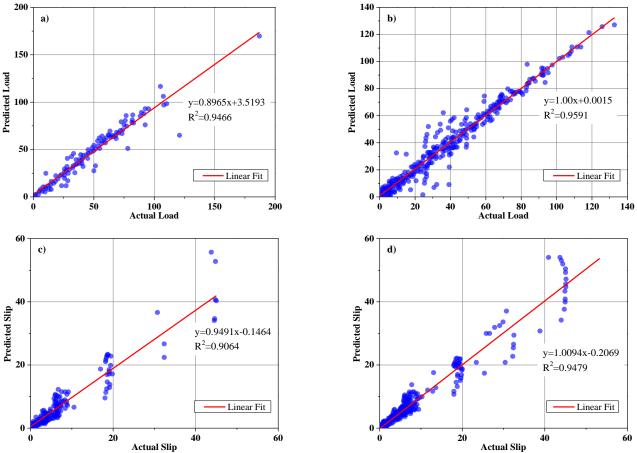
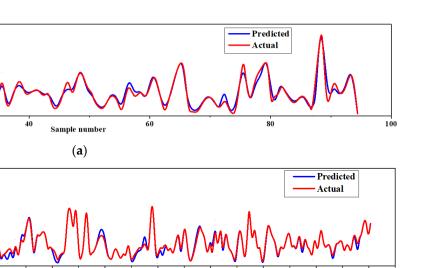
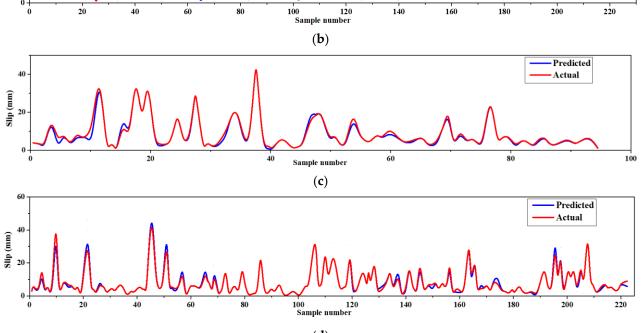



Table 5. Analytical prediction results through the RBFN method.

Figure 11. RBFN vs. experimental results regression for: (a) Ultimate shear load test phase; (b) ultimate shear load training phase; (c) slip test phase; (d) slip training phase.

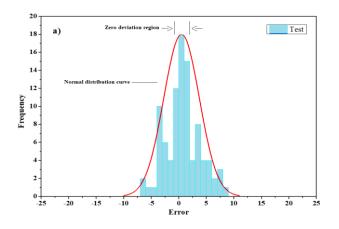
The results of this neural network approximation for the tensile e-load value output indicated more concentration at the boundary. In particular, during the training phase, the reliable evaluation criteria results are approximate. Another point to note from the graphs in Figure 12 is the relatively low error for tensile-load data below 5 MPa for both the training and test phases and relatively high error for data above 20 MPa, especially during the training phase (Figure 12). Furthermore, slip value outputs indicate higher irregularities above 10 mm. The standard deviation of the test and training phases for the tensile load is 24% and the standard deviation is 15% for slip value outputs, indicating a better concentration of errors in slip output than load output (Figure 13).


160 140


120

140

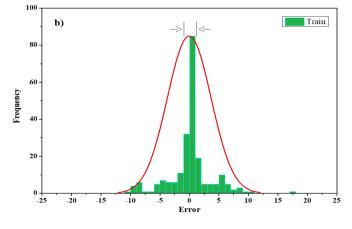
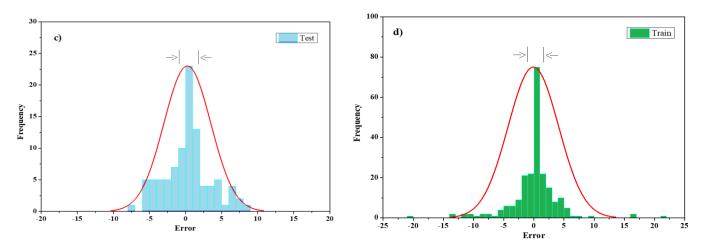
120


100

(**d**)

Figure 12. RBFN vs. experimental diagram for: (**a**) Split-tensile load test phase; (**b**) split-tensile load training phase; (**c**) slip test phase; (**d**) slip training phase.

20

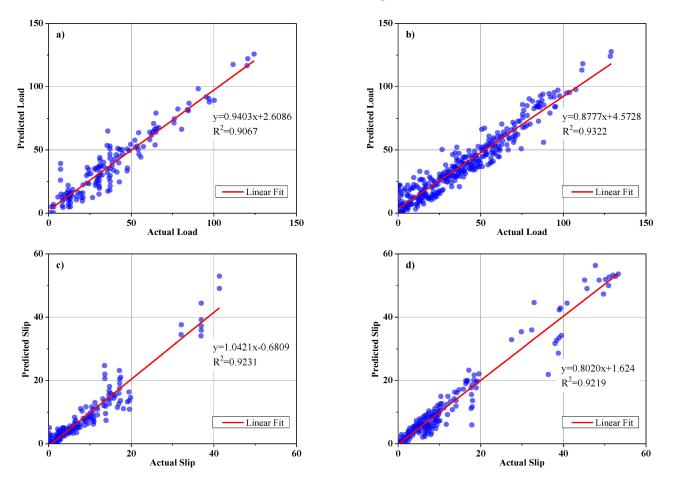
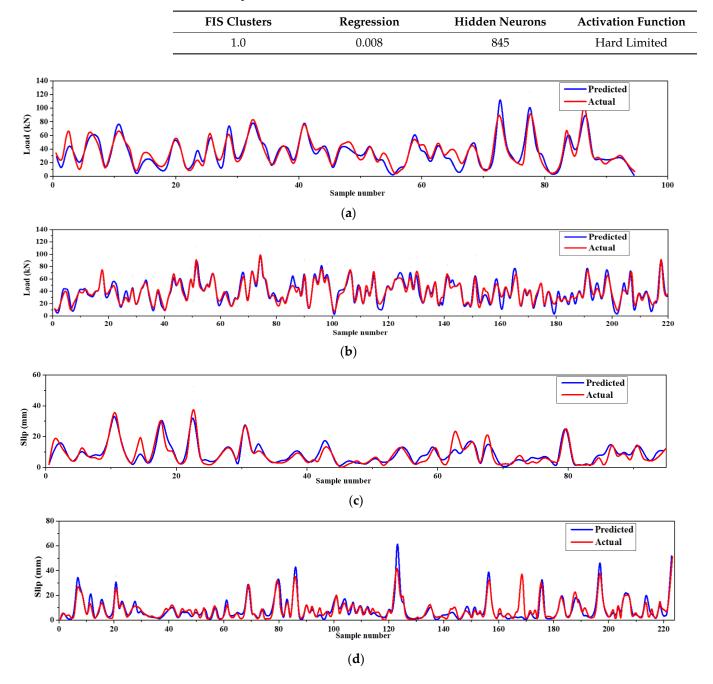

Figure 13. Cont.

Figure 13. RBFN error histogram for: (**a**) Split-tensile load test phase; (**b**) split-tensile load training phase; (**c**) slip test phase; (**d**) slip training phase.

3.3. ELM Method

The last neural network is the ELM method and the settings and are summarized in Table 6. The results are also acceptable for both outputs, as shown in Figures 14 and 15. However, by comparing the load output evaluation criteria to those of the slip value outputs and by comparing the test and training results, the load outputs show more consistency. At the same time, it is different for other products, as shown in Table 7.

Figure 14. ELM vs. experimental results regression for: (**a**) Ultimate shear load test phase; (**b**) ultimate shear load training phase; (**c**) slip test phase; (**d**) slip training phase.



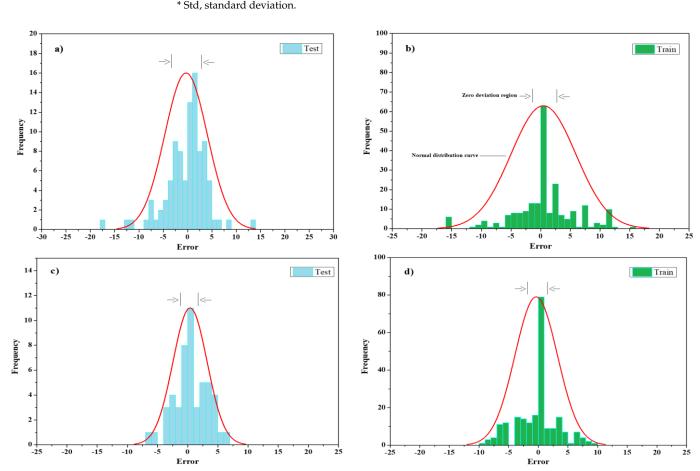

Table 6. The parameter characteristics used for the ELM method.

