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Abstract: In seismic-prone areas, ecclesiastical masonry complexes have shown very high vulnera-
bility, as detected after the last Italian earthquakes, such as those that occurred in L’Aquila (2009),
Emilia-Romagna (2012), Central Italy (2016), and Ischia (2017). Partial collapses often affect these
types of aggregate buildings due to the presence of highly vulnerable elements, such as bell towers.
Preliminary analyses, including straightforward and quick methods, are necessary to assess their
vulnerability. This paper proposes a simplified method to analyse bell tower dynamic behaviour
and the results obtained are compared with several different approaches. The first is based on the
dynamics of two rigid blocks (bell tower and lower building), and the second concerns a single
block (bell tower only). The proposed method can be considered as a quick procedure involving
few parameters to provide a preliminary analysis before use of more complex models such as finite
element models. It aims to provide a valuable tool for the initial evaluation of the stability and risk
index of the structure. The double-block model considers the associations between the rocking of the
bell tower and the sliding motion of the underlying building. A parametric evaluation for different
friction coefficients is proposed. The results are represented as rotation time histories and compared
with analysis of the single vulnerable element, i.e., the bell tower subjected to the floor spectrum. The
results show that high excitation frequency and friction coefficient values make the bell tower stable,
and that the simplified model provides a clear safety advantage.
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1. Introduction

Bell towers are slender elements whose structure is often part of larger masonry
buildings. Considering the entire masonry aggregate to which bell towers belong [1–3], the
assessment of their structural behaviour is crucial, especially when retrofit interventions
are planned [4–6], often because their damaged state has been caused by age and lack of
maintenance. Moreover, by their very nature, bell towers are particularly susceptible to
seismic risk [7,8]. In recent decades, the significant need for rehabilitation has enhanced
knowledge about assessment methods for masonry buildings [9] and encouraged the
development of innovative numerical tools and monitoring techniques [10,11]. Dynamic
identification techniques with numerical models, EMA (experimental modal analysis), and
OMA (operational modal analysis) methods are of great importance [12,13] but require
significant experimental and numerical effort to obtain all the parameters necessary to
create a suitable digital twin of the structure [14].

Ecclesiastical buildings, and aggregate buildings more generally, are complex objects
for which study and modelling are still challenges [12]. These constructions are formed
from several components and structural elements, giving rise to global behaviour that is
not always simple to read and model.

Due to the presence of sub-structures, such as arches and vaults [15–20], walls showing
out-of-plane [21,22] or in-plane behaviour [23–26], and single columns [27], the approach
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to the structural model is very complex. An often-used way to solve the modelling problem
is analysis of single substructures by means of macro-elements [28,29] extracted from the
more complex masonry building.

As far as possible, the safety assessment of the existing buildings should be based on
the requirements for the new buildings. To this end, the Italian Technical Standards for
Constructions [30] consider two parameters as reference factors for a quick comparison
between the capacity of an existing structure and that required by a new one.

However, qualitative and quantitative considerations about the behaviour of construc-
tion enable determination of the maximum tolerable seismic action. The comparison can be
performed at different levels of depth, depending on whether an analysis is performed on a
territorial or single building scale [31,32]. The seismic safety assessment should be carried
out on a global level, evaluating the resilience of the entire structural system and, on a local
level, the vulnerability of individual masonry portions to in-plane and out-of-plane actions.

The complexity of masonry constructions, often structural assemblages of bi- and tri-
dimensional elements, requires refined analysis methods, such as finite elements. These are,
in fact, theoretically capable of modelling the response of complex geometries, constraints,
loads and constitutive behaviour. Non-linear material behaviour is a critical aspect in the
modelling of masonry constructions.

In-force standards recognise local mechanisms due to loss of equilibrium as the major
causes of damage and collapse in historic buildings. This suggests that they should be
considered, especially when the construction does not show global behaviour.

This paper aims to analyse the vulnerability of a bell tower as a part of an aggregate
masonry structure. In particular, the work focuses on the rocking behaviour of a masonry
bell tower inserted in a monumental complex subjected to horizontal forces.

A simple method for the initial assessment of seismic safety is proposed. Few input
data are required to perform the analyses. The rocking behaviour of the tower and the
contribution of the entire church complex as a rigid body sliding with a fixed friction
coefficient on the foundation plane are considered. The analysed mechanism involves the
rigid block behaviour that occurs during seismic action.

