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Abstract: The aim of this paper is to study the performance of a composite floor system at different
heat stages using artificial intelligence to derive a sustainable design and to select the most critical
factors for a sustainable floor system at elevated temperatures. In a composite floor system, load
bearing is due to composite action between steel and concrete materials which is achieved by using
shear connectors. Although shear connectors play an important role in the performance of a composite
floor system by transferring shear force from the concrete to the steel profile, if the composite floor
system is exposed to high temperature conditions excessive deformations may reduce the shear-
bearing capacity of the composite floor system. Therefore, in this paper, the slip response of angle
shear connectors is evaluated by using artificial intelligence techniques to determine the performance
of a composite floor system during high temperatures. Accordingly, authenticated experimental
data on monotonic loading of a composite steel-concrete floor system in different heat stages were
employed for analytical assessment. Moreover, an artificial neural network was developed with a
fuzzy system (ANFIS) optimized by using a genetic algorithm (GA) and particle swarm optimization
(PSO), namely the ANFIS-PSO-GA (ANPG) method. In addition, the results of the ANPG method
were compared with those of an extreme learning machine (ELM) method and a radial basis function
network (RBFN) method. The mechanical and geometrical properties of the shear connectors and
the temperatures were included in the dataset. Based on the results, although the behavior of
the composite floor system was accurately predicted by the three methods, the RBFN and ANPG
methods represented the most accurate values for split-tensile load and slip prediction, respectively.
Based on the numerical results, since the slip response had a rational relationship with the load and
geometrical parameters, it was dramatically predictable. In addition, slip response and temperature
were determined as the most critical factors affecting the shear-bearing capacity of the composite
floor system at elevated temperatures.

Keywords: extreme learning machine; radial basis function network; neural network; shear connector;
floor system; elevated temperature; metaheuristic algorithms

1. Introduction

Fire safety is a major concern that has not been well developed in recent years. Many
studies have been conducted on a range of approaches to mitigate fire-induced damage to
steel and concrete members [1–3]. Some research studies have also focused on improving
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the safety of occupants during and after fire occurrences and on reducing the refurbishment
and retrofitting costs.

Composite beams have been widely used in a variety of structures and buildings
due to a number of positive features such as lower thickness, considerable span length
and high stiffness [4,5]. The development of different composite beams is highly valued to
mitigate some shortcomings of specific composite structures [6–8]. Steel-concrete composite
beams are one of the critical components of high rise and multi-story structures, and
different studies have been conducted to improve their performance [9,10]. Moreover, shear
connectors (SCs) are one of the most practical elements that are extensively utilized in steel-
concrete composite beams to increase shear strength and the integrated behavior of concrete
and steel. There are different types of SCs such as channel, angle, stud and perfobond
sections. Concrete is cast in different shapes and types such as self-consolidating [11],
porous [12], high strength, lightweight and green concrete [13]. Concrete characteristics are
divided into two major categories namely fresh and hardened properties. Fresh properties
include the most primitive properties of concrete such as slump and workability. On the
contrary, hardened properties refer to a range of critical features such as compressive
strength, flexural strength, shear strength and corrosion resistance, where many attempts
have been made to enhance these properties by surface protection [14,15], the inclusion of
fibers and cementitious replacement powders [16].

A few studies have considered push-out tests with various loading patterns to evaluate
slip and failure load in channel SCs [17]. Channel SCs have been shown to exhibit ductile
performance when exposed to a series of load patterns while equipped with c-shaped
connectors; however, this behavior was amplified in more extended channel SCs [18]. In an-
other study, composite beams showed brittle behavior when channel SCs were embedded
in plain concrete with no confinement [19]. In contrast, when the channel SCs were embed-
ded in high-strength concrete, the behavior of the composite beam was ductile. In addition,
more extended channel SCs demonstrated better flexibility than lower channels [19]. Bear-
ing capacity has a direct linear relationship with length, and therefore, a C-shaped channel
SC with 150 mm length has almost 60 percent higher load-carrying capacity compared to a
100 mm channel SC. In addition, failure modes are governed by concrete properties when a
C-shaped channel SC is embedded in high-strength concrete [20]. Despite the inevitable
slip between an I-beam and slab, this slip can be negligible with appropriate design of
the shear connector. Thick channel connectors result in reducing slip and consequently
increasing load capacity [21].

Angle SCs present suitable ductility but a noticeable stiffness loss [22]. Using angle
shear connectors at elevated temperatures has been shown to protect strength loss by up
to 50% of the initial strength [23]. Three main failure modes have occurred during tests:
(1) shear connector fracture, (2) concrete crushing and (3) concrete shear plane failure. Based
on experimental results, connectors’ strength loss and deterioration while exposed to fire
can be changed in different situations [24,25]. Several methods have been employed for data
validation such as artificial neural networks, whereas extreme learning machine [21,26],
genetic programming, neural network and other natural basis functional networks have
been reported to be the best methods [27]. Finite element and finite strip methods have also
been proven to be reliable approaches for data authentication and prediction [28–33].

The role of AI techniques has recently been highlighted in the. development of
engineering goals [25,34,35]. A raw model of artificial neural networks (ANNs) can gen-
erally be developed by training and optimization techniques such as backpropagation
algorithms [36]. Then, ANNs are able to solve three types of problems: (1) classification,
(2) function approximation and (3) time series prediction. However, not being able to pro-
ceed with local extrema and complications in crossing plateaus of error function landscape
are common defects of classic approaches [37]. Neural networks and some optimization
techniques have recently been applied to solve nonlinear and sophisticated engineering
problems. In some cases, the performance of an ANN can be improved by using the global
search feature of classic methods such as GA and PSO [26]. As a remedy for ANN problems,
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a fuzzy technique has been integrated with neural networks, and other algorithms have
been developed such as the artificial neuro fuzzy inference system (ANFIS) [38], which
has been used for different types of applications including the prediction of experimental
results with nonlinear relationships and parameter identification of the test data. Studies
have shown that an ANFIS alone has some shortcomings which could be annihilated by
incorporating metaheuristic algorithms [39]. Due to the relatively conventional approach of
laboratory data in the steel-concrete composite sector, in addition to the studies on different
SC applications to develop the structural strength of composite floor systems and raise
their ductility, AI techniques can be employed to optimize and to evaluate the structural
characteristics of steel-concrete composite structures [19].

In addition, several studies have used different AI techniques in comparative studies
to challenge the main algorithm results and to achieve reliable outcomes [40]. In a study,
the RBFN approach was selected as a secondary method to challenge the main algorithm
prediction which was stochastic gradient descent. The RBFN results were also used to detect
landslide susceptibility [41]. The machine learning method is another useful approach as
a secondary algorithm for prediction of data and assessment of structural behavior [42].
The ELM method has been performed on data from steel-concrete composite floors at
different heat stages along with an ANN and genetic programming technique. Based on the
results, the ELM method accurately predicted the target outcomes and achieved superior
performance indices [43]. In this study, a comparative AI assessment on data derived from
a composite floor system at different heat stages was performed to predict the failure load
and to obtain the most critical parameters for slip response.