Figure 15. ELM vs. experimental diagram for: (**a**) Split-tensile load test phase; (**b**) split-tensile load training phase; (**c**) slip test phase; (**d**) slip training phase.

Regarding the standard deviation and error histogram in Figure 16, errors have a greater focus on slip value outputs which make the outputs more reliable. The tensile-load outputs presented are probably good results; however, due to the lack of focus on the errors of the center axis, an unprecedented response could be high with unacceptable errors.

		Test	Train
	Std *	4.341	3.949
Split-tensile load prediction	e _{mean}	0.128	
opin tensile iouu preutenon	R ²	0.906	0.932
	$\begin{array}{ccccc} e_{mean} & 0.128 & 0.02 \\ R^2 & 0.906 & 0.93 \\ r & 0.9522 & 0.96 \\ RMSE & 4.339 & 6.03 \\ \hline & {\bf Test} & {\bf Trai} \\ \hline \\ Std * & 1.454 & 1.85 \\ e_{mean} & -0.086 & 0.04 \\ R^2 & 0.923 & 0.92 \\ \hline \end{array}$	0.965	
	RMSE	4.339	6.030
		Test	Train
	Std *	4.341 3.94 0.128 0.02 0.906 0.93 0.9522 0.96 4.339 6.03 Test Trai 1.454 1.85 -0.086 0.04 0.923 0.92 0.961 0.96	1.851
Slip prediction	e _{mean}	-0.086	0.044
Ship prediction	\mathbb{R}^2	0.923	0.922
	r	0.961	0.960
	RMSE	1 455	2 827

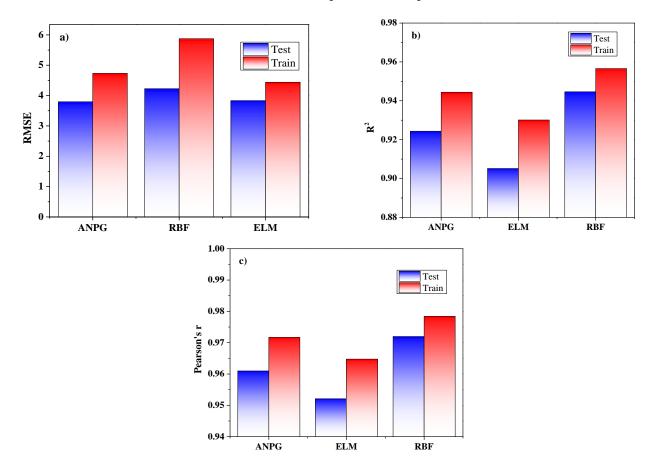
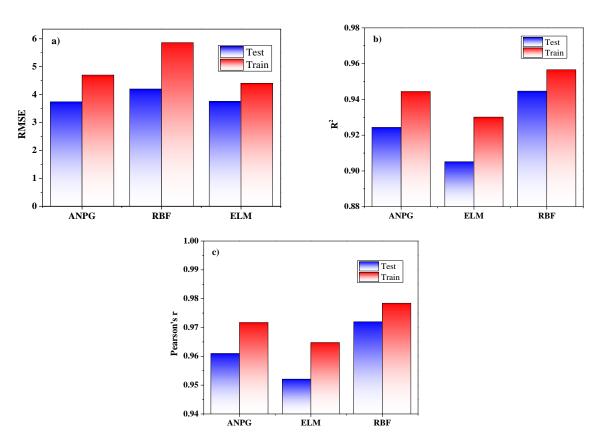

Table 7. Analytical prediction results through the ELM algorithm.

Figure 16. ELM error histogram for: (**a**) Split-tensile load test phase; (**b**) split-tensile load training phase; (**c**) slip test phase; (**d**) slip training phase.


4. Discussion

To define the inputs of RMSE, R^2 and r, an ANFIS was individually trained for every input. The effect of every input on the output could be delineated based on the determined analytical parameters for any input. Inputs with the smallest training RMSE had the most effect or relevance to the output. To identify the overfitting between test data and training, RMSE testing was applied. If the testing RMSE is very high, the regression of data is not beneficial. According to the RMSE training, the optimum combination is PSO and the GA with an ANFIS, with the most substantial accuracy on the output evaluation parameters. By examining the results of all methods, it is concluded that both split-tensile load and slip value outputs indicate a likely predictable trend due to the described inputs and useful employed NNs. A comparison of the best results for each method is shown in Figure 17, where the RBFN prediction is stronger compared to the others with R^2 (test) = 0.9466, R^2 (train) = 0.9591; r (test) = 0.973, r (train) = 0.973; and RMSE (test) = 3.949, RMSE (train) = 4.585. By evaluating the test phase error histograms shown in Figures 10, 13 and 16, due to the minor error interval in the ANPG method, the three graphs show reasonable concentration around the center, and the chance of obtaining a high error response is relatively low compared to the other methods. From the normal distribution point of view in each rectangular histogram of error, 68% of the data are within one time of the standard deviation of the mean value, 95% of the data are within two times of the standard deviation, and 99.7% of the data are within three times of the standard deviation [54–56]. Based on the results and discussion, all of the represented histograms in this paper are in agreement with the mentioned fact. Nevertheless, the charts (load error histograms) are consistent with the normal distribution paradigm, but according to Tables 3–5, different standard deviations and mean values lead to different shapes of the bell curves of load charts compared to the slip charts.

Figure 17. The comparison of performed algorithm results of split-tensile load based on: (a) RMSE; (b) \mathbb{R}^2 ; (c) r.

For slip value output, the ANPG method also provides the best result, as shown in Figure 18. The evaluation of the test phase for the ANPG method is R^2 (test) = 0.961, R^2 (train) = 0.952; r (test) = 0.980, r (train) = 0.976; and RMSE (test) = 0.962, RMSE (train) = 1.735. Thus, in the test phase, the result presented by the ANPG method is more acceptable.

Figure 18. The comparison between the results of the performed algorithms of slip based on the analytical parameters: (a) RMSE; (b) R^2 ; (c) r.

The calculated equations from the linear regressions are summarized in Tables 8 and 9 where the most decisive equations for both split-tensile load and slip value output of specific steel-concrete specimens manufactured by angle shear connector are highlighted.

Table 8. The calculated tensile-load regression equation of the implemented models.

	Networ	k Result
Model	Train Phase	Test Phase
	Regression Equation	Regression Equation
ANPG	y = 1.015x - 1.0466	y = 1.0018x - 0.0942
RBF ELM	y = 0.8965x + 3.5193 * y = 0.9403x + 2.6086	y = 1.0x - 0.0015 ** y = 0.8777x - 4.5728

* and ** are the best-achieved equations.

Table 9. The calculated slip value regression equation of the implemented models.

	Networ	k Result
Model	Train Phase	Test Phase
	Regression Equation	Regression Equation
ANPG	y = 0.9405x - 0.0318 *	y = 0.9916x - 0.2411 **
RBF	y = 0.9491x - 0.1464	y = 1.0094x - 0.2069
ELM	y = 1.0421x - 0.6809	y = 0.802x - 1.624

* and ** are the best-achieved equations.

5. Conclusions

In this study, a comparative AI study was conducted to identify the most susceptible structural characteristics of a composite floor system at elevated temperatures and to predict

critical strength factors such as failure load and slip value of shear connectors. The main algorithm was a hybridized ANFIS technique with PSO and a GA called the ANPG method. The RBFN and ELM methods were also employed as subsidiary evaluation methods. In addition, this study utilized data from 584 test results which included width (mm), height (mm), thickness (mm), shear load (kN), temperature stages (°C) and slip value (mm). The major findings are as follows:

- Based on the results for slip value output, the ANPG method provided the best result. In this method, the test and training phase evaluation criteria were R² (test) = 0.961, R² (train) = 0.952; r (test) = 0.980, r (train) = 0.976; and RMSE (test) = 0.962, RMSE (train) = 1.736. Based on the tolerance charts, the test and training phases both represented suitable compatibility, while envelope curves dramatically maintained the same tolerance. According to the error histograms, the normal distribution shapes confirmed appropriate deviation from the mean value, and slip predictions had the least error value among other predictions.
- In general, the RBFN method is an iteration-based algorithm in which most parts are randomly selected. For tensile-load output, the best result was obtained using the RBFN method with the performance parameters of R² (test) = 0.946, R² (train) = 0.959; r (test) = 0.973, r (train) = 0.973; and RMSE (test) = 3.949, RMSE (train) = 4.585. Tolerance curves in the load section illustrated the best coverage, and error histograms showed the least value in load prediction.
- The ELM method recorded the most suitable results in training phases for slip and split-tensile load prediction. In addition, the ELM method represented the lowest sensitivity against parameter contractions and performed a stable paradigm. For load, the results were R² (test) = 0.906, R² (train) = 0.932; r (test) = 0.952, r (train) = 0.965; and RMSE (test) = 4.339, RMSE (train) = 6.030. Furthermore, the slip results were R² (test) = 0.923, R² (train) = 0.922; r (test) = 0.961, r (train) = 0.960; RMSE (test) = 1.455, RMSE (train) = 2.877.
- For the identification study to determine the most critical factors on the shear-bearing capacity of a composite floor system at elevated temperatures, the ANPG method was performed on two subdata models, where slip and temperature were selected as the most significant parameters on the quality of the shear-bearing capacity. Based on the results, it could also be concluded that by restricting slip, the shear-bearing capacity could be improved at elevated temperatures, and conversely.