Early studies on the rocking response of a rigid block simply supported on a moving
base were presented by Housner [33], who first established the equations of motion of the
rigid body and solved them accordingly.

The study was devoted to understanding the behaviour of tall, slender structures, such
as bell towers, subjected to ground motion. Several studies have addressed different be-
haviours that can be recognised and modelled according to the Housner theory. In general,
Housner’s theory of the inverted pendulum represents the behaviour of all unanchored or
ill-anchored to the ground [34] elements, which can be assimilated to rigid blocks.

Housner’s model fits the behaviour of freestanding art objects [35,36], non-structural
elements [37,38], and also the rocking of bell towers due to the swinging of bells [39,40].
Due to the uncertainty related to the ground motion and the high number of parameters
influencing the structural response, the “simple” Housner’s model may be unable to
predict the rocking of a structure free to oscillate due to unilateral base constraints. Studies
have demonstrated the fit between Housner’s theory and experimental data on seismic
behaviour [41,42], since the excitation uncertainty overcomes the structural response error,
either systematic or random, making Housner’s model reliable for the seismic design [43].

Starting from Housner’s model, the paper presents the vulnerability analysis results
of a bell tower, as part of a larger building complex. The results are presented in terms
of maximum oscillations and horizontal displacement values. Reference is made to a
case study of the ecclesiastical complex of S. Anna in Cervino (Caserta, Italy). The tower,
modelled as a rocking rigid body, is a sort of slender element rising up from the bulk
masonry building.

The simplified model analysed in this paper considers the rocking of the bell tower
combined with the frictional sliding of the building on the foundation plane. The model is
more complex than the one presented by Housner in 1963 since it combines two distinct
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motions: the Housner-like oscillations of the bell tower alone and the frictional translation
of the underlying building. In order to evaluate the overall model, the two distinct, simple
motions are examined and then the combination of the two motions with the possible
evolutions for the dynamics of the bell tower is considered.

2. Materials and Methods
2.1. Rocking Motion of the Bell Tower

The Housner model, developed in the early 1970s [33], takes into consideration a
symmetrical rigid block, with base 2b and height 2h, simply supported by a horizontal
moving base. If the bell tower alone can be considered as a rigid body, it can rotate
alternatively with respect to the two points O and O’ of the base and the rotation angle is
positive if clockwise. In the motion, the impact with the base is the only dissipative event.

According to Housner’s theory, the velocity after a perfectly centred impact is related
to the pre-impact velocity through a reduction coefficient e, that depends on the restitution
coefficient r, defined by Housner through the relationship e =

√
r. If the reduction coeffi-

cient is assumed to be constant during the motion, i.e., the amount of dissipated kinetic

energy is always the same, so that the angular velocity of the block after the impact
.
θ
+
(t)

maintains a constant relationship with the pre-impact one
.
θ
−
(t) (Figures 1 and 2), then:

.
θ
+
(t) = r

.
θ
−
(t) (1)
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In these hypotheses, the conservation of angular momentum about point O’ just before
the impact and right after the impact is:(

I0
.
θ
−
(t)− 2mRbsinα

.
θ
−
(t)
)
= I0

.
θ
+
(t) (2)

where:

- I0 is the polar inertia moment relative to O;
- m is the mass of the block;
- R is the distance of the centre of gravity from the rotation edge;
- α = arctan (b/h) is the angle that the radius R forms with the vertical direction, depend-

ing on the block’s slenderness.

By combining (1) and (2), the value of r for a rectangular block is:

r = 1− 3
2

sin2α

r = 1− 3
2

sin2α with 0 < r < 1 (3)

The parameter r represents the energy loss during the impact. The rocking motion
occurs when significant friction with the base plane prevents sliding. This model is suitable
for the contact surfaces at the bell tower base. Adopting the notation of Shenton [1996], let
fx and fy be the horizontal and vertical reactions at the tip O’ of the block at all times; µs
and µk are the static and kinetic friction coefficients. The rocking motion occurs if:

| fx| ≤ µs fy (4)

This means that in an equilibrium configuration of the system, the angular momentum
of the inertia forces is higher than the one due to the force of gravity

The rocking motion, according to the D’Alembert principle, is governed by the follow-
ing set of differential equations (DEs):

IO′
..
θ(t) + mgRsin (−α− θ(t)) = −m

..
xg(t)Rcos (−α− θ(t)), θ(t) < 0

I0
..
θ(t) + mgRsin (α− θ(t)) = −m

..
xg(t)Rcos(−α− θ(t)), θ(t) > 0

.
θ
+
(t) = r

.
θ
−
(t), θ(t) = 0

(5)

where:

-
..

xg(t) is the horizontal base acceleration;
- IO = IO′ are the polar inertia moments, with respect to the two points O and O′.

