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Abstract: Raising the final contract cost (FCC) is a significant risk for project owners. This study
hypothesizes that the factors that cause owner’s cost estimation (OCE) accuracy and FCC changes
share the same causes, and a case study confirmed that the two variables (OCE and FCC) could
be correlated. Accordingly, this study aims to develop a forecast model to predict FCC on the
basis of the initial OCE, which has not been studied previously. This study utilized data from
34 Saudi Arabian projects. Two linear regression models developed the data, and the square root
function transformed the data. Moreover, the artificial neural network (ANN) model was developed
after data standardization using Zavadskas and Turskis’ logarithmic method. The results showed that
the ANN model had a MAPE smaller than the two linear regression models. Using Zavadskas and
Turskis’ logarithmic standardization method and elimination of data that had an absolute percentage
error (APE) of more than 35% led to an increase in ANN model accuracy and provided a MAPE value
of less than 8.5%.

Keywords: forecast; predict; cost; initial; neural network; regression; determination; contract;
construction project

1. Introduction

The construction industry has various issues (time delay and cost overrun) affecting
its progress and the achievement of its objectives. Changes in contract cost (CC) are one of
the construction issues, and it impacts every stage of the project life cycle. The change in
CC is the difference between the contract cost (CC) and the final contract cost. In contrast,
the project cost overrun is any unforeseen expense that causes a project to exceed the total
budget (terms) agreed upon with the client [1].

Changing the CC in construction can introduce severe risk for the owner and contractor,
depending on who carries the contractual risk. Most traditional and government contracts
allocate the risk of changing the CC to the owner. Consequently, the owners seek to control
the changed CC and want to understand and predict this uncertain risk before assuming any
contractual commitments or deciding whether to proceed with the project or discontinue it.
Several studies have been conducted to develop a model for forecasting the FCC and project
overrun costs on the basis of information about the project and the contract itself. The
improvement in the proposed forecasted models over the previous one is the consideration
of the owner’s cost estimation (OCE) as an input for the predictive model. Reviewing
previous studies on OCE [2,3], various factors contribute to the difference between the
OCE and the lowest bidder’s cost (usually, the lowest bidder’s cost is equal to CC). Some
studies have developed models to estimate OCE on the basis of the structure [4,5], and
Badeway [6] developed a hybrid model to forecast the CC of a residential building on the
basis of the characteristics of the building. In addition, the forecast model of the FCC and
that developed by Skitmore and Ng [7] and Aretoulis [8] were based on the project type
and bidding policy. Hence, no study has developed a model of the FCC on the basis of
the OCE and CC. The authors have observed this link among OCE, CC, and FCC from
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experience managing several projects and reviewing previous studies regarding the causes
of OCE and FCC, including construction change orders. The OCE and the FCC have been
impacted by a lack of definition of owner needs and incomplete design drawings [9].

Following this understanding of the case study, the difference between the OCE and
CC is a sound indicator causing project change orders and changing the CC for the owner in
the case of a fixed-cost contract. On the basis of this hypothesis, this study attempts to prove
the correlation between the OCE and CC from one side and the change in CC (increase or
decrease) on the other side, as depicted in Figure 1. This study relies on the information
from 34 completed projects with the required complete information from the OCE, CC,
and FCC. These projects were executed within the King Saud University (KSU) campus in
Riyadh, Kingdom of Saudi Arabia. The KSU follows a Saudi government regulation and
fixed contract cost. The study’s motive is that the KSU management desires to understand
why its CC projects are changed and how to predict the FCC to manage the university
budget and risk. The motivation behind this study is that the project owners are interested
in understanding why their CC projects are changing and how to anticipate the FCC to
manage their budget and risk.
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This understanding will aid KSU management in making a more informed decision
about continuing or stopping projects.

As previously discussed, it is necessary to technically assess the OCE, CC, and FCC’s
influence on a project’s achievement. Thus, this paper first examines the correlation among
OCE, CC, and FCC by performing a correlation test between the contract cost deviation
of the pre-tendering stage (CDpre-tendering = (CC − OCE)/CC) and the cost deviation
of construction stages (CDconstruction = (FCC − CC)/CC) for 34 projects at KSU. The
correlation results indicated the relationship between CDpre-tendering and CDconstruction.
This paper presents a case study based on the author’s experience that details how a lack
of owner vision and need before signing a construction contract could lead to increased
FCC and project risk. In addition, the main purpose of this paper is to develop a forecast
model to estimate the FCC using an artificial neural network. To develop the model, the
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deviation costs in the two stages (pre-tendering and construction) were examined using
two methods (the case study and the correlation test).