Finally, although all three methods (ELM, ANPG and RBFN) resulted in satisfactory prediction results, the ANPG method provided the best slip prediction results and the RBFN method achieved better load prediction results; nevertheless, all the above-mentioned methods are suitable for load and slip prediction.

Author Contributions: Conceptualization, P.M. and M.M.; methodology, S.H. and Z.Z.; software, P.M.; validation, P.M., S.H. and Z.Z.; formal analysis, A.M.E.-S.; investigation, A.M.E.-S. and S.H.; resources, Z.Z.; data curation, A.M.E.-S.; writing—original draft preparation, P.M.; writing—review and editing, M.M. and P.M.; visualization, A.M.E.-S.; supervision, M.M.; project administration, P.M.; funding acquisition, M.M. and A.M.E.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Doctoral fund project of Changzhou Vocational Institute of Technology under Grant BS202213101007.

Data Availability Statement: Not applicable.

Acknowledgments: All of the authors like to appreciate the Centre for Infrastructure Engineering of Western Sydney University for all of the technical supports during investigations. The authors extend their appreciation to King Saud University, Saudi Arabia, for funding this work through Researchers Supporting Project number (RSP2023R133), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

 Table A1. Description of the dataset for analysis.

No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)
1	25	65	500	5	0.000	0.000	31	550	65	50	5	0.677	33.071	61	700	65	50	5	7.641	41.313
2	25	65	50	5	0.021	0.642	32	550	65	50	5	0.846	42.382	62	700	65	50	5	8.303	40.356
3	25	65	50	5	0.063	5.458	33	550	65	50	5	0.972	51.051	63	700	65	50	5	8.838	39.236
4	25	65	50	5	0.084	8.508	34	550	65	50	5	1.077	57.794	64	850	65	50	5	0.000	0.000
5	25	65	50	5	0.083	13.805	35	550	65	50	5	1.332	67.266	65	850	65	50	5	0.235	0.483
6	25	65	50	5	0.124	17.818	36	550	65	50	5	1.524	69.996	66	850	65	50	5	0.406	1.287
7	25	65	50	5	0.166	24.881	37	550	65	50	5	1.758	70.801	67	850	65	50	5	0.598	2.252
8	25	65	50	5	0.165	27.610	38	550	65	50	5	2.015	70.321	68	850	65	50	5	0.918	3.539
9	25	65	50	5	0.164	30.338	39	550	65	50	5	2.293	68.879	69	850	65	50	5	1.174	4.825
10	25	65	50	5	0.227	35.957	40	550	65	50	5	2.871	65.673	70	850	65	50	5	1.664	10.447
11	25	65	50	5	0.290	44.946	41	550	65	50	5	3.277	64.232	71	850	65	50	5	1.984	14.302
12	25	65	50	5	0.309	55.380	42	550	65	50	5	3.961	61.990	72	850	65	50	5	2.304	18.478
13	25	65	50	5	0.349	64.529	43	550	65	50	5	4.538	60.550	73	850	65	50	5	2.453	18.960
14	25	65	50	5	0.432	79.939	44	550	65	50	5	5.201	58.950	74	850	65	50	5	2.965	23.940
15	25	65	50	5	0.473	85.237	45	550	65	50	5	6.163	57.032	75	850	65	50	5	3.583	29.563
16	25	65	50	5	0.558	88.287	46	550	65	50	5	7.831	52.711	76	850	65	50	5	3.882	31.492
17	25	65	50	5	0.708	86.041	47	550	65	50	5	8.451	50.630	77	850	65	50	5	4.202	33.581
18	25	65	50	5	0.902	80.906	48	700	65	50	5	0.000	0.000	78	850	65	50	5	4.672	36.474
19	25	65	50	5	1.180	76.254	49	700	65	50	5	0.149	1.767	79	850	65	50	5	5.099	38.083
20	25	65	50	5	1.694	70.479	50	700	65	50	5	0.362	5.621	80	850	65	50	5	5.590	39.050
21	25	65	50	5	2.337	65.187	51	700	65	50	5	0.724	11.242	81	850	65	50	5	6.402	39.377
22	25	65	50	5	2.615	62.942	52	700	65	50	5	0.916	15.417	82	850	65	50	5	7.770	38.104
23	25	65	50	5	2.829	60.215	53	700	65	50	5	1.171	20.876	83	850	65	50	5	9.030	37.312
24	25	65	50	5	3.107	58.291	54	700	65	50	5	1.852	33.402	84	850	65	50	5	10.398	36.520
25	550	65	50	5	0.000	0.000	55	700	65	50	5	2.427	43.037	85	850	65	50	5	11.317	35.725
26	550	65	50	5	0.042	1.124	56	700	65	50	5	3.088	46.253	86	850	65	50	5	12.236	35.251
27	550	65	50	5	0.127	5.458	57	700	65	50	5	3.815	46.580	87	850	65	50	5	13.134	34.937
28	550	65	50	5	0.254	12.522	58	700	65	50	5	4.755	46.266	88	850	65	50	5	13.732	34.621
29	550	65	50	5	0.359	19.104	59	700	65	50	5	6.016	44.671	89	850	65	50	5	14.501	34.145
30	550	65	50	5	0.486	25.205	60	700	65	50	5	7.064	42.432	90	850	65	50	5	15.164	33.830
91	850	65	50	5	15.912	33.354	126	550	65	30	5	1.538	27.722	161	850	65	30	5	0.818	0.142
92	850	65	50	5	16.296	33.357	127	550	65	30	5	1.993	35.697	162	850	65	30	5	1.318	0.564
93	850	65	50	5	16.766	33.521	128	550	65	30	5	2.447	43.367	163	850	65	30	5	2.050	0.946
94	850	65	50	5	17.108	33.364	129	550	65	30	5	2.793	49.276	164	850	65	30	5	2.718	1.509
95	850	65	50	5	17.215	32.401	130	550	65	30	5	3.173	56.738	165	850	65	30	5	5.007	5.747
96	25	65	30	5	0.000	0.000	131	550	65	30	5	3.164	57.952	166	850	65	30	5	6.560	8.699
97	25	65	30	5	0.021	0.038	132	550	65	30	5	2.983	56.900	167	850	65	30	5	8.215	11.972