The rocking motion starts when
∣∣ ..xg(t)

∣∣ > gb
h , being g the gravity acceleration.

The DEs (6) present two non-linear differential equations related to the rotation motion
around O and O′ and an algebraic equation involving the angular velocities in O and O′. The
third equation is true at the impact instant only. The angle α has been previously defined.

Introducing the signum function:

sgn(θ(t)) =
{
+1, θ(t) > 0
−1, θ(t) < 0

(6)

by (6), the system (5) can assume the following form:

I0
..
θ(t) + mR(gsgn(θ(t))sin(α− sgn(θ(t))θ(t))) =

= mR
(
− ..

xg(t)cos(α− sgn(θ(t))θ(t))
)
, θ(t) 6= 0

.
θ
+
(t) = r

.
θ
−
(t), θ(t) = 0

(7)
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Considering the reference systems R1 = {O, x, y} for θ(t) > 0 and R2 = {O′, x′, y′}
for θ(t) < 0, the DEs (7) have the numerical solution represented in terms of key point
P displacement.

Let θ(t) be the rotation function; the position of the key point P(t) (Figure 2) can
describe the rocking motion by the variation of its coordinates in R1 and R2 reference
systems. The position vector at the starting time is:

r(1)P =

[
x(1)P
y(1)P

]
, θ(t) < 0 ; r(2)P =

[
x(2)P
y(2)P

]
, θ(t) > 0 (8)

so that the actual position of the key point is given by the rotation matrix R ◦ θ(t):{
OP(t) = R ◦ θ(t)r(1)P , θ(t) > 0
O′P(t) = R ◦ θ(t)r(2)P , θ(t) < 0

(9)

where the rotation matrix R ∈ SO(2) being SO(2), the orthogonal group of matrices with
det(R) = 1, is:

R ◦ (·) =
[

cos(·) sin(·)
−sin(·) cos(·)

]
(10)

The acceleration can be obtained deriving (9):
∂2

∂t2 OP(t) = ∂2

∂t2 [R ◦ θ(t)]r(1)P , θ(t) > 0

∂2

∂t2 O′P(t) = ∂2

∂t2 [R ◦ θ(t)]r(2)P , θ(t) < 0
(11)

Equation (11) can also be written as follows:
∂2

∂t2 OP(t) =
[

..
θ(t)∂R ◦ θ(t)−

.
θ

2
(t)R ◦ θ(t)

]
r(1)P , θ(t) > 0

∂2

∂t2 O′P(t) =
[

..
θ(t)∂R ◦ θ(t)−

.
θ

2
(t)R ◦ θ(t)

]
r(2)P , θ(t) < 0

(12)

where the first derivative of the rotation matrix R belongs to the orthogonal group of
matrices with unit determinant:

∂R ◦ (·) =
[
−sin(·) cos(·)
− cos(·) −sin(·)

]
∈ SO(2) (13)

Let i be the unit vector of x axis by (12), the horizontal component of relative acceleration:

..
x(t) =


∂2

∂t2 OP·i, θ(t) > 0

∂2

∂t2 O′P·i, θ(t) < 0
(14)

can be put in the explicit form:

..
x(t) =


−[x1cos(θ(t)) + y1sin(θ(t))]

.
θ(t)+

[−x1sin(θ(t)) + y1cos(θ(t))]
..
θ(t), θ(t) > 0

−[x2cos(θ(t)) + y2sin(θ(t))]
.
θ(t)+

[−x2sin(θ(t)) + y2cos(θ(t))]
..
θ(t), θ(t) < 0

(15)

The absolute acceleration
..
xa(t):

..
xa(t) =

..
xg(t) +

..
x(t) (16)
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is the sum of the base acceleration
..
xg(t) and the block one

..
x(t).