In this study, we conducted a comparative AI assessment of the behavior of a com-
posite floor system at different temperatures. In addition, three different AI methods were
performed which was profoundly helpful to identify the most susceptible characteristics of
the composite floor system at elevated temperatures. Predicting values for split-tensile and
shear connector slip of a steel-concrete composite floor system subjected to a monotonic
loading scenario at different heat stages is complicated since empirical testing is difficult
and time-consuming and because the effective parameters are somehow hidden from the
researchers or the outcomes of test results do not have enough consistency. Therefore, in
this study, we aimed to overcome the prediction difficulties by employing an integrating
neural network and fuzzy system with a multi-hybrid metaheuristic technique, called the
ANPG method. The main algorithm was a hybrid AI technique carried out to predict the
shear response in angle shear connectors simultaneously with an investigation of the effect
of various inputs on the structural performance of a composite floor system at elevated
temperatures. For this purpose, we developed the ANPG algorithm by using a hybrid
metaheuristic (combination of PSO-GA) technique which was based on a neuro-fuzzy
algorithm (ANFIS) due to the diverse nature of the employed data and its ability to predict
the shear behavior of composite systems at high temperatures. Accordingly, some validated
data from Davoodnabi et al. [23] were derived from a previous laboratory research study to
delineate the shear behavior of the angle shear connectors at different temperatures. In soft
computing methods, the above-mentioned methods can provide a compact solution for
multi-variable method drawbacks since knowledge of the internal system is not necessary.
Two proven and effective artificial intelligence algorithms, i.e., the RBFN and ELM methods,
were also employed to verify and to compare the obtained results. In addition, the affect
of different parameters on the shear-bearing capacity of the composite floor system were
evaluated and the parameters that were the most critical factors were selected.

2. Materials and Methods

For this research, the database was obtained from the study by Davoodnabi et al. [23]
regarding a monotonic push-out test on SCs at elevated temperatures to achieve reliable
structural behavior of a composite system at high temperatures. The aforementioned shear
connectors are shown in Figure 1.
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Figure 1. Composite floor system and shear connectors.

2.1. Statistical Data of Samples

In this study, the dataset was the information of experiments that eventually consisted
of 584 test results (the specifications of the dataset are shown in Appendix A). The statistical
properties of the whole dataset and input variables are indicated in Table 1.

Table 1. Details of input variables.

Inputs Variables Min Max Mean Value Std

Input 1 Slip (mm) 0.00 73.70 22.87 39.2
Input 2 Length (mm) 30.0 50.0 40.0 10.0
Input 3 Thickness (mm) 5.0 7.0 6.0 0.8
Input 4 Height (mm) 65.0 100.0 80.4 14.8
Input 5 Temperature (◦C) 25.0 850.0 568.2 311.9
Input 6 Load (kN) 0.00 126.7 36.8 27.6

Outputs

Output 1 Slip (mm) 0.00 73.70 22.87 39.2
Output 2 Load (kN) 0.00 126.7 36.8 27.6

As shown in Table 1, the concrete’s compressive strength along with the steel properties
remained at constant values with no involvement in the dataset. The database was set
for variables such as the height, length and thickness of the shear connectors, which
directly affect the split-tensile capacity of the composite floor system, especially at elevated
temperatures. Load and slip could be replaced by each other in the placement order either
as an input or an output.

2.2. Analytical Assessment

Recently, some research studies have been conducted on the performance of welded
built-up steel members using AI techniques [25]. The following sections describe the
architecture and some background of the employed algorithms in the current study.
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2.2.1. ANFIS Algorithm and Architecture

In an adaptive network (AN), nodes are directly connected by links, and every node
acts in a defined performance on its receiving signals to produce a single node output;
therefore, this procedure is made up of a multi-layer feed-forward system [34]. Notably,
the configuration of an AN acts as a static node function on its receiving signals to produce
a single node output, and every node performance is a parameterized function with
changeable parameters. With any alteration of these parameters, the node functions are
altered such as the overall behavior of the AN, Figure 2. In a fuzzy inference system (FIS),
membership function parameters are tuned by a specific technique. Indeed, an ANFIS is
utilized to delineate the optimal amounts of equivalent FIS parameters through a learning
algorithm [44]. Across the training session(s), parameter optimization is performed in a way
that the error between actual output and target decreases. A hybrid algorithm is utilized
for the optimization that is a combination of gradient descent and the least square estimate
method. The optimized parameters are called premise parameters that specify the shape
of the membership functions (MFs). To minimize the error measure, each optimization
routine could be used after the MFs are generated. The parameter set of the AN permits
the fuzzy systems to learn from the modeling data.
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Figure 2. Flowchart of the ANFIS network concept.

The ANFIS network has five layers called the fuzzy layer, normalized layer, product
layer, total output layer and de-fuzzy layer, as shown in Figure 3 [45]. During this tech-
nique, a threshold value between the output and the actual value is set and the following
parameters are obtained by the least-squares model, while an error for all data is also re-
ceived. If the threshold value exceeds the deliberated threshold, using the gradient descent
method the premise parameters are updated. This continues until the error turns out to
be less than the threshold. Because the parameters are simultaneously obtained by using
two algorithms (the decent gradient and least-squares algorithms), the utilized algorithm
during this procedure is called a hybrid algorithm.

2.2.2. Particle Swarm Optimization (PSO)

The PSO algorithm is another member of the swarm intelligence algorithms initially
generated by Kennedy and Eberhart [46] while sharing many aspects with evolutionary
computation models such as GA. Similar to other population-based intelligence models,
PSO needs an initial population of random resolutions. The search for optimal values is
gained by updating the generations without evolution operators such as mutation and
crossover. The potential decisions are generally called particles in PSO, flying through the
resolution space by following their own experiences and the current optimal particles. Thus,
the performance of PSO is comparable with GA and may be regarded as an alternative
approach for GA. Figure 4 indicates the systematic sequences of the PSO algorithm.
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2.2.3. Genetic Algorithm (GA)

Holland (1992) [47] introduced the GA based on the extended evolution theory of
Darwin that was developed by Goldberg and Holland (1988) [48]. As a member of the larger
group of evolutionary algorithms (EAs), the GA is a metaheuristic algorithm based on the
principles of biological evolution in nature. After many evolutions, the best individual is
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obtained. Compared with other optimizing methods, the GA includes good robustness and
convergence. With the same accuracy of calculation, the GA takes the least time to find an
optimal resolution [49]. Figure 5 represents the step-by-step platform of the GA algorithm.
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2.2.4. Hybrid ANPG Architecture

For the first time, a hybridized ANFIS using PSO and GA techniques was applied to
solve a composite floor system problem. The combination of the sequential PSO-GA and
ANFIS is depicted in Figure 6. In order to identify the best weights and to select suitable
functions, the ANPG method was performed several times to predict one specific outcome
with a variety of input scenarios. First, in PSO, swarm is initiated by a group of random
resolutions as a particle, while showing the particle’s position. Then, the specific velocity is
identified, the transmitting function is triggered, and the GA procedure initiates to optimize
the final problem space. Finally, a particular velocity is gained for any ith particle in every
cycle by using Equation (1) where w represents the inertia weight.