No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)
98	25	65	30	5	0.059	3.441	133	550	65	30	5	2.695	54.393	168	850	65	30	5	8.519	12.033
99	25	65	30	5	0.078	5.827	134	550	65	30	5	2.320	50.752	169	850	65	30	5	10.624	15.568
100	25	65	30	5	0.073	11.160	135	550	65	30	5	1.528	42.980	170	850	65	30	5	13.042	19.445
101	25	65	30	5	0.113	13.831	136	550	65	30	5	1.025	38.327	171	850	65	30	5	13.958	20.530
102	25	65	30	5	0.149	19.572	137	550	65	30	5	0.190	30.676	172	850	65	30	5	14.946	21.715
103	25	65	30	5	0.147	22.320	138	550	65	30	5	0.483	24.673	173	850	65	30	5	16.341	23.282
104	25	65	30	5	0.145	25.067	139	550	65	30	5	1.253	17.834	174	850	65	30	5	17.283	23.685
105	25	65	30	5	0.204	28.670	140	550	65	30	5	2.344	8.311	175	850	65	30	5	18.083	23.265
106	25	65	30	5	0.260	35.666	141	550	65	30	5	4.300	9.192	176	850	65	30	5	19.000	21.300
107	25	65	30	5	0.272	45.486	142	550	65	30	5	5.060	16.176	177	850	65	30	5	19.961	16.165
108	25	65	30	5	0.307	53.328	143	700	65	30	5	0.000	0.000	178	850	65	30	5	20.968	11.812
109	25	65	30	5	0.379	66.104	144	700	65	30	5	0.384	1.869	179	850	65	30	5	22.082	7.158
110	25	65	30	5	0.417	70.068	145	700	65	30	5	1.108	5.870	180	850	65	30	5	22.747	3.768
111	25	65	30	5	0.500	70.400	146	700	65	30	5	2.217	11.739	181	850	65	30	5	23.514	0.699
112	25	65	30	5	0.652	63.344	147	700	65	30	5	2.963	16.046	182	850	65	30	5	24.311	2.149
113	25	65	30	5	0.848	52.011	148	700	65	30	5	3.943	21.680	183	850	65	30	5	24.808	4.155
114	25	65	30	5	1.130	38.423	149	700	65	30	5	6.287	34.674	184	850	65	30	5	25.426	6.803
115	25 25	65 (F	30 20	5 5	1.648	16.172 9.703	150	700 700	65 (F	30 20	5 5	8.141	44.704	185	850 850	65 (F	30	5 5	25.987 26.583	8.989
116 117	25 25	65 65	30 30	5 5	2.294 2.573	9.703 2.867	151 152	700	65 65	30 30	5 5	9.230 10.000	48.374 49.200	186 187	850 850	65 65	30 30	5 5	26.583	11.577 12.660
117	25 25	65	30 30	5	2.373	0.461	152	700	65	30 30	5	10.000	49.200	187	850	65	30 30	5	20.908	13.822
118	25 25	65	30 30	5	3.069	0.401	155	700	65	30 30	5	10.899	49.332	188	850	65	30 30	5	27.491	13.822
119	550	65	30 30	5	0.000	0.415	154	700	65	30	5	12.698	47.284	190	850	65	30	5	27.582	14.940
120	550	65	30	5	0.033	0.788	155	700	65	30	5	13.127	46.562	191	25	75	30	6	0.000	0.000
121	550	65	30	5	0.239	4.454	150	700	65	30	5	13.662	46.059	192	25	75	30	6	0.019	0.040
123	550	65	30	5	0.585	10.516	158	700	65	30	5	14.048	45.307	193	25	75	30	6	0.054	3.636
124	550	65	30	5	0.920	16.265	159	850	65	30	5	0.000	0.000	194	25	75	30	6	0.071	6.158
125	550	65	30	5	1.202	21.362	160	850	65	30	5	0.390	0.180	195	25	75	30	6	0.067	11.794
196	25	75	30	6	0.103	14.616	231	550	75	30	6	0.937	40.504	266	850	75	30	6	12.757	21.696
197	25	75	30	6	0.136	20.684	232	550	75	30	6	0.174	32.419	267	850	75	30	6	13.661	22.948
198	25	75	30	6	0.134	23.588	233	550	75	30	6	0.442	26.074	268	850	75	30	6	14.936	24.605
199	25	75	30	6	0.132	26.491	234	550	75	30	6	1.145	18.847	269	850	75	30	6	15.796	25.031
200	25	75	30	6	0.186	30.298	235	550	75	30	6	2.142	8.783	270	850	75	30	6	16.528	24.587
201	25	75	30	6	0.238	37.691	236	550	75	30	6	3.931	9.715	271	850	75	30	6	17.366	22.510
202	25	75	30	6	0.249	48.069	237	550	75	30	6	4.625	17.095	272	850	75	30	6	18.244	17.083
203	25	75	30	6	0.281	56.357	238	700	75	30	6	0.000	0.000	273	850	75	30	6	19.165	12.483
204	25	75	30	6	0.346	69.859	239	700	75	30	6	0.351	1.976	274	850	75	30	6	20.183	7.565
205	25	75	30	6	0.381	74.048	240	700	75	30	6	1.013	6.203	275	850	75	30	6	20.791	3.982
206	25	75	30	6	0.457	74.399	241	700	75	30	6	2.026	12.406	276	850	75	30	6	21.492	0.739

No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)
207	25	75	30	6	0.595	66.942	242	700	75	30	6	2.708	16.957	277	850	75	30	6	22.220	2.271
208	25	75	30	6	0.775	54.965	243	700	75	30	6	3.604	22.912	278	850	75	30	6	22.675	4.391
209	25	75	30	6	1.033	40.605	244	700	75	30	6	5.746	36.643	279	850	75	30	6	23.239	7.189
210	25	75	30	6	1.506	17.090	245	700	75	30	6	7.441	47.243	280	850	75	30	6	23.752	9.499
211	25	75	30	6	2.096	10.254	246	700	75	30	6	8.436	51.122	281	850	75	30	6	24.297	12.234
212	25	75	30	6	2.352	3.029	247	700	75	30	6	9.140	51.995	282	850	75	30	6	24.649	13.379
213	25	75	30	6	2.550	0.487	248	700	75	30	6	9.961	52.346	283	850	75	30	6	25.127	14.608
214	25	75	30	6	2.805	0.436	249	700	75	30	6	10.920	51.576	284	850	75	30	6	25.393	15.795
215	550	75	30	6	0.000	0.000	250	700	75	30	6	11.606	49.970	285	850	75	30	6	25.210	17.131
216	550	75	30	6	0.030	0.833	251	700	75	30	6	11.998	49.206	286	25	75	50	6	0.000	0.000
217	550	75	30	6	0.218	4.707	252	700	75	30	6	12.487	48.675	287	25	75	50	6	0.017	0.708
218	550	75	30	6	0.535	11.114	253	700	75	30	6	12.840	47.880	288	25	75	50	6	0.051	6.015
219	550	75	30	6	0.841	17.189	254	850	75	30	6	0.000	0.000	289	25	75	50	6	0.068	9.376
220	550	75	30	6	1.099	22.575	255	850	75	30	6	0.356	0.190	290	25	75	50	6	0.067	15.213
221	550	75	30	6	1.406	29.296	256	850	75	30	6	0.747	0.150	291	25	75	50	6	0.101	19.635
222	550	75	30	6	1.821	37.725	257	850	75	30	6	1.205	0.596	292	25	75	50	6	0.134	27.419
223	550	75	30	6	2.237	45.830	258	850	75	30	6	1.874	1.000	293	25	75	50	6	0.134	30.426
224	550	75	30	6	2.553	52.075	259	850	75	30	6	2.484	1.595	294	25	75	50	6	0.134	33.433
225	550	75	30	6	2.900	59.960	260	850	75	30	6	4.576	6.073	295	25	75	50	6	0.185	39.625
226	550	75	30	6	2.892	61.244	261	850	75	30	6	5.996	9.193	296	25	75	50	6	0.235	49.531
227	550	75	30	6	2.727	60.132	262	850	75	30	6	7.509	12.652	297	25	75	50	6	0.251	61.028
228	550	75	30	6	2.463	57.482	263	850	75	30	6	7.787	12.717	298	25	75	50	6	0.284	71.111
229	550	75	30	6	2.120	53.635	264	850	75	30	6	9.711	16.452	299	25	75	50	6	0.350	88.093
230	550	75	30	6	1.396	45.421	265	850	75	30	6	11.920	20.549	300	25	75	50	6	0.384	93.931
301	25	75	50	6	0.453	97.292	336	700	75	50	6	0.588	12.388	371	850	75	50	6	9.936	38.846
302	25	75	50	6	0.575	94.817	337	700	75	50	6	0.743	16.989	372	850	75	50	6	10.664	38.500
303	25	75	50	6	0.732	89.159	338	700	75	50	6	0.951	23.006	373	850	75	50	6	11.150	38.152
304	25	75	50	6	0.958	84.031	339	700	75	50	6	1.504	36.809	374	850	75	50	6	11.775	37.628
305	25	75	50	6	1.376	77.668	340	700	75	50	6	1.970	47.427	375	850	75	50	6	12.313	37.280
306	25	75	50	6	1.897	71.836	341	700	75	50	6	2.508	50.970	376	850	75	50	6	12.920	36.756
307	25	75	50	6	2.123	69.362	342	700	75	50	6	3.098	51.331	377	850	75	50	6	13.233	36.760
308	25	75	50	6	2.297	66.357	343	700	75	50	6	3.861	50.985	378	850	75	50	6	13.614	36.941
309	25	75	50	6	2.523	64.237	344	700	75	50	6	4.885	49.228	379	850	75	50	6	13.892	36.767
310	550	75	50	6	0.000	0.000	345	700	75	50	6	5.736	46.760	380	850	75	50	6	13.979	35.706
311	550	75	50	6	0.035	1.239	346	700	75	50	6	6.204	45.527	381	25	100	30	7	0.000	0.000
312	550	75	50	6	0.103	6.015	347	700	75	50	6	6.742	44.472	382	25	100	30	7	0.171	4.947
313	550	75	50	6	0.206	13.799	348	700	75	50	6	7.176	43.238	383	25	100	30	7	0.512	11.484
314	550	75	50	6	0.292	21.053	349	850	75	50	6	0.000	0.000	384	25	100	30	7	0.938	19.611
315	550	75	50	6	0.395	27.775	350	850	75	50	6	0.191	0.533	385	25	100	30	7	1.279	36.749
316	550	75	50	6	0.549	36.444	351	850	75	50	6	0.329	1.419	386	25	100	30	7	1.791	47.703