2.2. Sliding Motion of the Base Building

The sliding motion of a generic point of the underlying building with respect to the
foundation plane occurs when the maximum horizontal force due to the static friction
coefficient is reached, i.e., when:

m
∣∣ ..xg(t)

∣∣ > mµs

( ..
yg(t) + g

)
(17)

and it is governed by the following equation:

m
( ..

xg(t) +
..
x(t)

)
= −sgn

( .
x(t)

)
µkm

( ..
yg(t) + g

)
(18)

The static friction coefficient µs accounts for the force required to set the block in
motion, while the kinematic friction coefficient µk accounts for the force required to keep
the block (the building) in motion and is generally µs > µk.

Equations (17) and (18) hold until the actual moment at which µs exceeds µk and until
the velocity at the base of the block is non-zero.

With reference to the scheme of Figure 3, the equations representing the sliding motion are:∣∣ ..xg(t)
∣∣ > gµs( ..

xg(t) +
..
x(t)

)
= −sgn

( .
x(t)

)
gµk

(19)
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Iteratively, until the relative velocity
.
x(t) is non-zero, the second differential equation

is numerically integrated. When the velocity becomes null, the block is in relative equi-
librium with the base (rest) until the external force attains a value able to reactivate the
sliding motion.

2.3. Combined Rocking and Sliding Motions

The combined motion analysis was recently examined in [36] and is useful in the case
study. Suppose that the bell tower and the lower building are considered as rigid bodies. In
this case, the combined motion describes the rocking of the upper block associated with the
sliding of the lower one on the foundation plane. This hypothesis takes into account the
low tensile strength of the mortar layer at the level of the tower springing [44]. Therefore,
the problem is governed by the set of (5) and (9), in compact form:
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JO
..
θ(t)−m2Rcos[α−|θ|]

( ..
xg(t) +

..
xG1(t)

)
+

+m2Rgsgn(θ(t)) sin[α−|θ|] = 0, θ(t) 6= 0

M
( ..

xg(t) +
..
xG1(t)

)
+ sgn(θ(t))

{
−m2R[sin(α−|θ|)

.
θ

2
(t)+

−cos(α−|θ|)
..
θ(t)]+Mµkg} = 0, θ(t) 6= 0

.
θ
+
(t) = r

.
θ
−
(t), θ(t) = 0

(20)

where:

- m1 is the mass of the bell tower
- m2 is the mass of the monumental complex
- M is the total mass of the complex (sum of m1 and m2)
- sgn(θ(t)) is the signum function as defined above.

3. Application of the Proposed Method: S. Anna in Cervino Complex
3.1. Case Study Presentation

The case study is the ecclesiastical complex of S. Anna in Cervino, Caserta, reported in
the following pictures, where the church, the sacristy and the bell tower are highlighted
(Figure 4). These masonry aggregates are key in evaluating the vulnerability at the building
scale [31,45–47] and urban scale [48].
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Figure 4. The case study: the ecclesiastical complex of S. Anna in Cervino.

The bell tower has an overall height of 17.20 m (h0). Its base is placed on a pillar at
an altitude of 7.40 m (h3) and is adjacent to the external wall of the sacristy for 2.30 m (h2)
(Figure 5).

The bell tower has three reinforced concrete curbs at different heights. The first curb,
at the height of 9.85 m (h2 + h3), is considered as the base of the bell tower. Ultimately, the
rocking behaviour refers to 7.35 m (h1) (Figure 5).

The global dynamic behaviour of the entire S. Maria in Cervino complex was studied by
performing a detailed 3D finite element model by means of the MidasGen software [49,50]
(Figures 6 and 7). According to the 2018 Italian technical standards provisions [30], 170 mode
shapes were considered to reach 85% of the global mass in the modal analysis.
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The masonry walls and the vaulted structures were modeled using three-dimensional
solid elements with 8, 6, and 4 nodes. Appropriate combinations of the different solid
elements were used to obtain a refined geometry of the entire complex, respecting not only
the structural and material geometry, but also the distribution of non-structural elements
and openings. The masses were placed in their actual locations within the construction.
The model had 18,877 nodes, 13,098 elements and a global mass of 889.0153 kN (Figure 6).

The analysis highlighted that the first and second mode shapes concerned the bell
tower, which represents the most vulnerable element of the building. The first two modes
activated the 6.0% (y direction) and 9.5% (x direction) of the global mass (Figure 7), respec-
tively. This condition, therefore, requires an in-depth study of the tower, such as kinematic
or rocking analysis.