Due to the limited project data, the data were prepared using useful transformation
functions. For the prediction of the FCC based on the CC and OCE, 2 linear regression
models were developed on the basis of 34 projects’ data and their square-root-transformed
data. Moreover, an artificial neural network (ANN) was developed. The data were stan-
dardized using Zavadskas and Turskis’ logarithmic method and applied to the ANN model.
The models were evaluated using mean absolute percentage error (MAPE). The findings
show that the developed ANN model assists construction parties (clients and contractors)
in reasonably predicting the FCC depending on pre-tendering information (OCE and CC).
The paper’s flow chart is shown in Figure 2.
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This study’s contributions are the provision of an ANN model for forecasting FCC on
the basis of the OCE and CC value in the early stage. In addition, this study presents a
data processing method to deal with relatively small input and output data and utilize the
processed data for ANN, which is a valuable technique for improving the forecast model
results. Moreover, this paper presents a case study showing the motive to perform this
research. The case study illustrates the difference between the OCE and CC value and the
increased FCC during construction, concluding with five lessons learned.

2. Literature Review

The aim of reviewing former studies is to highlight the relationship between the
change in the OCE and FCC, as mentioned before. In addition, this section reviews the
formally predicted models to demonstrate this study’s originality of a forecasted model
that correlates with the OCE and FCC.



Buildings 2023, 13, 786 4 of 22

2.1. Factors Affecting the OCE and Bidding Deviation

During bidding time, the limited availability of information may hinder the decision-
maker from signing a construction contract. Thus, several studies have attempted to
facilitate the process of creating an informed decision for owners and contractors signing a
contract and searching for alternatives to financing the project. Saqer et al. [10] identified
various factors influencing the difference between the CC and OCE. These factors were
split into three categories: external factors related to a job, environmental, and internal
factors. In the State of Louisiana, USA, between 2011 and 2015, Baek et al. [11] developed
a linear regression (LR) analysis method to measure the impacts of relevant factors on
the bid price difference and identify factors impacting it. According to their findings, the
bid price difference is significantly influenced by the bidding competition level, the scope
of the contract, and the number of activities. Senouci et al. [12] studied the relationship
between the CC and cost overrun for road, building, and drainage projects in Qatar using
statistical analysis. They found that the cost overrun of the building project increased
with the increase in the contract cost. On the basis of 74 road project data constructed in
Palestine, Mahamid [13] showed that the significant impacts on the cost deviation were
project size, terrain condition, and soil stability. Additionally, a review of the variables
influencing OCE in building projects in different places was conducted by [9]. In most
countries, they found that the three most important factors influencing OCE’s accuracy
in construction projects were having a short time to prepare an estimate, inaccurate and
non-reliable cost data, and sketches with ambiguous details.

On the basis of the above review, it can be concluded that the significant source factor
impacting the project bidding process is a lack of information and defining the owner’s
project objectives. This unclear situation affects the completion of the design drawing and
the cost estimation period.

2.2. Factors Affecting Changes CC and Change Orders

Increasing the project change orders and the CC causes the owners great concern
and risk. Hence, managing the cash flow and prioritizing the owner’s expenses is prob-
lematic [14]. Many researchers have studied this change order fact to understand why it
happens. Khalifa and Mahamid [15] stated that the top five reasons for Saudi’s change
orders include the owner’s additional work, flaws and omissions in the design, a lack
of coordination between the parties involved in the construction, poor quality, and the
owner’s financial issues. Elbeltagi et al. [16] determined from 384 feedback questionnaires
that owner changes and poor design documents are the main reasons behind change orders.

Moreover, Alnuaimi et al. [17] determined, on the basis of case studies and a ques-
tionnaire, that the owner’s needs and design revisions in Omani projects were the most
significant factors causing change orders. In India, Desai et al. [18] found that the owner’s
financial problems and change of scope and design were the main factors causing change
orders on the basis of 70 respondents from several categories of construction professionals
using RII methods (Relative Important Index). Finally, in a UK study, Keane et al. [14] used
case studies and questionnaire surveys to conclude that the most frequent change order
causes are errors and omissions, ambiguous design details, poor design, and poor working
drawing details.

In the previous study’s findings, the authors observed that the absence of the owner’s
needs was the primary reason behind change orders in construction and the FCC.

2.3. Former Forecast Cost Construction Models

This section reviews several studies on the forecast model since 1971 in the cost con-
struction area. Capen et al. [19] created a mathematical bidding model utilizing information
from oil and gas company drilling contracts. The research revealed the following bidding
guidelines: the lower companies bid, fewer competitors know, less estimate confidence,
and the lower number of raised bids. Bromilow [20] developed a regression model for
predicting contract duration on the basis of the estimated final cost of the construction
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project, and the method was based on the contract period. Skitmore and Ng [7] developed
an LR model to forecast the FCC and the actual duration of the project. The LR model was
based on the CC and contract duration of the project and considered contractor selection
and contractual arrangement in the account.