No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)
317	550	75	50	6	0.687	46.705	352	850	75	50	6	0.485	2.482	387	25	100	30	7	2.217	55.654
318	550	75	50	6	0.789	56.258	353	850	75	50	6	0.745	3.900	388	25	100	30	7	2.900	69.081
319	550	75	50	6	0.875	63.689	354	850	75	50	6	0.953	5.317	389	25	100	30	7	3.326	75.972
320	550	75	50	6	1.081	74.127	355	850	75	50	6	1.352	11.512	390	25	100	30	7	3.753	82.156
321	550	75	50	6	1.237	77.136	356	850	75	50	6	1.611	15.760	391	25	100	30	7	4.606	86.042
322	550	75	50	6	1.428	78.022	357	850	75	50	6	1.871	20.362	392	25	100	30	7	5.203	86.749
323	550	75	50	6	1.636	77.494	358	850	75	50	6	1.992	20.894	393	25	100	30	7	5.885	83.569
324	550	75	50	6	1.862	75.904	359	850	75	50	6	2.408	26.382	394	25	100	30	7	7.249	72.792
325	550	75	50	6	2.331	72.372	360	850	75	50	6	2.910	32.579	395	25	100	30	7	7.164	66.431
326	550	75	50	6	2.661	70.783	361	850	75	50	6	3.152	34.704	396	25	100	30	7	7.079	57.244
327	550	75	50	6	3.216	68.313	362	850	75	50	6	3.412	37.006	397	25	100	30	7	7.164	56.007
328	550	75	50	6	3.685	66.726	363	850	75	50	6	3.793	40.194	398	550	100	30	7	0.000	0.000
329	550	75	50	6	4.223	64.963	364	850	75	50	6	4.140	41.967	399	550	100	30	7	0.171	1.060
330	550	75	50	6	5.004	62.849	365	850	75	50	6	4.539	43.033	400	550	100	30	7	0.597	5.830
331	550	75	50	6	6.358	58.088	366	850	75	50	6	5.198	43.394	401	550	100	30	7	1.023	13.428
332	550	75	50	6	6.862	55.794	367	850	75	50	6	6.309	41.991	402	550	100	30	7	1.365	20.318
333	700	75	50	6	0.000	0.000	368	850	75	50	6	7.333	41.117	403	550	100	30	7	2.047	29.859
334	700	75	50	6	0.121	1.947	369	850	75	50	6	8.443	40.245	404	550	100	30	7	2.388	37.633
335	700	75	50	6	0.294	6.194	370	850	75	50	6	9.190	39.369	405	550	100	30	7	3.241	49.117
406	550	100	30	7	4.606	58.834	441	700	100	30	7	16.461	34.452	476	850	100	30	7	63.642	30.052
407	550	100	30	7	6.482	67.138	442	700	100	30	7	17.058	32.862	477	850	100	30	7	64.665	29.524
408	550	100	30	7	7.761	70.848	443	700	100	30	7	18.081	30.035	478	850	100	30	7	66.198	29.704
409	550	100	30	7	8.102	71.378	444	850	100	30	7	0.000	0.000	479	850	100	30	7	66.880	29.175
410	550	100	30	7	8.870	69.965	445	850	100	30	7	0.511	0.886	480	850	100	30	7	67.732	29.530
411	550	100	30	7	9.126	63.428	446	850	100	30	7	1.874	3.544	481	850	100	30	7	70.288	29.005
412	550	100	30	7	9.126	59.187	447	850	100	30	7	3.408	6.910	482	850	100	30	7	73.695	27.774
413	550	100	30	7	9.126	53.534	448	850	100	30	7	4.601	8.506	483	25	100	50	7	0.000	0.000
414	550	100	30	7	9.126	48.410	449	850	100	30	7	5.708	9.570	484	25	100	50	7	0.012	6.257
415	550	100	30	7	9.126	45.936	450	850	100	30	7	6.986	11.874	485	25	100	50	7	0.088	15.414
416	550	100	30	7	9.126	43.110	451	850	100	30	7	8.775	14.887	486	25	100	50	7	0.214	26.816
417	550	100	30	7	9.126	39.576	452	850	100	30	7	10.650	17.900	487	25	100	50	7	0.077	46.573
418	550	100	30	7	9.126	36.749	453	850	100	30	7	12.439	20.736	488	25	100	50	7	0.030	61.457
419	700	100	30	7	0.000	0.000	454	850	100	30	7	14.228	22.863	489	25	100	50	7	0.163	72.682
420	700	100	30	7	0.171	1.237	455	850	100	30	7	15.676	24.813	490	25	100	50	7	0.349	91.349
421	700	100	30	7	0.768	5.124	456	850	100	30	7	17.039	25.347	491	25	100	50	7	0.522	101.514
422	700	100	30	7	1.365	7.420	457	850	100	30	7	18.062	27.297	492	25	100	50	7	0.720	110.973
423	700	100	30	7	2.303	15.724	458	850	100	30	7	20.021	29.602	493	25	100	50	7	1.429	121.409
424	700	100	30	7	3.156	24.205	459	850	100	30	7	22.066	30.845	494	25	100	50	7	2.000	126.700
425	700	100	30	7	3.923	32.156	460	850	100	30	7	23.855	32.088	495	25	100	50	7	2.800	128.759
426	700	100	30	7	4.947	40.106	461	850	100	30	7	27.348	34.220	496	25	100	50	7	4.562	128.461