vi(t + 1) = wvi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pi(t)− xi(t)) (1)

c1 and c2 represent the positive acceleration coefficients.
→
φ 1 and

→
φ 2 show uniformly

distributed random vectors [0, 1], in which a random value is tried for each dimension.
→
v i limited to

[
−→v max,

→
v max

]
series is reliant on the problem. In some cases, the velocity
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exceeds the mentioned curb and is rearranged within its suitable limits. Based on their
velocities, every particle alters its position based on the following Equation (2):

s(t + 1) = s(t) + v(t + 1) (2)

Based on
→
v i and

→
s i, the particle population tends to cluster around the best number.
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The ANPG hybrid method operates in regard to random population generation and
is based on avian mass flight behavior modeling and simulation of fish mass movement.
A global minimization method can deal with questions whose answers are a point or
surface in n-dimensional space. A random population is assumed in this space, and
an elementary velocity is defined for it and between the particles to the communication
channels. The particles move through the response space, and the outcomes are computed
on a “merit basis” after each time interval. Then, particles speed up toward the particles of
higher competence that are in matching communication groups. Although each method is
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performed satisfactorily in a range of problems, it demonstrates pronounced capability in
resolving continuous problems in optimization. The GA, by using evolutionary biology
methods, tries to find the optimum formula for predicting or pattern matching. The GA
could be an effective choice for regression-based prediction techniques, while its modeling
is a programming technique based on genetic evolution to problem resolutions. The solved
problem possesses inputs converted into solutions through a patterned process of genetic
evolution. Afterward, by using the fitness function, the solutions are verified as candidates.
The ANPG algorithm terminates in case the condition of problem exit is arranged. Generally,
it is an iteration-based algorithm in which most of its parts are randomly selected.

2.2.5. Extreme Learning Machine (ELM)

As a single-layer learning tool, the ELM method was introduced which is similar to a
feed-forward neural network [50]. In the ELM method, the output weights are analytically
determined while the weights of input are defined randomly. The superiority of the ELM
method is its extremely fast ability to find target weights. Additionally, without exterior
interference, the ELM method is able to determine all the network parameters. In the
case of prediction and characteristic estimation for concrete products, the ELM method
is efficient and reliable [51] and because of these benefits it has gained high popularity
and applicability.

2.2.6. Radial Basis Function Network (RBFN) Method

Generally, in each RBFN architecture, a set of D-dimensional radial activation functions
estimate the input function f (x). The architecture consists of the D neuron input layer, the P
neuron output layer and the M neuron hidden layer. The biases at each output neuron and
adjustable weights between the hidden and output layers are shown in Figure 7 [52,53].
The system is represented by the nth input vector, and as described in Equation (3), the
approximation function f (x) can be represented as a linear combination of radial basis
functions in which the output of the kth network consists of the sum of weighted hidden
layer neurons plus the bias [41]:

f̂ (X)= wh(X) + w, k = 1, 2, . . . , P (3)

where:

wkj = weight of the jth basis function and kth output;
hj (Xn) = output of jth hidden neuron for the input vector (xn);
w(k0) = bias term at kth output neuron.
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2.2.7. Performance Evaluation

Models of all the developed methods were evaluated by using evaluation criteria
namely, root mean squared error (RMSE), determination coefficient (R2) and Pearson
correlation coefficient (r) as follows:

RMSE =

√√√√√ n
∑

i=1
(Pi −Oi)

2

n
(4)

r =
n
(

n
∑

i=1
Oi·Pi

)
−
(

n
∑

i=1
Oi

)
·
(

n
∑

i=1
Pi

)
√√√√(n

n
∑

i=1
O2

i −
(

n
∑

i=1
Oi

)2
)
·
(

n
n
∑

i=1
Pi

2 −
(

n
∑

i=1
Pi

)2
) (5)

R2 =

[
n
∑

i=1

(
Oi −Oi

)
·
(
Pi − Pi

)]2

n
∑

i=1

(
Oi −Oi

)
·

n
∑

i=1

(
Pi − Pi

) (6)

where Pi and Oi are the predicted and observed variables, and n is the total number of
considered data. Alternatively, MATLAB (2019) was used to compare the code performance
of the ANPG, RBFN and ELM methods in one computer system with no external compiler
or toolbox implementation.

3. Results

In this study, the employed algorithms (the ANPG, RBFN and ELM methods) were
separately tuned. To optimize the coefficients of specific parameters for each algorithm, the
other parameters were considered to remain constant. By changing the coefficient value, the
best value was determined and used for different parameters. Therefore, all the algorithms
were repeatedly used and revised to develop the algorithms, as explained below.

3.1. ANFIS-PSO-GA (ANPG) Method

The parameters of the ANPG method were adjusted and are summarized in Table 2.
The inputs of the dataset were initially defined and predicted, while the predition values
of split-tensile load and slip were obtained separately in different analyses (Table 2). The
results of the regression and comparative graphs are shown in Figures 8 and 9, respectively.
As shown in Figure 8 and Table 3, the ANPG method is more successful for predicting
values of slip than for predicting tensile load, which could be due to the properties of this
type of NN or simply to the output being more predictable. In addition, the test results of
slip and load prediction demonstrate good consistency with the training results, indicating
the reliability of this method for predicting complex and nonlinear test results. Despite the
acceptability of the outputs of the other employed ELM method, the inconsistent test and
training results reduced the reliability of the output(s).

Table 2. Parameter characteristics used for the ANPG method.

FIS
Clusters

Population
Size

PSO-
Iterations

GA-Sub-
Iteration

MAX-
Iteration

Inertia
Weight

Damping
Ratio

Learning Coefficient Conducted
Fuzzy FunctionPersonal Global

10 90 50 45 150 1.00 0.988 1 2 bell-shaped
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Table 3. Output and input database.

Split-tensile load prediction

Test Train

Std * 3.869 3.1884
emean −0.014 −0.081

R2 0.925 0.946
r 0.962 0.973

RMSE 3.869 4.868

Slip prediction

Test Train

Std * 0.954 1.136
emean −0.012 −0.049

R2 0.961 0.953
r 0.980 0.976

RMSE 0.962 1.736
* Std, standard deviation.
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For the tensile load, the standard deviation of the two test and training phases is 18%,
and the standard deviation is 16% for slip value outputs, indicating less error concentration
in the first output than the second output, Figure 10.
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3.2. RBFN

Table 4 shows the settings used for the combination of a hybrid grid. The results of the
RBFN method are presented in Table 5 and Figures 11 and 12. In this method, the results
for the lateral load output were much better than the compressive strength. In addition, the
test and training phase results for the first output were very similar.

Table 4. The parameter characteristics used for the RBFN method.

FIS
Clusters

Population
Size

MAX-
Iteration

Cross over
Percentage

Mutation
Percentage

Mutation
Rate

Selection
Pressure

10 180 200 1.00 0.5 0.1 8
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Table 5. Analytical prediction results through the RBFN method.