To predict the required number of bids in the competition, Ngai et al. [21] designed
a regression model. This model depended on a sample of 229 Hong Kong construction
projects. The connection between the number of bids and the deviation of pre-bid estimates
was established by [22]. The correlation coefficient was statistically significant.

On the basis of 927 construction projects in Utah state, the United States of America
(USA), Li et al. [23] evaluated how the number of bidders affects bid prices by developing a
regression model utilizing the percentage difference among the third-lowest, second-lowest,
and lowest bid as the dependent variables. Li et al. [24] developed a model for forecasting
the ratio of a low bid to an OCE using time series analysis and highway project data
collected from the Georgia Department of Transportation, USA. In addition, Li et al. [25]
recently utilized the previous data model for forecasting the ratio of a low bid to the OCE
using feedforward neural networks and highway project data collected from the same
transportation department in the USA.

To support the originality of our research, Table 1 represents 17 studies that introduced
forecast models in different areas of construction cost and risk with different parameters,
shown in the column table titles. This table reveals that none of the past studies used the
CC and OCE as input for predicting the FCC.
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Table 1. Summary of methods used to determine the forecasted final contract price.
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Forecast

Forecast
Method

Method of
Collecting Data Country

Badawy et al.
[26] ES

√ Contract cost and Project
duration and+ Contract type

Residential
building

Forecast of the
overall risk of

projects
ANN QUN and QUL Egypt

Ngo et al. [27] CS
√

- Repetitive
projects

Short-term
forecasting cost EVM - NS

Leon et al. [28] CS
√ √ CI and SCI and QI and PI and SI

and TSI and CSI
Construction

project

Cost
performance

according to 8
indices

SD QUN and QUL NS

Ye [4] CS - - Structure characteristics for area,
loading, CI Building project

Predict
construction
project cost

(OCE)

ML and RA QUN NS

Gao and
Pishdad-
Bozorgi

[29]

PCS - - HIS and OCE and AIR and UPC Building facility Life cycle cost of
a facility QS and ML QUL and QUN NS

Natarajan [29]
√ √

Project performance data. Construction
project

Cost forecasting
method of oil

and gas project
QS and ML QUL and QUN NS

Garza and
Hernández [30] AS

√
PV Construction

project FCC SA QUN NS

Lowe [5] ES
√

-

286 projects’ data in terms of
strategy, site, design, function,

duration, mechanical
installations

Construction
project

Predict
construction
cost (OCE)

MLR and ANN QUN UK
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Odeyinka et al.
[31] CS

√ √ Related contractor factors
Related and client factors and 55

projects’ data

Construction
project

Forecast risk
impacts on

construction
cost

QS and MLR QUL and QUN UK

Xu et al. [32] ES
√ √

Utility project characteristics Transmission
line

Forecast
transmission

line project cost
(OCE)

BP-NN QUN China

Thomas and
Thomas [2] ES

√
- Area of project and OCE Building project Estimate actual

cost RA QUN NS

Ng et al. [33] PCS
√

- Tender price index Construction
project

Forecast CC
based on

historical cost
data

RA and TS QUN NS

Skitmore and
Ng [7] ES

√ √ CC, contract duration, project
type, bidding policy, sector type

Construction
project Forecast FCC LR QUL and QUN Australia

Kim and
Reinschmidt

[34]
ES -

√
BAG Construction

project

Forecast project
cost based on

developed EVM

EN and
Bayesian
inference

QUL and QUN NS

Mir et al. [35] ES - - Asphalt and steel material prices
with time

Highway and
Steel frame

project

Construction
material ANN and LUBE QUL and QUN USA

Aretoulis [8] ES
√

- 20 highway projects properties Highway project FCC ANN and
WEKA QUN Greece
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Table 1. Cont.