427 700 100 30 7 5.714 45.838 462 850 100 30 7 27.74 33.868 497 25 100 50 428 700 100 30 7 6.482 50.000 463 850 100 30 7 33.568 463.858 499 25 100 50 429 700 100 30 7 6.452 50.0071 463 850 100 30 7 35.64 35.34 401 550 100 50 431 700 100 30 7 12.576 62.544 466 850 100 30 7 41.576 37.240 50 100 50 433 700 100 30 7 14.528 63.530 469 850 100 30 7 41.576 37.260 50 100 50 433 700 100	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)	No.	Temp. (°C)	Height (mm)	Length (mm)	Thick. (mm)	Slip (mm)	Load (kN)
429 700 100 30 7 7.676 55.654 464 850 100 30 7 34.420 35.474 499 25 100 50 430 700 100 30 7 85.55 60.071 465 850 100 30 7 35.612 36.716 500 550 100 50 431 700 100 30 7 16.776 37.848 501 550 100 50 433 700 100 30 7 13.646 56.360 469 850 100 30 7 46.603 39.041 504 550 100 50 435 700 100 30 7 14.328 50.333 471 850 100 30 7 53.419 39.056 557 50 100 50 436 700 100 30 7 53.441 39.405 506	427	700	100	30	7	5.714	45.583	462	850	100	30	7	27.774	33.867	497	25	100	50	7	4.712	121.445
430 700 100 30 7 8,955 60,071 465 850 100 30 7 35,612 36,716 500 550 100 50 431 700 100 30 7 10,576 62,544 466 850 100 30 7 36,976 35,834 501 500 50 433 700 100 30 7 12,623 61,307 468 850 100 30 7 43,280 37,972 503 550 100 50 434 700 100 30 7 13,464 56,360 469 850 100 30 7 43,689 505 550 100 50 435 700 100 30 7 15,437 45,583 472 850 100 30 7 51,148 39,405 506 550 100 50 437 700 100	428	700	100	30		6.482	50.000	463	850	100	30	7	33.568	36.358	498	25	100	50	7	4.966	111.603
431 700 100 30 7 10.576 62.544 466 850 100 30 7 36.976 35.834 501 550 100 50 432 700 100 30 7 12.23 61.307 468 850 100 30 7 41.576 37.26 502 550 100 50 433 700 100 30 7 13.646 56.360 469 850 100 30 7 47.199 38.89 505 550 100 50 436 700 100 30 7 15.437 45.83 472 850 100 30 7 53.419 39.405 506 550 100 50 433 700 100 30 7 15.437 45.63 474 850 100 30 7 55.48 39.416 508 550 100 50 433 700	429	700	100	30			55.654	464	850	100	30	7	34.420	35.474	499		100	50	7	5.097	111.021
432 700 100 30 7 12.111 63.251 467 850 100 30 7 41.576 37.260 502 550 100 50 433 700 100 30 7 12.623 61.307 468 850 100 30 7 44.280 37.972 503 550 100 50 434 700 100 30 7 14.283 50.353 471 850 100 30 7 47.199 38.689 505 550 100 50 437 700 100 30 7 15.437 45.53 472 850 100 30 7 53.419 39.416 508 550 100 50 439 700 100 30 7 15.643 47.633 475 850 100 30 7 58.96 37.830 509 550 100 50 410	430	700						465				-			500				7	0.000	0.000
433 700 100 30 7 12,623 61,307 468 850 100 30 7 43,280 37,972 503 550 100 50 434 700 100 30 7 13,646 56,360 469 850 100 30 7 44,603 39,041 504 550 100 50 436 700 100 30 7 14,328 50,353 471 850 100 30 7 51,118 39,405 506 550 100 50 437 700 100 30 7 15,437 45,583 472 850 100 30 7 53,419 39,056 507 550 100 50 440 700 100 30 7 15,467 105,700 536 700 100 50 7 11,320 92,359 561 850 100 50 511												-							7	0.131	1.783
434 700 100 30 7 13.646 56.360 469 850 100 30 7 46.603 39.041 504 550 100 50 435 700 100 30 7 13.902 54.240 470 850 100 30 7 47.199 38.689 505 550 100 50 437 700 100 30 7 15.437 45.883 472 850 100 30 7 53.419 39.056 507 550 100 50 433 700 100 30 7 15.678 40.636 474 850 100 30 7 55.84 39.416 508 550 100 50 440 700 100 30 7 15.864 37.633 475 850 100 30 7 11.320 92.359 561 850 100 50 511																			7	0.382	8.359
435 700 100 30 7 13.902 54.240 470 850 100 30 7 47.199 38.689 505 550 100 50 436 700 100 30 7 14.328 50.353 471 850 100 30 7 51.118 39.405 506 550 100 50 437 700 100 30 7 15.437 47.858 472 850 100 30 7 55.804 39.416 508 550 100 50 439 700 100 30 7 15.784 40.636 474 850 100 30 7 51.18 508 509 550 100 50 511 550 100 50 7 54.67 105.700 536 700 100 50 7 11.63 99.914 56 850 100 50 511 550	433																		7	0.528	17.763
436 700 100 30 7 14.328 50.353 471 850 100 30 7 51.118 39.405 506 550 100 50 437 700 100 30 7 15.437 45.583 472 850 100 30 7 53.419 39.056 507 550 100 50 439 700 100 30 7 15.778 40.636 474 850 100 30 7 58.956 37.830 509 550 100 50 440 700 100 50 7 54.67 105.700 536 700 100 50 7 61.880 100 50 51 100 50 7 61.661 86.99 50 100 50 512 550 100 50 7 6.287 100.30 7 13.208 88.152 563 850 100 50																			7	0.615	26.099
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			7	0.945	38.529
438 700 100 30 7 15.693 43.463 473 850 100 30 7 55.804 39.416 508 550 100 50 440 700 100 30 7 15.778 40.636 474 850 100 30 7 58.956 37.830 509 550 100 50 440 700 100 50 7 15.864 37.633 475 850 100 30 7 61.086 36.949 510 550 100 50 512 550 100 50 7 61.287 107.538 537 700 100 50 7 11.633 90.91 62 850 100 50 511 550 100 50 7 62.850 100 50 51 550 100 50 7 13.556 86.307 564 850 100 50 516 550												-							7	0.999	47.748
439 700 100 30 7 15.778 40.636 474 850 100 30 7 58.956 37.830 509 550 100 50 440 700 100 30 7 58.956 37.830 509 550 100 50 511 550 100 50 7 5.467 105.700 536 700 100 50 7 11.320 92.359 561 850 100 50 513 550 100 50 7 6.784 102.085 538 700 100 50 7 13.556 86.307 564 850 100 50 513 550 100 50 7 7.439 87.067 541 700 100 50 7 13.856 86.307 564 850 100 50 516 550 100 50 7 7.439 87.067 541												-							7	1.428	62.845
44070010030715.86437.63347585010030761.08636.949510550100505115501005075.467105.70053670010050711.32092.359561850100505125501005076.287107.53853770010050711.66390.914562850100505135501005076.784102.08553870010050713.55686.307564850100505145501005077.14992.19154070010050713.89984.862565850100505155501005077.33987.06754170010050714.31079.481567850100505165501005077.43084.59454270010050714.31079.481567850100505185501005077.76975.40654570010050715.03877.876568850100505205501005077.76975.40654570010050716.84177.734570850<												-							7	2.434	78.343
511 550 100 50 7 5.467 105.700 536 700 100 50 7 11.360 92.359 561 850 100 50 512 550 100 50 7 6.287 107.538 537 700 100 50 7 11.363 90.914 562 850 100 50 513 550 100 50 7 6.784 102.085 538 700 100 50 7 11.325 563 850 100 50 514 550 100 50 7 6.941 97.845 539 700 100 50 7 13.356 86.307 564 850 100 50 516 550 100 50 7 7.430 84.594 542 700 100 50 7 14.101 82.260 566 850 100 50 516 550 <																			7	4.003	94.595
512 550 100 50 7 6.287 107.538 537 700 100 50 7 11.663 90.914 562 850 100 50 513 550 100 50 7 6.784 102.085 538 700 100 50 7 12.250 88.152 563 850 100 50 513 550 100 50 7 6.941 97.845 539 700 100 50 7 13.556 86.307 564 850 100 50 516 550 100 50 7 7.149 92.191 540 700 100 50 7 14.310 79.481 567 850 100 50 516 550 100 50 7 7.430 84.594 542 700 100 50 7 14.310 79.481 567 850 100 50 518 550 100 50 7 7.534 81.767 543 700 100	440		100	30				475		100			61.086		510	550	100	50	7	5.146	103.725
5135501005076.784102.08553870010050712.25088.152563850100505145501005076.94197.84553970010050713.55686.307564850100505155501005077.14992.19154070010050713.89984.862565850100505165501005077.33987.06754170010050714.10182.260566850100505185501005077.43084.57454270010050714.31079.481567850100505185501005077.65481.76754370010050715.70177.876568850100505195501005077.76975.40654570010050716.84177.734570850100505217001005070.30110050716.84177.734570850100505227001005070.5667.14954885010050716.154.17857385010050523 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>7</th><th>8.301</th><th>38.313</th></t<>																			7	8.301	38.313
5145501005076.94197.84553970010050713.55686.307564850100505155501005077.14992.19154070010050713.89984.862565850100505165501005077.33987.06754170010050714.10182.260566850100505175501005077.43084.59454270010050714.31079.481567850100505185501005077.53481.76754370010050715.03877.876568850100505195501005077.66778.23354470010050715.03877.876569850100505205501005077.66778.23354470010050716.84177.734570850100505217001005070.1201.6875478501005070.3611.059572850100505227001005070.1201.6875478501005071.6154.178573850100 <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>7</th> <th>7.735</th> <th>40.161</th>												-							7	7.735	40.161
515 550 100 50 7 7.149 92.191 540 700 100 50 7 13.899 84.862 565 850 100 50 516 550 100 50 7 7.339 87.067 541 700 100 50 7 14.101 82.260 566 850 100 50 517 550 100 50 7 7.430 84.594 542 700 100 50 7 14.310 79.481 567 850 100 50 518 550 100 50 7 7.534 81.767 543 700 100 50 7 15.038 77.876 568 850 100 50 519 550 100 50 7 7.665 78.233 544 700 100 50 7 16.841 77.734 570 850 100 50 520 550 100 50 7 0.000 0.000 546 850 100 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th>7</th><th>6.341</th><th>43.475</th></td<>												-							7	6.341	43.475
5165501005077.33987.06754170010050714.10182.260566850100505175501005077.43084.59454270010050714.31079.481567850100505185501005077.53481.76754370010050715.03877.876568850100505195501005077.66578.23354470010050715.70177.861569850100505205501005077.76975.40654570010050716.84177.734570850100505217001005070.0000.0005468501005070.681177.734570850100505227001005070.16875478501005070.6611.059572850100505237001005070.16875478501005070.6811.059572850100505247001005070.16875478501005071.6154.17857385010050524700 <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>7</th> <th>5.567</th> <th>43.266</th>												-							7	5.567	43.266
5175501005077.43084.59454270010050714.31079.481567850100505185501005077.53481.76754370010050715.03877.876568850100505195501005077.66578.23354470010050715.70177.861569850100505205501005077.66578.23354470010050716.84177.734570850100505217001005070.0000.0005468501005070.6611.059572850100505227001005070.1201.6875478501005070.3611.059572850100505237001005070.5667.1495488501005071.6154.178573850100505247001005071.65421.7995508501005073.3958.063574850100505257001005071.65421.7995508501005073.71311.5025768501005												-							7	2.226	47.717
5185501005077.53481.76754370010050715.03877.876568850100505195501005077.66578.23354470010050715.70177.861569850100505205501005077.76975.40654570010050716.84177.734570850100505217001005070.0000.0005468501005070.0000.000571850100505227001005070.1201.6875478501005070.3611.059572850100505237001005070.5567.1495488501005071.6154.178573850100505247001005071.65421.7995508501005073.3958.063574850100505257001005071.65421.7995508501005073.77310.063575850100505267001005072.15732.5305518501005073.71311.50257685010050												-							7	0.504	47.122
5195501005077.66578.23354470010050715.70177.8615698501005052055010050777.6975.40654570010050716.84177.734570850100505217001005070.0000.0005468501005070.0000.000571850100505227001005070.1201.6875478501005070.3611.059572850100505237001005070.5567.1495488501005071.6154.178573850100505247001005071.65421.7995508501005073.3958.063574850100505257001005071.65421.7995508501005073.77310.063575850100505267001005072.15732.5305518501005073.71311.502576850100505277001005072.59642.5055528501005074.70414.23857785010050<												-							7	0.534	48.768
520 550 100 50 7 7.769 75.406 545 700 100 50 7 16.841 77.734 570 850 100 50 521 700 100 50 7 0.000 0.000 546 850 100 50 7 0.000 0.000 571 850 100 50 522 700 100 50 7 0.100 50 7 0.361 1.059 572 850 100 50 523 700 100 50 7 0.556 7.149 548 850 100 50 7 1.615 4.178 573 850 100 50 524 700 100 50 7 1.654 21.799 550 850 100 50 7 3.395 8.063 574 850 100 50 525 700 100 50 7 1.654 21.799 550 850 100 50 7 3.773 10.063 575																			7	1.697	48.347
521 700 100 50 7 0.000 0.000 546 850 100 50 7 0.000 0.000 571 850 100 50 522 700 100 50 7 0.120 1.687 547 850 100 50 7 0.361 1.059 572 850 100 50 523 700 100 50 7 0.56 7.149 548 850 100 50 7 1.615 4.178 573 850 100 50 524 700 100 50 7 1.615 4.178 573 850 100 50 525 700 100 50 7 1.654 21.799 550 850 100 50 7 3.395 8.063 575 850 100 50 525 700 100 50 7 1.654 21.799 550 850 100 50 7 3.773 10.063 575 850 100 50												-							7	4.894	51.330
522 700 100 50 7 0.120 1.687 547 850 100 50 7 0.361 1.059 572 850 100 50 523 700 100 50 7 0.566 7.149 548 850 100 50 7 1.615 4.178 573 850 100 50 524 700 100 50 7 1.615 4.178 573 850 100 50 524 700 100 50 7 1.615 4.178 573 850 100 50 525 700 100 50 7 1.615 4.178 573 850 100 50 525 700 100 50 7 1.063 57 850 100 50 7 3.773 10.063 575 850 100 50 526 700 100 50 7 2.157 32.530 551 850 100 50 7 3.713 11.502																			7	5.897	52.618
523 700 100 50 7 0.556 7.149 548 850 100 50 7 1.615 4.178 573 850 100 50 524 700 100 50 7 1.058 11.020 549 850 100 50 7 3.395 8.063 574 850 100 50 525 700 100 50 7 1.615 4.178 573 850 100 50 525 700 100 50 7 1.615 4.178 573 850 100 50 526 700 100 50 7 2.157 32.530 551 850 100 50 7 3.713 11.502 576 850 100 50 526 700 100 50 7 2.596 42.505 552 850 100 50 7 4.704 14.238 577 850 100 50 527 700 100 50 7 2.596												-							7 7	8.167	54.812
524 700 100 50 7 1.058 11.020 549 850 100 50 7 3.395 8.063 574 850 100 50 525 700 100 50 7 1.654 21.799 550 850 100 50 7 3.773 10.063 575 850 100 50 526 700 100 50 7 2.157 32.530 551 850 100 50 7 3.713 11.502 576 850 100 50 527 700 100 50 7 2.596 42.505 552 850 100 50 7 4.704 14.238 577 850 100 50												-							7	9.111	54.661
525 700 100 50 7 1.654 21.799 550 850 100 50 7 3.773 10.063 575 850 100 50 526 700 100 50 7 2.713 11.502 576 850 100 50 527 700 100 50 7 2.733 11.502 576 850 100 50 527 700 100 50 7 2.704 14.238 577 850 100 50												-							7	12.324	56.704 57.133
526 700 100 50 7 2.157 32.530 551 850 100 50 7 3.713 11.502 576 850 100 50 527 700 100 50 7 2.596 42.505 552 850 100 50 7 4.704 14.238 577 850 100 50												-							7	14.968 17.000	57.155
527 700 100 50 7 2.596 42.505 552 850 100 50 7 4.704 14.238 577 850 100 50												-							7	21.714	58.500 57.781
												-							7	24.710	57.621
578 700 100 50 7 3.291 53.156 553 850 100 50 7 5.880 17.856 578 850 100 50	528	700	100	50	7	3.291	42.303 53.156	553	850	100	50	7	5.880	17.856	578	850	100	50 50	7	34.056	51.589
529 700 100 50 7 3.833 60.658 554 850 100 50 7 6.972 21.504 579 850 100 50												-							7	35.599	51.407
530 700 100 50 7 4.418 67.099 555 850 100 50 7 7.975 24.945 580 850 100 50												-							7	36.955	52.106
531 700 100 50 7 5.379 75.903 556 850 100 50 7 8.281 27.678 581 850 100 50																			, 7	38.158	51.807
532 700 100 50 7 6.476 83.695 557 850 100 50 7 8.752 30.118 582 850 100 50												-							, 7	38.659	52.451
533 700 100 50 7 7.994 90.443 558 850 100 50 7 7.915 31.114 583 850 100 50																			, 7	41.732	52.791
534 700 100 50 7 9.500 95.200 559 850 100 50 7 8.811 33.409 584 850 100 50												-							, 7	46.353	52.713
535 700 100 50 7 10.092 94.606 560 850 100 50 7 9.121 36.377												-									