Split-tensile load prediction

Test Train

Std * 3.950 3.003
emean −0.119 2.75 × 10−5

R2 0.946 0.959
r 0.972 0.979

RMSE 3.949 4.585

Slip prediction

Test Train

Std * 1.556 1.330
emean −0.155 −0.036

R2 0.906 0.948
r 0.952 0.973

RMSE 1.562 2.033
* Std, standard deviation.
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mate shear load training phase; (c) slip test phase; (d) slip training phase. 
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mate shear load training phase; (c) slip test phase; (d) slip training phase.

The results of this neural network approximation for the tensile e-load value output
indicated more concentration at the boundary. In particular, during the training phase,
the reliable evaluation criteria results are approximate. Another point to note from the
graphs in Figure 12 is the relatively low error for tensile-load data below 5 MPa for both
the training and test phases and relatively high error for data above 20 MPa, especially
during the training phase (Figure 12). Furthermore, slip value outputs indicate higher
irregularities above 10 mm. The standard deviation of the test and training phases for the
tensile load is 24% and the standard deviation is 15% for slip value outputs, indicating a
better concentration of errors in slip output than load output (Figure 13).
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3.3. ELM Method

The last neural network is the ELM method and the settings and are summarized in
Table 6. The results are also acceptable for both outputs, as shown in Figures 14 and 15.
However, by comparing the load output evaluation criteria to those of the slip value outputs
and by comparing the test and training results, the load outputs show more consistency. At
the same time, it is different for other products, as shown in Table 7.

Figure 14. ELM vs. experimental results regression for: (a) Ultimate shear load test phase; (b) ultimate
shear load training phase; (c) slip test phase; (d) slip training phase.
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Table 6. The parameter characteristics used for the ELM method.

FIS Clusters Regression Hidden Neurons Activation Function

1.0 0.008 845 Hard Limited
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Regarding the standard deviation and error histogram in Figure 16, errors have a
greater focus on slip value outputs which make the outputs more reliable. The tensile-load
outputs presented are probably good results; however, due to the lack of focus on the errors
of the center axis, an unprecedented response could be high with unacceptable errors.
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Table 7. Analytical prediction results through the ELM algorithm.

Split-tensile load prediction

Test Train

Std * 4.341 3.949
emean 0.128 0.022

R2 0.906 0.932
r 0.9522 0.965

RMSE 4.339 6.030

Slip prediction

Test Train

Std * 1.454 1.851
emean −0.086 0.044

R2 0.923 0.922
r 0.961 0.960

RMSE 1.455 2.827
* Std, standard deviation.
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4. Discussion

To define the inputs of RMSE, R2 and r, an ANFIS was individually trained for every
input. The effect of every input on the output could be delineated based on the determined
analytical parameters for any input. Inputs with the smallest training RMSE had the
most effect or relevance to the output. To identify the overfitting between test data and
training, RMSE testing was applied. If the testing RMSE is very high, the regression
of data is not beneficial. According to the RMSE training, the optimum combination
is PSO and the GA with an ANFIS, with the most substantial accuracy on the output
evaluation parameters. By examining the results of all methods, it is concluded that both
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split-tensile load and slip value outputs indicate a likely predictable trend due to the
described inputs and useful employed NNs. A comparison of the best results for each
method is shown in Figure 17, where the RBFN prediction is stronger compared to the
others with R2 (test) = 0.9466, R2 (train) = 0.9591; r (test) = 0.973, r (train) = 0.973; and RMSE
(test) = 3.949, RMSE (train) = 4.585. By evaluating the test phase error histograms shown
in Figures 10, 13 and 16, due to the minor error interval in the ANPG method, the three
graphs show reasonable concentration around the center, and the chance of obtaining a
high error response is relatively low compared to the other methods. From the normal
distribution point of view in each rectangular histogram of error, 68% of the data are within
one time of the standard deviation of the mean value, 95% of the data are within two times
of the standard deviation, and 99.7% of the data are within three times of the standard
deviation [54–56]. Based on the results and discussion, all of the represented histograms
in this paper are in agreement with the mentioned fact. Nevertheless, the charts (load
error histograms) are consistent with the normal distribution paradigm, but according to
Tables 3–5, different standard deviations and mean values lead to different shapes of the
bell curves of load charts compared to the slip charts.
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Figure 17. The comparison of performed algorithm results of split-tensile load based on: (a) RMSE;
(b) R2; (c) r.

For slip value output, the ANPG method also provides the best result, as shown in
Figure 18. The evaluation of the test phase for the ANPG method is R2 (test) = 0.961, R2

(train) = 0.952; r (test) = 0.980, r (train) = 0.976; and RMSE (test) = 0.962, RMSE (train) = 1.735.
Thus, in the test phase, the result presented by the ANPG method is more acceptable.
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Figure 18. The comparison between the results of the performed algorithms of slip based on the
analytical parameters: (a) RMSE; (b) R2; (c) r.

The calculated equations from the linear regressions are summarized in Tables 8 and 9
where the most decisive equations for both split-tensile load and slip value output of
specific steel-concrete specimens manufactured by angle shear connector are highlighted.

Table 8. The calculated tensile-load regression equation of the implemented models.

Model

Network Result

Train Phase Test Phase

Regression Equation Regression Equation

ANPG y = 1.015x − 1.0466 y = 1.0018x − 0.0942
RBF y = 0.8965x + 3.5193 * y = 1.0x − 0.0015 **
ELM y = 0.9403x + 2.6086 y = 0.8777x − 4.5728

* and ** are the best-achieved equations.

Table 9. The calculated slip value regression equation of the implemented models.

Model

Network Result

Train Phase Test Phase

Regression Equation Regression Equation

ANPG y = 0.9405x − 0.0318 * y = 0.9916x − 0.2411 **
RBF y = 0.9491x − 0.1464 y = 1.0094x − 0.2069
ELM y = 1.0421x − 0.6809 y = 0.802x − 1.624

* and ** are the best-achieved equations.

5. Conclusions

In this study, a comparative AI study was conducted to identify the most susceptible
structural characteristics of a composite floor system at elevated temperatures and to predict
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critical strength factors such as failure load and slip value of shear connectors. The main
algorithm was a hybridized ANFIS technique with PSO and a GA called the ANPG method.
The RBFN and ELM methods were also employed as subsidiary evaluation methods. In
addition, this study utilized data from 584 test results which included width (mm), height
(mm), thickness (mm), shear load (kN), temperature stages (◦C) and slip value (mm). The
major findings are as follows:

• Based on the results for slip value output, the ANPG method provided the best result.
In this method, the test and training phase evaluation criteria were R2 (test) = 0.961,
R2 (train) = 0.952; r (test) = 0.980, r (train) = 0.976; and RMSE (test) = 0.962, RMSE
(train) = 1.736. Based on the tolerance charts, the test and training phases both
represented suitable compatibility, while envelope curves dramatically maintained
the same tolerance. According to the error histograms, the normal distribution shapes
confirmed appropriate deviation from the mean value, and slip predictions had the
least error value among other predictions.