Author/s
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Forecast
Method
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Collecting Data Country

Moghayedi and
Windapo [36] ES

√ √
Size of 76 uncertain events Highway project

Examine impact
of risk on FCC

and time
QS and ML QUL South Africa

Badawy [6] ES
√ 174 building projects

Area and number of floor
Residential

building

Estimate
construction
cost (OCE)

ANN and RA QUL and QUN Egypt

ES = early stage; CS = construction stage; PCS = post-construction stage; AS = all stages; CD = contract duration; CT = contract type; CI = cost index; SCI = schedule index; QI = quality index; PI = profitability index;
SI = safety index; EI = environment index; TSI = team satisfaction index; CSI = client satisfaction index; IC = initial cost; AIR = annual inflation rate; HIS = historical data; QS = questionnaire survey; PD = project data;
PV = planned value; UPC = utilities project characteristics; ML = machine learning; ANN = artificial neural network; TS = time series; RA = regression analysis; MLR = multi-linear regression; SA = statistical analysis;
QUN = quantitative data; QUL = qualitative data; EVM = earned value management; NS = not specified.
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3. Case Study and Study Hypotheses

To support the main study’s claim that the causes of the change in OCE at the pre-
tendering stage are similar to the causes of the change in CC at the construction stage, this
section introduces a case study based on the author’s experience and previous research.
This case study highlights the effect of unclear owner needs on a contract’s value. In this
case study, an owner/investor decided to build a hotel on their land. The owner provided
part of the fund for the hotel project budget as an investment. The owner has previous
experience constructing such types of hospitality buildings with an operator. The owner
signed a contract with a well-known hotel operator to enhance the hotel’s marketing and
provide the standards necessary to uphold the standard of hotel service. Later, because
the owners desired to open the hotel early to avoid losing the market, the owner signed
a contract with a contractor with less information about the hotel’s requirements. Due to
the short design period and lack of contact between the operator, owner, and designer, the
project designer needed to be aware of the hotel’s necessities. Subsequently, the owner
decided to award the project to a contractor with partially complete drawings to expedite
the building process and capture market share by opening the hotel quickly. Thus, the
project started to be affected by increased change orders, resulting in a dispute between
the owner and the contractor. The owner decided to employ a mediator’s Engineering
and Architecture office to evaluate the work value achieved to create a settlement between
the two contract parties. The mediator reached an agreed amount of funds paid to the
contractor by the owner.

Much later, the owner signed another contract with a less-complete vision of the
drawing needs. The new contractor started the work; however, the project suffered from
hotel operator changes due to a new hotel standard. The hotel standard changed as a result
of the prolonged execution of the project. The owner and the contractor agreed to accept
these changes to compete in the hotel market. Accordingly, the new contractor struggled to
manage their subcontractors due to the lengthy procedure of hotel operator approval. The
situation worsened as all parties suffered from increased market prices and overhead costs.

Consequently, many changes became required, and the owner managed to fund the
substantial increase in CC. The FCC increased significantly in this project. The lessons
learned in this case study are:

1. Entering fewer complete drawings in a hotel project is a considerable risk. It is highly
recommended to obtain design drawings fully approved by the hotel operator to
control the project cost.

2. Hotel investors must calculate the opportunity income or benefits before choosing a
fixed construction contract.

3. In such a hospitality project, more than traditional value engineering analysis is
needed. Involved parties should also study the market’s value and competitiveness
in addition to defining the project’s quality, function, and cost.

4. It is recommended to control the hotel operators’ requests to increase the hotel’s
quality. It is crucial that owners or investors study these requests carefully. Usually,
the operator needs to maximize the hotel cost during construction to gain more profit
after opening the hotel. Any expenses during the hotel operation will be reduced
from project income and then minimize the hotel operator’s profit.

5. Using the forecasting technique described in this study could help the owner make a
more informed decision and manage project risks before accepting any commitments.

From the previous case study, it can be concluded that the lack of drawing completion
increased the project’s work scope, impacting both the OCE and FCC. Thus, on the basis
of the OCE and FCC similarities in shared causes, in addition to the authors’ project
management expertise, we can conclude our study hypothesis. The hypothesis is that
there is a strong correlation between the CC and OCE difference and the FCC and CC
difference. Shrestha and Pradhananga [37] studied the correlation between the previous
values; however, they did not develop a forecast model in their study on the basis of
this correlation.
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4. Methodology

The methodology consists of five steps: data collection (to create a database for the
development of the ANN model); conducting a correlation test (to examine the relationship
among CC, OCE, and FCC before developing the ANN model); carrying out a sample size
and normality test (to check whether the sample represents the sample community and
distribution of the data follows a normal distribution); and developing an appropriate
model. The flow chart of the methodology is shown in Figure 3.

Sample size and normality.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 21 
 

difference. Shrestha and Pradhananga [37] studied the correlation between the previous 
values; however, they did not develop a forecast model in their study on the basis of this 
correlation. 

4. Methodology 
The methodology consists of five steps: data collection (to create a database for the 

development of the ANN model); conducting a correlation test (to examine the 
relationship among CC, OCE, and FCC before developing the ANN model); carrying out 
a sample size and normality test (to check whether the sample represents the sample 
community and distribution of the data follows a normal distribution); and developing 
an appropriate model. The flow chart of the methodology is shown in Figure 3. 