3.2. Seismic Safety Assessment of the Bell Tower

The seismic safety of the bell tower alone can be evaluated in different ways, consid-
ering its response in terms of stress, strain and displacement maps from the FEM model
of the global building. The FEM analysis of the bell tower alone can be performed using
the floor spectrum. Mechanical models can also be used with a first-level assessment, as
indicated in the Italian Guidelines for the preservation of cultural heritage [31,51–55]. The
local out-of-plane response of the bell tower can also be studied through limit analysis,
using both linear and non-linear kinematics.

This paper involves the study of the rocking of the bell tower through a dynamic
analysis considering the double-block model (structure and bell tower) or the single-block
for the bell tower, using the floor spectrum as reference for the base excitation.

In each of the cases listed, the only necessary parameters are the masses and the
ground spectrum.

The analysis of the bell tower can be developed considering the tower itself as an
isolated structural element subjected to a base motion derived from the floor spectrum, with
the computational efforts due to the finite element modelling of two structural schemes:
the entire building complex (to evaluate the floor spectrum) and the single bell tower to be
analysed. Leaving apart the discussion about an appropriate model of the edge conditions
and constraints at the tower base, in some cases the need for a detailed analysis arises after
a preliminary evaluation of the tower vulnerability, performed via simplified methods.

The table below (Table 1) shows the necessary parameters to perform the FEM analyses,
which are certainly more reliable, and those involved in the dynamic analyses proposed
as a simplified evaluation. If only the bell tower is studied (FEM or single-block rocking
model), a careful evaluation of the constraints at the base of the element and the calculation
of the floor spectrum appears crucially necessary.

The Italian Codes suggest a simplified procedure that is valid for non-structural
elements and any local mechanisms. They enable taking into account of the filtering effect
due to the main structure through floor spectra for computing the acceleration at the
building stories [56,57].

The response and the floor spectra evaluated for the bell tower and the entire complex
are reported in the following discussion.

The tower floor spectrum (Figure 8) has a maximum acceleration (a = 2.25 g), for
periods between 0.1 and 0.2 s, with amplification of about four times with respect to the
ground level. Therefore, the maximum amplification happens between 5 Hz and 7.98 Hz,
where the last one is the fundamental vibration frequency of the bell tower.

The dynamic analysis was developed taking into account a double-block system in
which the bell tower, due to the large friction coefficient between itself and the remaining
building, had the only rocking motion, while the only sliding motion of the lower structure
was considered according to Equation (20).

The possible analysed motions are (see schematic representation in Figure 9):
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1. Type 1: oscillation of the bell tower with respect to the lower building perfectly fully
supported on the moving foundation;

2. Type 2: sliding of the entire masonry complex, including the bell tower rigidly con-
nected to the lower building;

3. Type 3: combined motion: the bell tower oscillates with respect to the building that
undergoes relative displacements with respect to the foundation plane.

Table 1. Types of model and related parameters.

Type of Model Description Parameters

Complex FEM-Global

X Detailed geometry of the complex
X Deep knowledge of structural elements
X Characteristics of materials
X Constraint conditions
X Seismic ground classification
X Ground spectrum

Complex FEM-Bell Tower

X Detailed geometry of the complex
X Deep knowledge of structural elements
X Characteristics of materials
X Constraint conditions
X Seismic ground classification
X Ground spectrum
X Floor spectrum

Simplified Single-Block Model

X Rough geometry of the bell tower
X Weight of materials
X Seismic ground classification
X Ground spectrum
X Simplified floor spectrum

Simplified Double-Block Model
(proposed method)

X Rough geometry of the bell tower
X Weight of materials
X Seismic ground classification
X Ground spectrum
X Friction coefficients of the groundBuildings 2023, 13, x FOR PEER REVIEW 11 of 18 
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Figure 9a represents type 1 motion. The inertia forces determine the only rocking
motion and the related equations are:{

M
..
xg(t) < sgn

( .
xg(t)

)
Mµkg

..
xG2(t)h > gb

(21)

This condition represents the oscillation of the tower and holds until the condition
..
xG2(ta)h = gb is reached.

Figure 9b represents type 2 motion. The motion of the system is the sliding one, and
the related equations are: {

M
..
xg(t) > sgn

( .
xg(t)

)
Mµkg

..
xG2(t)h < gb

(22)

This condition holds until M
..
xg(tb) = sgn

( .
xg(tb)

)
Mµkg. Lower building sliding stops

when
.
xg(t) = 0.