• In general, the RBFN method is an iteration-based algorithm in which most parts are
randomly selected. For tensile-load output, the best result was obtained using the
RBFN method with the performance parameters of R2 (test) = 0.946, R2 (train) = 0.959; r
(test) = 0.973, r (train) = 0.973; and RMSE (test) = 3.949, RMSE (train) = 4.585. Tolerance
curves in the load section illustrated the best coverage, and error histograms showed
the least value in load prediction.

• The ELM method recorded the most suitable results in training phases for slip and
split-tensile load prediction. In addition, the ELM method represented the lowest
sensitivity against parameter contractions and performed a stable paradigm. For load,
the results were R2 (test) = 0.906, R2 (train) = 0.932; r (test) = 0.952, r (train) = 0.965;
and RMSE (test) = 4.339, RMSE (train) = 6.030. Furthermore, the slip results were R2

(test) = 0.923, R2 (train) = 0.922; r (test) = 0.961, r (train) = 0.960; RMSE (test) = 1.455,
RMSE (train) = 2.877.

• For the identification study to determine the most critical factors on the shear-bearing
capacity of a composite floor system at elevated temperatures, the ANPG method was
performed on two subdata models, where slip and temperature were selected as the
most significant parameters on the quality of the shear-bearing capacity. Based on the
results, it could also be concluded that by restricting slip, the shear-bearing capacity
could be improved at elevated temperatures, and conversely.

Finally, although all three methods (ELM, ANPG and RBFN) resulted in satisfactory
prediction results, the ANPG method provided the best slip prediction results and the
RBFN method achieved better load prediction results; nevertheless, all the above-mentioned
methods are suitable for load and slip prediction.
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Appendix A

Table A1. Description of the dataset for analysis.

No. Temp.
(◦C)

Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN)

1 25 65 500 5 0.000 0.000 31 550 65 50 5 0.677 33.071 61 700 65 50 5 7.641 41.313
2 25 65 50 5 0.021 0.642 32 550 65 50 5 0.846 42.382 62 700 65 50 5 8.303 40.356
3 25 65 50 5 0.063 5.458 33 550 65 50 5 0.972 51.051 63 700 65 50 5 8.838 39.236
4 25 65 50 5 0.084 8.508 34 550 65 50 5 1.077 57.794 64 850 65 50 5 0.000 0.000
5 25 65 50 5 0.083 13.805 35 550 65 50 5 1.332 67.266 65 850 65 50 5 0.235 0.483
6 25 65 50 5 0.124 17.818 36 550 65 50 5 1.524 69.996 66 850 65 50 5 0.406 1.287
7 25 65 50 5 0.166 24.881 37 550 65 50 5 1.758 70.801 67 850 65 50 5 0.598 2.252
8 25 65 50 5 0.165 27.610 38 550 65 50 5 2.015 70.321 68 850 65 50 5 0.918 3.539
9 25 65 50 5 0.164 30.338 39 550 65 50 5 2.293 68.879 69 850 65 50 5 1.174 4.825
10 25 65 50 5 0.227 35.957 40 550 65 50 5 2.871 65.673 70 850 65 50 5 1.664 10.447
11 25 65 50 5 0.290 44.946 41 550 65 50 5 3.277 64.232 71 850 65 50 5 1.984 14.302
12 25 65 50 5 0.309 55.380 42 550 65 50 5 3.961 61.990 72 850 65 50 5 2.304 18.478
13 25 65 50 5 0.349 64.529 43 550 65 50 5 4.538 60.550 73 850 65 50 5 2.453 18.960
14 25 65 50 5 0.432 79.939 44 550 65 50 5 5.201 58.950 74 850 65 50 5 2.965 23.940
15 25 65 50 5 0.473 85.237 45 550 65 50 5 6.163 57.032 75 850 65 50 5 3.583 29.563
16 25 65 50 5 0.558 88.287 46 550 65 50 5 7.831 52.711 76 850 65 50 5 3.882 31.492
17 25 65 50 5 0.708 86.041 47 550 65 50 5 8.451 50.630 77 850 65 50 5 4.202 33.581
18 25 65 50 5 0.902 80.906 48 700 65 50 5 0.000 0.000 78 850 65 50 5 4.672 36.474
19 25 65 50 5 1.180 76.254 49 700 65 50 5 0.149 1.767 79 850 65 50 5 5.099 38.083
20 25 65 50 5 1.694 70.479 50 700 65 50 5 0.362 5.621 80 850 65 50 5 5.590 39.050
21 25 65 50 5 2.337 65.187 51 700 65 50 5 0.724 11.242 81 850 65 50 5 6.402 39.377
22 25 65 50 5 2.615 62.942 52 700 65 50 5 0.916 15.417 82 850 65 50 5 7.770 38.104
23 25 65 50 5 2.829 60.215 53 700 65 50 5 1.171 20.876 83 850 65 50 5 9.030 37.312
24 25 65 50 5 3.107 58.291 54 700 65 50 5 1.852 33.402 84 850 65 50 5 10.398 36.520
25 550 65 50 5 0.000 0.000 55 700 65 50 5 2.427 43.037 85 850 65 50 5 11.317 35.725
26 550 65 50 5 0.042 1.124 56 700 65 50 5 3.088 46.253 86 850 65 50 5 12.236 35.251
27 550 65 50 5 0.127 5.458 57 700 65 50 5 3.815 46.580 87 850 65 50 5 13.134 34.937
28 550 65 50 5 0.254 12.522 58 700 65 50 5 4.755 46.266 88 850 65 50 5 13.732 34.621
29 550 65 50 5 0.359 19.104 59 700 65 50 5 6.016 44.671 89 850 65 50 5 14.501 34.145
30 550 65 50 5 0.486 25.205 60 700 65 50 5 7.064 42.432 90 850 65 50 5 15.164 33.830

91 850 65 50 5 15.912 33.354 126 550 65 30 5 1.538 27.722 161 850 65 30 5 0.818 0.142
92 850 65 50 5 16.296 33.357 127 550 65 30 5 1.993 35.697 162 850 65 30 5 1.318 0.564
93 850 65 50 5 16.766 33.521 128 550 65 30 5 2.447 43.367 163 850 65 30 5 2.050 0.946
94 850 65 50 5 17.108 33.364 129 550 65 30 5 2.793 49.276 164 850 65 30 5 2.718 1.509
95 850 65 50 5 17.215 32.401 130 550 65 30 5 3.173 56.738 165 850 65 30 5 5.007 5.747
96 25 65 30 5 0.000 0.000 131 550 65 30 5 3.164 57.952 166 850 65 30 5 6.560 8.699
97 25 65 30 5 0.021 0.038 132 550 65 30 5 2.983 56.900 167 850 65 30 5 8.215 11.972
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Table A1. Cont.