Sample size and normality. 

 
Figure 3. Flow chart methodology. Figure 3. Flow chart methodology.



Buildings 2023, 13, 786 11 of 22

4.1. Step 1: Data Collection

The first stage is to collect data from the completed construction projects in Saudi
Arabia, which is required to develop and validate forecasting models. The data of the cost
estimation accuracy cost represent 34 projects conducted at KSU from 2011 to 2021. The
projects include building, highway, electric, and mechanic projects. The data consisted of
the initial OCE, CC, and FCC of 34 projects, as shown in Figure 4a–c. Figure 5 depicts the
difference between FCC and CC for the 34 projects. In this figure, it can be seen that in
approximately 40% (14/34) of projects, the FCC is not changed (i.e., FCC − CC = 0), while
60% of projects are changed due to new project requirements.
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Figure 4. The 3 costs in the 34 projects: (a) owner’s estimate cost (OCE), (b) contract cost (CC), and (c)
final contract cost (FCC).
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4.2. Step 2: Perform Correlation Tests

Before data analysis and construction of reliability models, it is assumed in this study
that the two critical causes of OCE at the early stage of the project will be continued over
the construction phase and cause changes to CC to reach FCC. The relationship among
the different costs was examined by studying the cost deviation of the pre-tendering and
construction phases. These two cost deviations can be computed using Equations (1) and
(2), respectively.

CDpre−tendereing =
CC−OCE

CC
(1)

CDConstruction =
FCC− CC

CC
(2)



Buildings 2023, 13, 786 13 of 22

4.3. Step 3: Examine the Size and Normality Tests of the Data

As the sample space (construction projects) is large and unknown, the sample size can
be computed using Equation (3):

Sample size =
Z2 p(1− p)

C2 (3)

where Z is a value corresponding to a 95% confidence level and is equal to 1.96, and p
represents the probability choice, which is 0.5. C is the confidence interval, which should
be less than 0.2 [26].

4.4. Step 4: Develop an Appropriate Model

Due to limited data collection, the independent variables, such as the OCE and CC,
may not be correlated with the dependent variable, the FCC. Hence, different models were
developed and assessed. The models utilized were the linear regression model for the raw
data, the linear regression model for the transformed data by square root, and the ANN
model. The raw data were treated for the second and third models. For the second model,
the data were transformed by taking square roots for input and output data. In addition,
the output computed by the second model was untransformed by taking the squares to
evaluate the model.

The ANN model is a model that estimates the output by learning an algorithm from
an arbitrary function [38]. The general structure of the ANN model consists of the input,
hidden, and output layers, as shown later in the final ANN structure model in this study.
The hidden layer may have one or multiple layers with numbers of neurons, while the
number of neurons at the input and output layer depends on the purpose of the model.
In a typical ANN, the neurons of the input layer generally connect to each neuron at the
hidden layer. Then, each neuron at the hidden layers connects to neurons of the output
layer. Each connector has weight and bias values. The mathematical equation capturing
weights and bias among neurons in the three layers in ANN is expressed for one and two
hidden layers in Equations (4) and (5), respectively, as

Yoi = f0

{
bo +

K

∑
k=1

[
wko ∗ fn

(
bk +

N

∑
i=1

wikXii

)]}
(4)

Yoi = f0

{
bo +

J

∑
j=1

{
wjo ∗ f m

[
bj +

K

∑
k=1

[
wkj ∗ fn

(
bk +

N

∑
i=1

wikXii

)]]}}
(5)

where Yoi is output variable i, f0 is the activation function of the output layer, bo is output
layer bias, wjo is a connection weight between the jth hidden neuron at the second hidden
layer and single output neuron, fm is the activation function of the second hidden layer
and single output neuron, fn is activation function of the first hidden layer, bk is a bias of
the jth hidden layer (second hidden layer; j = 1, . . . , J), bk is a bias of the kth hidden neuron
(first hidden layer; k = 1, . . . , K), wkj is connection weight between the kth hidden neuron
(at first hidden layer) and jth hidden neuron (at second hidden layer), and wik is connection
weight between i input variables (i = 1, . . . , N) and the kth hidden neuron. Xii is the i
input variable.

In terms of activation function, the hyperbolic tangent and sigmoid function are
represented in Equations (6) and (7), respectively, as

f =
1− e−2x

1 + e−2x (6)

f =
1

1 + e−x (7)
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The data were from 34 projects and were small in number. However, ANN requires
extensive data to create a reliable model. Several studies used different techniques to
increase the precision of the ANN model and overcome the limited data issues, as shown
in Table 2. This paper used the 3 techniques to handle 34 projects’ data in an ANN. We
standardized the OCE, CC, and FCC by an appropriate method followed by [39]; ran
the ANN model several times to avoid the overfitting issue as mentioned by [40]; and
eliminated data that had residual error, as expressed by [41]. It is worth noting that the
correlation analysis techniques were excluded from the paper due to the limited predictors
(OCE and CC).