References

- 1. Utsab Katwal, T.A.; Tao, Z.; Uy, B.; Rahme, D. Tests of circular geopolymer concrete-filled steel columns under ambient and fire conditions. *J. Constr. Steel Res.* 2022, *196*, 107393. [CrossRef]
- Xia, Y.; Shi, M.; Zhang, C.; Wang, C.; Sang, X.; Liu, R.; Zhao, P.; An, G.; Fang, H. Analysis of flexural failure mechanism of ultraviolet cured-in-place-pipe materials for buried pipelines rehabilitation based on curing temperature monitoring. *Eng. Fail. Anal.* 2022, 142, 106763. [CrossRef]
- 3. Liu, K.; Yang, Z.; Wei, W.; Gao, B.; Xin, D.; Sun, C.; Gao, G.; Wu, G. Novel Detection Approach for Thermal Defects: Study on Its Feasibility and Application to Vehicle Cables. *High Volt.* **2022**. [CrossRef]
- 4. Huang, H.; Yao, Y.; Liang, C.; Ye, Y. Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam. *Soil Dyn. Earthq. Eng.* **2022**, *163*, 107499. [CrossRef]
- 5. Zhang, Z.; Yang, Q.; Yu, Z.; Wang, H.; Zhang, T. Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding. *Mater. Charact.* **2022**, *189*, 111962. [CrossRef]
- 6. Zhang, C.; Abedini, M. Development of PI model for FRP composite retrofitted RC columns subjected to high strain rate loads using LBE function. *Eng. Struct.* 2022, 252, 113580. [CrossRef]
- 7. Zhao, G.; Shi, L.; Yang, G.; Zhuang, X.; Cheng, B. 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. *J. Mater. Chem. A* 2023. [CrossRef]
- Li, J.; Chen, M.; Li, Z. Improved soil-structure interaction model considering time-lag effect. *Comput. Geotech.* 2022, 148, 104835. [CrossRef]
- 9. Deng, E.-F.; Zhang, Z.; Zhang, C.-X.; Tang, Y.; Wang, W.; Du, Z.-J.; Gao, J.-P. Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge. *Eng. Struct.* **2023**, *275*, 115314. [CrossRef]
- 10. Tian, L.-m.; Li, M.-h.; Li, L.; Li, D.-y.; Bai, C. Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. *Thin-Walled Struct.* **2023**, *182*, 110219. [CrossRef]
- AzariJafari, H.; Amiri, M.J.T.; Ashrafian, A.; Rasekh, H.; Barforooshi, M.J.; Berenjian, J. Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. *J. Clean. Prod.* 2019, 223, 575–586. [CrossRef]
- 12. Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H. Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. *Constr. Build. Mater.* **2020**, 252, 118997. [CrossRef]
- 13. Rahai, A.; Mortazavi, M. Experimental and numerical study on the effect of core shape and concrete cover length on the behavior of BRBs. *Int. J. Civ. Eng.* **2014**, *12*, 379–395.
- 14. Mehrabi, P.; Shariati, M.; Kabirifar, K.; Jarrah, M.; Rasekh, H.; Trung, N.T.; Shariati, A.; Jahandari, S. Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. *Constr. Build. Mater.* **2021**, *287*, 122652. [CrossRef]
- 15. Ren, C.; Yu, J.; Liu, S.; Yao, W.; Zhu, Y.; Liu, X. A plastic strain-induced damage model of porous rock suitable for different stress paths. *Rock Mech. Rock Eng.* 2022, 55, 1887–1906. [CrossRef]
- Hussain, I.; Yaqub, M.; Mortazavi, M.; Ehsan, M.A.; Uzair, M. Finite Element Modeling and Statistical Analysis of Fire-Damaged Reinforced Concrete Columns Repaired Using Smart Materials and FRP Confinement. In Proceedings of the International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Istanbul, Turkey, 8–10 December 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 101–110.
- 17. Shariati, M.; Tahmasbi, F.; Mehrabi, P.; Bahadori, A.; Toghroli, A. Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation. *Steel Compos. Struct* **2020**, *35*, 237–247.
- 18. Shariati, M.; Trung, N.T.; Wakil, K.; Mehrabi, P.; Safa, M.; Khorami, M. Estimation of moment and rotation of steel rack connections using extreme learning machine. *Steel Compos. Struct.* **2019**, *31*, 427–435.
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A.; Zandi, Y.; Salih, M.N.; Nguyen, H.; Dou, J.; Song, X.; Poi-Ngian, S. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. *Appl. Sci.* 2019, *9*, 5534. [CrossRef]
- 20. Pashan, A. Behaviour of Channel Shear Connectors: Push-Out Tests; University of Saskatchewan: Saskatoon, SK, Canada, 2006.
- 21. Sharafi, P.; Mortazavi, M.; Askarian, M.; Uz, M.E.; Zhang, C.; Zhang, J. Thin walled steel sections' free shape optimization using charged system search algorithm. *Iran Univ. Sci. Technol.* **2017**, *7*, 515–526.
- 22. Lee, J.-S.; Shin, K.-J.; Lee, H.-D.; Woo, J.-H. Strength Evaluation of Angle Type Shear Connectors in Composite Beams. *Int. J. Steel Struct.* 2020, 20, 2068–2075. [CrossRef]
- 23. Davoodnabi, S.M. Behavior of steel-concrete composite beam using angle shear connectors at fire condition. *Steel Compos. Struct. Int. J.* **2019**, *30*, 141–147.
- 24. Firouzianhaji, A.; Usefi, N.; Samali, B.; Mehrabi, P. Shake table testing of standard cold-formed steel storage rack. *Appl. Sci.* **2021**, *11*, 1821. [CrossRef]
- 25. Shariati, M.; Faegh, S.S.; Mehrabi, P.; Bahavarnia, S.; Zandi, Y.; Masoom, D.R.; Toghroli, A.; Trung, N.-T.; Salih, M.N. Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings. *Steel Compos. Struct. Int. J.* **2019**, *33*, 569–581.