No. Temp.
(◦C)

Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN)

98 25 65 30 5 0.059 3.441 133 550 65 30 5 2.695 54.393 168 850 65 30 5 8.519 12.033
99 25 65 30 5 0.078 5.827 134 550 65 30 5 2.320 50.752 169 850 65 30 5 10.624 15.568

100 25 65 30 5 0.073 11.160 135 550 65 30 5 1.528 42.980 170 850 65 30 5 13.042 19.445
101 25 65 30 5 0.113 13.831 136 550 65 30 5 1.025 38.327 171 850 65 30 5 13.958 20.530
102 25 65 30 5 0.149 19.572 137 550 65 30 5 0.190 30.676 172 850 65 30 5 14.946 21.715
103 25 65 30 5 0.147 22.320 138 550 65 30 5 0.483 24.673 173 850 65 30 5 16.341 23.282
104 25 65 30 5 0.145 25.067 139 550 65 30 5 1.253 17.834 174 850 65 30 5 17.283 23.685
105 25 65 30 5 0.204 28.670 140 550 65 30 5 2.344 8.311 175 850 65 30 5 18.083 23.265
106 25 65 30 5 0.260 35.666 141 550 65 30 5 4.300 9.192 176 850 65 30 5 19.000 21.300
107 25 65 30 5 0.272 45.486 142 550 65 30 5 5.060 16.176 177 850 65 30 5 19.961 16.165
108 25 65 30 5 0.307 53.328 143 700 65 30 5 0.000 0.000 178 850 65 30 5 20.968 11.812
109 25 65 30 5 0.379 66.104 144 700 65 30 5 0.384 1.869 179 850 65 30 5 22.082 7.158
110 25 65 30 5 0.417 70.068 145 700 65 30 5 1.108 5.870 180 850 65 30 5 22.747 3.768
111 25 65 30 5 0.500 70.400 146 700 65 30 5 2.217 11.739 181 850 65 30 5 23.514 0.699
112 25 65 30 5 0.652 63.344 147 700 65 30 5 2.963 16.046 182 850 65 30 5 24.311 2.149
113 25 65 30 5 0.848 52.011 148 700 65 30 5 3.943 21.680 183 850 65 30 5 24.808 4.155
114 25 65 30 5 1.130 38.423 149 700 65 30 5 6.287 34.674 184 850 65 30 5 25.426 6.803
115 25 65 30 5 1.648 16.172 150 700 65 30 5 8.141 44.704 185 850 65 30 5 25.987 8.989
116 25 65 30 5 2.294 9.703 151 700 65 30 5 9.230 48.374 186 850 65 30 5 26.583 11.577
117 25 65 30 5 2.573 2.867 152 700 65 30 5 10.000 49.200 187 850 65 30 5 26.968 12.660
118 25 65 30 5 2.789 0.461 153 700 65 30 5 10.899 49.532 188 850 65 30 5 27.491 13.822
119 25 65 30 5 3.069 0.413 154 700 65 30 5 11.948 48.804 189 850 65 30 5 27.783 14.946
120 550 65 30 5 0.000 0.000 155 700 65 30 5 12.698 47.284 190 850 65 30 5 27.582 16.210
121 550 65 30 5 0.033 0.788 156 700 65 30 5 13.127 46.562 191 25 75 30 6 0.000 0.000
122 550 65 30 5 0.239 4.454 157 700 65 30 5 13.662 46.059 192 25 75 30 6 0.019 0.040
123 550 65 30 5 0.585 10.516 158 700 65 30 5 14.048 45.307 193 25 75 30 6 0.054 3.636
124 550 65 30 5 0.920 16.265 159 850 65 30 5 0.000 0.000 194 25 75 30 6 0.071 6.158
125 550 65 30 5 1.202 21.362 160 850 65 30 5 0.390 0.180 195 25 75 30 6 0.067 11.794

196 25 75 30 6 0.103 14.616 231 550 75 30 6 0.937 40.504 266 850 75 30 6 12.757 21.696
197 25 75 30 6 0.136 20.684 232 550 75 30 6 0.174 32.419 267 850 75 30 6 13.661 22.948
198 25 75 30 6 0.134 23.588 233 550 75 30 6 0.442 26.074 268 850 75 30 6 14.936 24.605
199 25 75 30 6 0.132 26.491 234 550 75 30 6 1.145 18.847 269 850 75 30 6 15.796 25.031
200 25 75 30 6 0.186 30.298 235 550 75 30 6 2.142 8.783 270 850 75 30 6 16.528 24.587
201 25 75 30 6 0.238 37.691 236 550 75 30 6 3.931 9.715 271 850 75 30 6 17.366 22.510
202 25 75 30 6 0.249 48.069 237 550 75 30 6 4.625 17.095 272 850 75 30 6 18.244 17.083
203 25 75 30 6 0.281 56.357 238 700 75 30 6 0.000 0.000 273 850 75 30 6 19.165 12.483
204 25 75 30 6 0.346 69.859 239 700 75 30 6 0.351 1.976 274 850 75 30 6 20.183 7.565
205 25 75 30 6 0.381 74.048 240 700 75 30 6 1.013 6.203 275 850 75 30 6 20.791 3.982
206 25 75 30 6 0.457 74.399 241 700 75 30 6 2.026 12.406 276 850 75 30 6 21.492 0.739
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Table A1. Cont.

No. Temp.
(◦C)

Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN)

207 25 75 30 6 0.595 66.942 242 700 75 30 6 2.708 16.957 277 850 75 30 6 22.220 2.271
208 25 75 30 6 0.775 54.965 243 700 75 30 6 3.604 22.912 278 850 75 30 6 22.675 4.391
209 25 75 30 6 1.033 40.605 244 700 75 30 6 5.746 36.643 279 850 75 30 6 23.239 7.189
210 25 75 30 6 1.506 17.090 245 700 75 30 6 7.441 47.243 280 850 75 30 6 23.752 9.499
211 25 75 30 6 2.096 10.254 246 700 75 30 6 8.436 51.122 281 850 75 30 6 24.297 12.234
212 25 75 30 6 2.352 3.029 247 700 75 30 6 9.140 51.995 282 850 75 30 6 24.649 13.379
213 25 75 30 6 2.550 0.487 248 700 75 30 6 9.961 52.346 283 850 75 30 6 25.127 14.608
214 25 75 30 6 2.805 0.436 249 700 75 30 6 10.920 51.576 284 850 75 30 6 25.393 15.795
215 550 75 30 6 0.000 0.000 250 700 75 30 6 11.606 49.970 285 850 75 30 6 25.210 17.131
216 550 75 30 6 0.030 0.833 251 700 75 30 6 11.998 49.206 286 25 75 50 6 0.000 0.000
217 550 75 30 6 0.218 4.707 252 700 75 30 6 12.487 48.675 287 25 75 50 6 0.017 0.708
218 550 75 30 6 0.535 11.114 253 700 75 30 6 12.840 47.880 288 25 75 50 6 0.051 6.015
219 550 75 30 6 0.841 17.189 254 850 75 30 6 0.000 0.000 289 25 75 50 6 0.068 9.376
220 550 75 30 6 1.099 22.575 255 850 75 30 6 0.356 0.190 290 25 75 50 6 0.067 15.213
221 550 75 30 6 1.406 29.296 256 850 75 30 6 0.747 0.150 291 25 75 50 6 0.101 19.635
222 550 75 30 6 1.821 37.725 257 850 75 30 6 1.205 0.596 292 25 75 50 6 0.134 27.419
223 550 75 30 6 2.237 45.830 258 850 75 30 6 1.874 1.000 293 25 75 50 6 0.134 30.426
224 550 75 30 6 2.553 52.075 259 850 75 30 6 2.484 1.595 294 25 75 50 6 0.134 33.433
225 550 75 30 6 2.900 59.960 260 850 75 30 6 4.576 6.073 295 25 75 50 6 0.185 39.625
226 550 75 30 6 2.892 61.244 261 850 75 30 6 5.996 9.193 296 25 75 50 6 0.235 49.531
227 550 75 30 6 2.727 60.132 262 850 75 30 6 7.509 12.652 297 25 75 50 6 0.251 61.028
228 550 75 30 6 2.463 57.482 263 850 75 30 6 7.787 12.717 298 25 75 50 6 0.284 71.111
229 550 75 30 6 2.120 53.635 264 850 75 30 6 9.711 16.452 299 25 75 50 6 0.350 88.093
230 550 75 30 6 1.396 45.421 265 850 75 30 6 11.920 20.549 300 25 75 50 6 0.384 93.931