Table 2. Literature aimed at improving neural network performance to handle relatively little data.

Reference Methodology Field Purpose

Anysz et al. [39] Five-type standardized method Construction
Engineering

Find a standardized method that
provides a minimum error

Pasini [40] Augmented training set and early
stopping and correlation analysis Health Care

Maximize data and avoid
overfitting issues and determine

the linear and nonlinear variables

Aretoulis [8] Correlation analysis and WEKA
analysis Highway Engineering Identify significant predictors

Amiri and
Mirzakuchaki [42]

Use contourlet and stationary
wavelet transform Electronic Science Increase the quality of an image

Zayed [41] Eliminate the data that had a
significant residual error

Construction
Engineering Increase the normality of the data

Vinayagam et al. [43] Eliminate the data that had a
significant residual error Biology Increase the normality of the data

Several standardized methods were used for the input and output data of ANN. Anysz
et al. [40] summarized the five standardized methods as vector standardization, Manhattan
standardization, maximum linear standardization, Weitendorf’s linear standardization,
Peldschus’ nonlinear standardization, and Zavadskas and Turskis’ logarithmic standard-
ization. They concluded that Zavadskas and Turskis’ logarithmic standardization method
provided the minimum errors. Therefore, it was utilized as a standardized method in this
paper. The input (Ni) and output data (Oi) were standardized as follows:

−
Ni =

Ln(Ni)

Ln(∏n
i=1 Ni)

(8)

−
Oi =

Ln(Oi)

Ln(∏n
i=1 Oi)

(9)

where
−
Ni and

−
Oi are standardized using the input and output values, respectively; n is the

number of data points. The number of hidden neurons is recommended as (2m + 1), where
m is the number of input layer neurons [43]. Due to the m being 2, the number of neurons
per each hidden layer was 5. Moreover, the type of activation function used in this paper
was a hyperbolic function, and the number of hidden layers was two.

The data used in the ANN model were divided into training data (70%) and testing
data (30%). Then, the model was evaluated by measuring the relative error (RE) for the
training and testing process. It should be noted that the two data types were arbitrarily
selected among all data. To obtain a homogenous distribution of the training and testing
data, the ANN model was run three times, which was generally based on the testing data
percentage. Then, the RE was examined in training and testing groups each time.

The output of the ANN model should be reversed, and we should obtain the estimated
output value (estimated FCC) to assess the model using MAPE value, as mentioned in the
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following section. To obtain the Oest−i, the ANN in the SPSS program provides
−
Oi. Due to

the ANN being run three times, the
−
Oi had three values, and their average was computed

−
Oave−i. On the basis of Equation (9), the Oest−i was computed after setting

−
Oi as

−
Oave−i and

setting Oi as Oest−i. Figure 6 represents the ANN structure used in this paper.
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4.5. Step 5: Assessment and Evaluation Models

The three models were evaluated using mean absolute percentage errors (MAPE) on
the basis of the estimated output (FCCest−i) and observed output (FCCobs−i), as computed
in Equation (10).

MAPE =
1
n

n

∑
i=1

|FCCobs−i − FCCest−i|
FCCobs−i

(10)

where FCCest−i is the estimated value (FCC) computed by the three models after con-
sidering the untransformed square root for the second model and the reverse value
for the third model (ANN model). The model that has the smallest MAPE value is the
appropriate model.

4.6. Step 6: Increase the Model’s Accuracy

If the three MAPE values are unsatisfactory (MAPE is greater than 25%), the model
with the lowest value increases its accuracy. This technique ensures the normalization of
data, makes training less sensitive, and increases the ANN model. The absolute percentage
error of each observation (APE) that was based on the estimated output (FCCest−i) and
observed output (FCCobs−i) was used to evaluate the eliminate the abnormal data. This
can be computed using Equation (11).

APEi =
|FCCobs−i − FCCest−i|

FCCobs−i
(11)
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The cases with APE values greater than 35% were deleted from the data.

5. Results and Discussion
5.1. Results of Correlation, Sample Size, and Normality Tests

The resulting correlation test is shown in Table 3; the Pearson correlation and p-value
were −0.968 and less than 0.001, respectively. The correlation coefficient shows a highly
negative correlation, where the overestimated cost deviation in pre-tendering leads to
underestimated cost deviation in the construction phase.

Table 3. Correlation test results.