- Mehrabi, P.; Honarbari, S.; Rafiei, S.; Jahandari, S.; Alizadeh Bidgoli, M. Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques. J. Ambient Intell. Humaniz. Comput. 2021, 12, 10105–10123. [CrossRef]
- Jahed Armaghani, D.; Hasanipanah, M.; Bakhshandeh Amnieh, H.; Tien Bui, D.; Mehrabi, P.; Khorami, M. Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm. *Eng. Comput.* 2020, *36*, 1379–1391. [CrossRef]
- 28. Taheri, E.; Firouzianhaji, A.; Mehrabi, P.; Vosough Hosseini, B.; Samali, B. Experimental and numerical investigation of a method for strengthening cold-formed steel profiles in bending. *Appl. Sci.* **2020**, *10*, 3855. [CrossRef]
- 29. Taheri, E.; Firouzianhaji, A.; Usefi, N.; Mehrabi, P.; Ronagh, H.; Samali, B. Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads. *Appl. Sci.* **2019**, *9*, 5085. [CrossRef]
- Taheri, E.; Mehrabi, P.; Rafiei, S.; Samali, B. Numerical Evaluation of the Upright Columns with Partial Reinforcement along with the Utilisation of Neural Networks with Combining Feature-Selection Method to Predict the Load and Displacement. *Appl. Sci.* 2021, 11, 11056. [CrossRef]
- Xu, H.; He, T.; Zhong, N.; Zhao, B.; Liu, Z. Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy. *Tribol. Int.* 2022, 167, 107362. [CrossRef]
- 32. Xiao, D.; Hu, Y.; Wang, Y.; Deng, H.; Zhang, J.; Tang, B.; Xi, J.; Tang, S.; Li, G. Wellbore cooling and heat energy utilization method for deep shale gas horizontal well drilling. *Appl. Therm. Eng.* **2022**, *213*, 118684. [CrossRef]
- 33. Li, J.; Zhou, L.; Li, S.; Lin, G.; Ding, Z. Soil–structure interaction analysis of nuclear power plant considering three-dimensional surface topographic irregularities based on automatic octree mesh. *Eng. Struct.* **2023**, 275, 115161. [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Shariati, A.; Toghroli, A.; Trung, N.T.; Salih, M.N. A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. *Eng. Comput.* 2021, 37, 2089–2109. [CrossRef]
- 35. Li, J.; Cheng, F.; Lin, G.; Wu, C. Improved hybrid method for the generation of ground motions compatible with the multi-damping design spectra. *J. Earthq. Eng.* 2022, 1–27. [CrossRef]
- 36. Huang, Z.; Li, T.; Huang, K.; Ke, H.; Lin, M.; Wang, Q. Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning. *Energy* **2022**, *261*, 125228. [CrossRef]
- 37. Liu, J.; Mohammadi, M.; Zhan, Y.; Zheng, P.; Rashidi, M.; Mehrabi, P. Utilizing Artificial Intelligence to Predict the Superplasticizer Demand of Self-Consolidating Concrete Incorporating Pumice, Slag, and Fly Ash Powders. *Materials* **2021**, *14*, 6792. [CrossRef]
- Khotbehsara, M.M.; Miyandehi, B.M.; Naseri, F.; Ozbakkaloglu, T.; Jafari, F.; Mohseni, E. Effect of SnO₂, ZrO₂, and CaCO₃ nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions. *Constr. Build. Mater.* 2018, *158*, 823–834. [CrossRef]
- Feng, Y.; Mohammadi, M.; Wang, L.; Rashidi, M.; Mehrabi, P. Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete. *Materials* 2021, 14, 4885. [CrossRef] [PubMed]
- 40. Huang, Y.; Fu, J. Review on application of artificial intelligence in civil engineering. *Comput. Model. Eng. Sci.* **2019**, 121, 845–875. [CrossRef]
- 41. Huang, J.; Ling, S.; Wu, X.; Deng, R. GIS-based comparative study of the bayesian network, decision table, radial basis function network and stochastic gradient descent for the spatial prediction of landslide susceptibility. *Land* **2022**, *11*, 436. [CrossRef]
- 42. Khambra, G.; Shukla, P. Novel machine learning applications on fly ash based concrete: An overview. *Mater. Today Proc.* 2021. [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Zandi, Y.; Dehghani, D.; Bahadori, A.; Shariati, A.; Trung, N.T.; Salih, M.; Poi-Ngian, S. Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures. *Steel Compos. Struct* 2019, *33*, 319–332.
- 44. Walia, N.; Singh, H.; Sharma, A. ANFIS: Adaptive neuro-fuzzy inference system-a survey. *Int. J. Comput. Appl.* **2015**, 123. [CrossRef]
- Shahgoli, A.F.; Zandi, Y.; Heirati, A.; Khorami, M.; Mehrabi, P.; Petkovic, D. Optimisation of propylene conversion response by neuro-fuzzy approach. *Int. J. Hydromechatronics* 2020, *3*, 228–237. [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.
- 47. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
- 48. Booker, L.B.; Goldberg, D.E.; Holland, J.H. Classifier systems and genetic algorithms. Artif. Intell. 1989, 40, 235–282. [CrossRef]
- 49. Camp, C.V.; Pezeshk, S.; Hansson, H. Flexural design of reinforced concrete frames using a genetic algorithm. *J. Struct. Eng.* **2003**, 129, 105–115. [CrossRef]
- 50. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. *Neurocomputing* **2006**, *70*, 489–501. [CrossRef]
- 51. Ikram, R.M.A.; Dai, H.-L.; Al-Bahrani, M.; Mamlooki, M. Prediction of the FRP Reinforced Concrete Beam shear capacity by using ELM-CRFOA. *Measurement* 2022, 205, 112230. [CrossRef]
- 52. Zhang, M.; Wang, K.; Zhang, C.; Chen, H.; Liu, H.; Yue, Y.; Luffman, I.; Qi, X. Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China. *Environ. Earth Sci.* **2011**, *62*, 69–76. [CrossRef]

- Bodyanskiy, Y.; Pirus, A.; Deineko, A. Multilayer radial-basis function network and its learning. In Proceedings of the 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, 23–26 September 2020; pp. 92–95.
- Shahmansouri, A.A.; Akbarzadeh Bengar, H.; Ghanbari, S. Experimental investigation and predictive modeling of compressive strength of pozzolanic geopolymer concrete using gene expression programming. J. Concr. Struct. Mater. 2020, 5, 92–117.
- Shahmansouri, A.A.; Yazdani, M.; Ghanbari, S.; Bengar, H.A.; Jafari, A.; Ghatte, H.F. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. *J. Clean. Prod.* 2021, 279, 123697. [CrossRef]
- 56. Shahmansouri, A.A.; Yazdani, M.; Hosseini, M.; Bengar, H.A.; Ghatte, H.F. The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. *Constr. Build. Mater.* **2022**, *317*, 125876. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.