301 25 75 50 6 0.453 97.292 336 700 75 50 6 0.588 12.388 371 850 75 50 6 9.936 38.846
302 25 75 50 6 0.575 94.817 337 700 75 50 6 0.743 16.989 372 850 75 50 6 10.664 38.500
303 25 75 50 6 0.732 89.159 338 700 75 50 6 0.951 23.006 373 850 75 50 6 11.150 38.152
304 25 75 50 6 0.958 84.031 339 700 75 50 6 1.504 36.809 374 850 75 50 6 11.775 37.628
305 25 75 50 6 1.376 77.668 340 700 75 50 6 1.970 47.427 375 850 75 50 6 12.313 37.280
306 25 75 50 6 1.897 71.836 341 700 75 50 6 2.508 50.970 376 850 75 50 6 12.920 36.756
307 25 75 50 6 2.123 69.362 342 700 75 50 6 3.098 51.331 377 850 75 50 6 13.233 36.760
308 25 75 50 6 2.297 66.357 343 700 75 50 6 3.861 50.985 378 850 75 50 6 13.614 36.941
309 25 75 50 6 2.523 64.237 344 700 75 50 6 4.885 49.228 379 850 75 50 6 13.892 36.767
310 550 75 50 6 0.000 0.000 345 700 75 50 6 5.736 46.760 380 850 75 50 6 13.979 35.706
311 550 75 50 6 0.035 1.239 346 700 75 50 6 6.204 45.527 381 25 100 30 7 0.000 0.000
312 550 75 50 6 0.103 6.015 347 700 75 50 6 6.742 44.472 382 25 100 30 7 0.171 4.947
313 550 75 50 6 0.206 13.799 348 700 75 50 6 7.176 43.238 383 25 100 30 7 0.512 11.484
314 550 75 50 6 0.292 21.053 349 850 75 50 6 0.000 0.000 384 25 100 30 7 0.938 19.611
315 550 75 50 6 0.395 27.775 350 850 75 50 6 0.191 0.533 385 25 100 30 7 1.279 36.749
316 550 75 50 6 0.549 36.444 351 850 75 50 6 0.329 1.419 386 25 100 30 7 1.791 47.703
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Table A1. Cont.

No. Temp.
(◦C)

Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN)

317 550 75 50 6 0.687 46.705 352 850 75 50 6 0.485 2.482 387 25 100 30 7 2.217 55.654
318 550 75 50 6 0.789 56.258 353 850 75 50 6 0.745 3.900 388 25 100 30 7 2.900 69.081
319 550 75 50 6 0.875 63.689 354 850 75 50 6 0.953 5.317 389 25 100 30 7 3.326 75.972
320 550 75 50 6 1.081 74.127 355 850 75 50 6 1.352 11.512 390 25 100 30 7 3.753 82.156
321 550 75 50 6 1.237 77.136 356 850 75 50 6 1.611 15.760 391 25 100 30 7 4.606 86.042
322 550 75 50 6 1.428 78.022 357 850 75 50 6 1.871 20.362 392 25 100 30 7 5.203 86.749
323 550 75 50 6 1.636 77.494 358 850 75 50 6 1.992 20.894 393 25 100 30 7 5.885 83.569
324 550 75 50 6 1.862 75.904 359 850 75 50 6 2.408 26.382 394 25 100 30 7 7.249 72.792
325 550 75 50 6 2.331 72.372 360 850 75 50 6 2.910 32.579 395 25 100 30 7 7.164 66.431
326 550 75 50 6 2.661 70.783 361 850 75 50 6 3.152 34.704 396 25 100 30 7 7.079 57.244
327 550 75 50 6 3.216 68.313 362 850 75 50 6 3.412 37.006 397 25 100 30 7 7.164 56.007
328 550 75 50 6 3.685 66.726 363 850 75 50 6 3.793 40.194 398 550 100 30 7 0.000 0.000
329 550 75 50 6 4.223 64.963 364 850 75 50 6 4.140 41.967 399 550 100 30 7 0.171 1.060
330 550 75 50 6 5.004 62.849 365 850 75 50 6 4.539 43.033 400 550 100 30 7 0.597 5.830
331 550 75 50 6 6.358 58.088 366 850 75 50 6 5.198 43.394 401 550 100 30 7 1.023 13.428
332 550 75 50 6 6.862 55.794 367 850 75 50 6 6.309 41.991 402 550 100 30 7 1.365 20.318
333 700 75 50 6 0.000 0.000 368 850 75 50 6 7.333 41.117 403 550 100 30 7 2.047 29.859
334 700 75 50 6 0.121 1.947 369 850 75 50 6 8.443 40.245 404 550 100 30 7 2.388 37.633
335 700 75 50 6 0.294 6.194 370 850 75 50 6 9.190 39.369 405 550 100 30 7 3.241 49.117