CDpre-tendering CDconstruction

CDpre-tendering

Pearson Correlation 1 −0.968

Sig. (2-tailed) 0.000

N 34 34

CDconstruction

Pearson Correlation −0.968 1

Sig. (2-tailed) 0.000

N 34 34

In terms of the sample size and normality test, the C value, as shown in
Equation (3), was 0.17, which is less than 0.2. Regarding the normality test, the col-
lected data should follow a normal distribution. Hence, a normality test for collected
data with their transformation should be conducted. Table 4 shows the results of the
normality test. The p-values of the Kolmogorov–Smirnov and Shapiro–Wilk tests were less
than 0.05 for all data, as shown in Table 3. Therefore, the OCE, CC, and FCC followed a
normal distribution.

Table 4. Normality test of transformed data.

Kolmogorov–Smirnov Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

OCE 0.468 33 0.000 0.430 33 0.000
CC 0.473 33 0.000 0.454 33 0.000

FCC 0.412 33 0.000 0.397 33 0.000

5.2. ANN Model

The linear equation regression for the first model (LR on the raw data; 34 data
sets) and the second model (LR on the transformed data by square root) is shown in
Equations (12) and (13).

FCC = 304, 647.25 + 1.46OCE− 1.08CC (12)
√

FCC = 247.141 + 2.01
√

OCE− 1.44
√

CC (13)

The two models refer to the OCE leading to an increase in the FCC. However, the
CC leads to a decrease in FCC. In terms of the ANN model, after standardized the data
using Zavadskas and Turskis’ logarithmic method, the REs of the training and testing data
are shown in Table 5. The RE for the training stage is smaller than that for the testing
stage. This is due to the limited data used in the testing stage and generates a high error.
Moreover, the RE of the testing stage was higher than the value recommended by [6]. This
issue is addressed later.
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Table 5. Relative errors of the ANN model for the three runs.

Number of the Run
Relative Error (RE)

Training Testing

1 0.081 0.82
2 0.009 0.925
3 0.040 0.944

To evaluate the three models, the MAPE of Model 1 was 125.27%. Its value is low for
the second model, 66.89%, reduced by 58.38%. In addition, the MAPE value of the ANN
model (third model) was 45.27%, smaller than the first and the second model by 80.05% and
21.67%, respectively. The decreasing MAPE among the three models is because Zavadskas
and Turskis’ logarithmic standardized method minimizes the raw data more than the
square root function. Low-valued data are usually more oriented than higher-valued data.
Thus, developing a regression model on the basis of low-valued data reduces the error
values and increases the value of the determination coefficient. To enhance the above
interpretation, the activation function used in the ANN model aims to reduce the input data
values. For example, the input data values of Model 9 were minimized in two stages using
two hidden layers, consequently producing better results than the logarithmic regression
model. On the other hand, Swanson [44] stated that the model with a MAPE value larger
than 25% had low accuracy and was not an acceptable prediction model. Therefore, the
three models were non-acceptable models for predicting the FCC.

To increase the accuracy of the ANN model (third model), which provided the smallest
MAPE value compared with the first and the second model, the data with high residual
errors were eliminated. This method was carried out by [41,43].

The 12 projects (cases) were deleted, and the cases with an APE value smaller than or
equal to 35% was 22, as shown in Table 6.

Table 6. The twenty-two data sets after eliminating the APE values greater than 35%.

NO OCE CC FCC Ln(OCEi)
Ln(∏n

i=1 OCEi)
Ln(CCi)

Ln(∏n
i=1 CCi)

Ln(FCCobs−i)
Ln(∏n

i=1 FCCi)
Ln(FCCest−i)

Ln(∏n
i=1 FCCi)

APE (%)

1 0.14 0.11 0.11 41.61 40.91 41.04 41.20 4.73
2 0.50 0.48 0.48 46.22 46.28 46.43 46.52 2.39
3 0.49 0.49 0.54 46.15 46.35 46.83 46.48 9.46
4 0.30 0.30 0.30 44.38 44.58 44.73 44.68 1.16
5 0.12 0.10 0.10 41.20 40.60 40.70 41.09 11.68
6 0.25 0.21 0.21 43.78 43.32 43.43 43.60 4.98
7 0.24 0.15 0.21 43.64 42.28 43.46 43.41 1.40
8 0.30 0.30 0.30 44.41 44.61 44.76 44.74 0.50
9 0.35 0.35 0.35 44.99 45.19 45.34 45.60 7.44

10 0.26 0.23 0.23 43.92 43.63 43.77 43.86 2.58
11 0.50 0.50 0.48 46.22 46.40 46.47 46.51 1.09
12 0.26 0.26 0.26 43.92 44.07 44.22 43.83 10.39
13 0.70 0.69 0.61 47.41 47.57 47.26 46.78 12.70
14 0.50 0.49 0.54 46.19 46.37 46.86 46.50 9.64
15 0.49 0.48 0.45 46.11 46.30 46.18 46.47 8.44
16 0.50 0.49 0.49 46.19 46.35 46.51 46.50 0.25
17 10.00 11.84 3.84 56.77 57.62 53.82 46.94 85.58
18 0.30 0.30 0.30 44.39 44.59 44.73 44.69 1.04
19 0.30 0.29 0.29 44.42 44.44 44.59 44.78 5.61
20 0.49 0.47 0.47 46.15 46.20 46.35 46.49 3.95
21 0.48 0.48 0.46 46.06 46.27 46.31 46.44 3.61
22 0.45 0.45 0.45 45.86 46.06 46.21 46.34 3.75

The twenty-two data sets were utilized to develop the ANN model using Zavadskas
and Turskis’ logarithmic standardized method. The results of the training and testing
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accuracy of the ANN model that was carried out three times are shown in Table 7. The
minimum and maximum relative errors of the training and testing accuracy were 0.004 and
0.112, respectively, and less than 0.2.

Table 7. Relative errors of the ANN model with the twenty-two data sets after three runs.

Number of the Run
Relative Error (RE)

Training Testing

1 0.064 0.047
2 0.053 0.004
3 0.057 0.112

The MAPE value was 8.74%, indicating high accuracy in the evaluation of the ANN
model based on the twenty-two data sets. It was 36.48% smaller than the ANN based on
the thirty-four data sets. Moreover, the MAPE of the developed ANN model by Badawy [6]
was 10.98, slightly higher than the ANN model. The frequencies of the percentage error
are illustrated in Figure 7. The APE’s mean, maximum, and minimum were 1.46%, 85%,
and 0.4%, respectively. The mean and the standard deviation were 0.52% and 0.755%,
respectively. Moreover, the APE of 18 of the 22 data sets was less than 0.5%, while 3 had an
APE of less than 1.0%.
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The relationship between the estimated FCC computed by the ANN model (on the
horizontal axis) and the observed FCC (on the vertical axis) is depicted in Figure 8. The
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determination coefficient (R2) of the trend line was 0.965, which indicates that there is a
robust correlation between the estimated and observed FCC, and it is close to the best value
(1.0) [45].
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Figure 8. Correlation between estimated FCC and observed FCC.

To compare the result of this study with previous ones in terms of overall results, this
study demonstrated a relationship between the cost deviation in the pre-tendering stage
(CC and OCE) and the construction stage (FCC and CC). This finding agrees with the result
of a correlation study [6]. In addition, Skitmore and Ng [7] and Aretoulis [8] confirmed the
role of CC in predicting FCC, which agrees with this study.

Moreover, the limited data significantly hindered forecasting analysis in prior studies,
especially in ANNs. To overcome the limited data issue, this study applied different
transformed functions in ANN models, which have not been achieved in previous studies
related to contracting costs. Skitmore and Ng [7] processed construction cost data before
application in the LR; however, this method has not previously been used in an ANN.
Badawy [6] utilized ANN construction cost analysis without data processing for contracts.
Finally, decision-makers can use this valuable projected model to forecast how to manage
their budgets and FCC risk.

6. Recommendation and Future Study

The authors recommend expanding this study with large amounts of data from dif-
ferent parts of the world. Furthermore, the authors suggested incorporating this paper’s
results into system dynamics to capture the dynamic effect of the various factors on the
change in FCC.

7. Conclusions

A set of 34 projects from KSU was utilized to establish an ANN to forecast the FCC
after performing correlation, sample size, and normality tests. Due to the limited number
of projects, the data were prepared by applying standardization using Zavadskas and
Turskis’ logarithmic method for dependent and independent variables (FCC, OCE, and CC).
Two hidden layers with five neurons per layer were used, and the activation function was
hyperbolic. The ANN model was run three times to ensure that the training and testing
sets were evenly distributed among the data. After that, the ANN model’s results were
compared with the LR models developed on the basis of the raw data (the first model) and
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the square-root-transformed data (the second model) using MAPE. The findings revealed
that the ANN model had a MAPE value smaller than the two LRs (first and second models).
However, the accuracy of the ANN model was low, with a MAPE value of more than 45%.
Therefore, elimination of data with an APE of greater than 35% was implemented, and the
remainder were integrated into the ANN model. The model’s accuracy was enhanced by
decreasing its MAPE value to 8.7%. The information in this paper assists decision-makers
in deciding whether to continue to fund a project, discontinue it, or consider other risk
management alternatives.
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