406 550 100 30 7 4.606 58.834 441 700 100 30 7 16.461 34.452 476 850 100 30 7 63.642 30.052
407 550 100 30 7 6.482 67.138 442 700 100 30 7 17.058 32.862 477 850 100 30 7 64.665 29.524
408 550 100 30 7 7.761 70.848 443 700 100 30 7 18.081 30.035 478 850 100 30 7 66.198 29.704
409 550 100 30 7 8.102 71.378 444 850 100 30 7 0.000 0.000 479 850 100 30 7 66.880 29.175
410 550 100 30 7 8.870 69.965 445 850 100 30 7 0.511 0.886 480 850 100 30 7 67.732 29.530
411 550 100 30 7 9.126 63.428 446 850 100 30 7 1.874 3.544 481 850 100 30 7 70.288 29.005
412 550 100 30 7 9.126 59.187 447 850 100 30 7 3.408 6.910 482 850 100 30 7 73.695 27.774
413 550 100 30 7 9.126 53.534 448 850 100 30 7 4.601 8.506 483 25 100 50 7 0.000 0.000
414 550 100 30 7 9.126 48.410 449 850 100 30 7 5.708 9.570 484 25 100 50 7 0.012 6.257
415 550 100 30 7 9.126 45.936 450 850 100 30 7 6.986 11.874 485 25 100 50 7 0.088 15.414
416 550 100 30 7 9.126 43.110 451 850 100 30 7 8.775 14.887 486 25 100 50 7 0.214 26.816
417 550 100 30 7 9.126 39.576 452 850 100 30 7 10.650 17.900 487 25 100 50 7 0.077 46.573
418 550 100 30 7 9.126 36.749 453 850 100 30 7 12.439 20.736 488 25 100 50 7 0.030 61.457
419 700 100 30 7 0.000 0.000 454 850 100 30 7 14.228 22.863 489 25 100 50 7 0.163 72.682
420 700 100 30 7 0.171 1.237 455 850 100 30 7 15.676 24.813 490 25 100 50 7 0.349 91.349
421 700 100 30 7 0.768 5.124 456 850 100 30 7 17.039 25.347 491 25 100 50 7 0.522 101.514
422 700 100 30 7 1.365 7.420 457 850 100 30 7 18.062 27.297 492 25 100 50 7 0.720 110.973
423 700 100 30 7 2.303 15.724 458 850 100 30 7 20.021 29.602 493 25 100 50 7 1.429 121.409
424 700 100 30 7 3.156 24.205 459 850 100 30 7 22.066 30.845 494 25 100 50 7 2.000 126.700
425 700 100 30 7 3.923 32.156 460 850 100 30 7 23.855 32.088 495 25 100 50 7 2.800 128.759
426 700 100 30 7 4.947 40.106 461 850 100 30 7 27.348 34.220 496 25 100 50 7 4.562 128.461
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Table A1. Cont.

No. Temp.
(◦C)

Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN) No. Temp.

(◦C)
Height
(mm)

Length
(mm)

Thick.
(mm)

Slip
(mm)

Load
(kN)

427 700 100 30 7 5.714 45.583 462 850 100 30 7 27.774 33.867 497 25 100 50 7 4.712 121.445
428 700 100 30 7 6.482 50.000 463 850 100 30 7 33.568 36.358 498 25 100 50 7 4.966 111.603
429 700 100 30 7 7.676 55.654 464 850 100 30 7 34.420 35.474 499 25 100 50 7 5.097 111.021
430 700 100 30 7 8.955 60.071 465 850 100 30 7 35.612 36.716 500 550 100 50 7 0.000 0.000
431 700 100 30 7 10.576 62.544 466 850 100 30 7 36.976 35.834 501 550 100 50 7 0.131 1.783
432 700 100 30 7 12.111 63.251 467 850 100 30 7 41.576 37.260 502 550 100 50 7 0.382 8.359
433 700 100 30 7 12.623 61.307 468 850 100 30 7 43.280 37.972 503 550 100 50 7 0.528 17.763
434 700 100 30 7 13.646 56.360 469 850 100 30 7 46.603 39.041 504 550 100 50 7 0.615 26.099
435 700 100 30 7 13.902 54.240 470 850 100 30 7 47.199 38.689 505 550 100 50 7 0.945 38.529
436 700 100 30 7 14.328 50.353 471 850 100 30 7 51.118 39.405 506 550 100 50 7 0.999 47.748
437 700 100 30 7 15.437 45.583 472 850 100 30 7 53.419 39.056 507 550 100 50 7 1.428 62.845
438 700 100 30 7 15.693 43.463 473 850 100 30 7 55.804 39.416 508 550 100 50 7 2.434 78.343
439 700 100 30 7 15.778 40.636 474 850 100 30 7 58.956 37.830 509 550 100 50 7 4.003 94.595
440 700 100 30 7 15.864 37.633 475 850 100 30 7 61.086 36.949 510 550 100 50 7 5.146 103.725

511 550 100 50 7 5.467 105.700 536 700 100 50 7 11.320 92.359 561 850 100 50 7 8.301 38.313
512 550 100 50 7 6.287 107.538 537 700 100 50 7 11.663 90.914 562 850 100 50 7 7.735 40.161
513 550 100 50 7 6.784 102.085 538 700 100 50 7 12.250 88.152 563 850 100 50 7 6.341 43.475
514 550 100 50 7 6.941 97.845 539 700 100 50 7 13.556 86.307 564 850 100 50 7 5.567 43.266
515 550 100 50 7 7.149 92.191 540 700 100 50 7 13.899 84.862 565 850 100 50 7 2.226 47.717
516 550 100 50 7 7.339 87.067 541 700 100 50 7 14.101 82.260 566 850 100 50 7 0.504 47.122
517 550 100 50 7 7.430 84.594 542 700 100 50 7 14.310 79.481 567 850 100 50 7 0.534 48.768
518 550 100 50 7 7.534 81.767 543 700 100 50 7 15.038 77.876 568 850 100 50 7 1.697 48.347
519 550 100 50 7 7.665 78.233 544 700 100 50 7 15.701 77.861 569 850 100 50 7 4.894 51.330
520 550 100 50 7 7.769 75.406 545 700 100 50 7 16.841 77.734 570 850 100 50 7 5.897 52.618
521 700 100 50 7 0.000 0.000 546 850 100 50 7 0.000 0.000 571 850 100 50 7 8.167 54.812
522 700 100 50 7 0.120 1.687 547 850 100 50 7 0.361 1.059 572 850 100 50 7 9.111 54.661
523 700 100 50 7 0.556 7.149 548 850 100 50 7 1.615 4.178 573 850 100 50 7 12.324 56.704
524 700 100 50 7 1.058 11.020 549 850 100 50 7 3.395 8.063 574 850 100 50 7 14.968 57.133
525 700 100 50 7 1.654 21.799 550 850 100 50 7 3.773 10.063 575 850 100 50 7 17.000 58.300
526 700 100 50 7 2.157 32.530 551 850 100 50 7 3.713 11.502 576 850 100 50 7 21.714 57.781
527 700 100 50 7 2.596 42.505 552 850 100 50 7 4.704 14.238 577 850 100 50 7 24.710 57.621
528 700 100 50 7 3.291 53.156 553 850 100 50 7 5.880 17.856 578 850 100 50 7 34.056 51.589
529 700 100 50 7 3.833 60.658 554 850 100 50 7 6.972 21.504 579 850 100 50 7 35.599 51.407
530 700 100 50 7 4.418 67.099 555 850 100 50 7 7.975 24.945 580 850 100 50 7 36.955 52.106
531 700 100 50 7 5.379 75.903 556 850 100 50 7 8.281 27.678 581 850 100 50 7 38.158 51.807
532 700 100 50 7 6.476 83.695 557 850 100 50 7 8.752 30.118 582 850 100 50 7 38.659 52.451
533 700 100 50 7 7.994 90.443 558 850 100 50 7 7.915 31.114 583 850 100 50 7 41.732 52.791
534 700 100 50 7 9.500 95.200 559 850 100 50 7 8.811 33.409 584 850 100 50 7 46.353 52.713
535 700 100 50 7 10.092 94.606 560 850 100 50 7 9.121 36.377
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