Figure 9c represents type 3 combined motion. In this case, both the following condi-
tions are fulfilled: {

M
..
xg(t) > sgn

( .
xg(t)

)
Mµkg

..
xG2(t)h > gb

(23)

So the combined motion holds until:

M
..
xg(t)−m2Rsgn(θ(t))

{
sin (α− |θ(t)|)θ2(t)− cos (α− |θ(t)|)

..
θ(t)

}
≥

≥ sgn(θ(t))Mµsg
(24)

4. Results

An analytical procedure was implemented in a Mathematica© routine to evaluate the
results of the offered method. The analyses were carried out to investigate the displacements
of the rocking bell tower in the case of the combined motion as the static and kinematic
friction coefficients and the frequency of the horizontal action change. A harmonic base
acceleration was considered according to the following equation:

..
xg(t) = Acos ωt (25)

where:

- A is the oscillation amplitude;
- ω is the pulse, ω = 2π f , with f [Hz] frequency of the excitation;

The procedure implemented takes into account the following data:

- m1 = 96,840.67 kN
- m2 = 339 kN
- 2 h = 5.80 m
- 2b = 2.06 m
- r = 0.9
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Tables 2 and 3 report the analysed double-block combinations, while Figures 10 and 11
represent the rotation time histories ϑ(t).

Table 2. Groups of combinations for a = 0.4 g.

Group Combination µs µk f [Hz] Color

I

1
2
3
4
5

1 0.7

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

II

6
7
8
9

10

1.25 1

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

III

11
12
13
14
15

2 1.5

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

IV

16
17
18
19
20

2.8 2

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

V

21
22
23
24
25

3.2 2

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

VI

26
27
28
29
30

3.6 2.2

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

Buildings 2023, 13, x FOR PEER REVIEW 13 of 18 
 

Table 2. Groups of combinations for a=0.4 g 
Group Combination µs µk  f [Hz] Color 

I 

1 
2 
3 
4 
5 

1 0.7 

3 
4 
5 
6 
7 

Purple 
Red 

Green 
Light blue 

Blue 

II 

6 
7 
8 
9 

10 

1.25 1 

3 
4 
5 
6 
7 

Purple 
Red 

Green 
Light blue 

Blue 

III 

11 
12 
13 
14 
15 

2 1.5 

3 
4 
5 
6 
7 

Purple 
Red 

Green 
Light blue 

Blue 

IV 

16 
17 
18 
19 
20 

2.8 2 

3 
4 
5 
6 
7 

Purple 
Red 

Green 
Light blue 

Blue 

V 

21 
22 
23 
24 
25 

3.2 2 

3 
4 
5 
6 
7 

Purple 
Red 

Green 
Light blue 

Blue 

VI 

26 
27 
28 
29 
30 

3.6 2.2 

3 
4 
5 
6 
7 

Purple 
Red 

Green 
Light blue 

Blue 

 
Figure 10. Rotation time histories ϑ(t) diagrams. Groups of conditions I–VI (Table 2). 

 

Figure 10. Rotation time histories ϑ(t) diagrams. Groups of conditions I–VI (Table 2).



Buildings 2023, 13, 762 13 of 18

Table 3. Groups of combinations for a = 0.5 g.

Group Combination µs µk f [Hz] Color

VII

31
32
33
34
35

1 0.7

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

VIII

36
37
38
39
40

1.25 1

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

IX

41
42
43
44
45

2 1.5

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

X

46
47
48
49
50

2.8 2

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

XI

51
52
53
54
55

3.2 2

3
4
5
6
7

Purple
Red

Green
Light blue

Blue

XII

56
57
58
59
60

3.6 2.2

3
4
5
6
7

Purple
Red

Green
Light blue

Blue
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In particular, Table 2 and Figure 10 refer to the base acceleration amplitude of 0.4 g
obtained from the ground spectrum in correspondence with the bell tower period; Table 3
and Figure 11 consider the acceleration amplitude of 0.5 g, corresponding to the maximum
in the ground spectrum.
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As can be seen, for increasing frequency, the bell tower is more stable as the rotation
amplitude decreases. With acceleration 0.4 g (Figure 10), the corresponding rotations are
within acceptable ranges. In the 0.5 g graphs (Figure 11), the numerical procedure registers
large rotations of the tower, compatible with overturning. Experience shows that, in the
first few seconds of oscillation, when very low friction coefficients, even unrealistically low
ones, are taken into account for the lower building, many bell towers do not collapse. In
general, although heavily damaged, they return to their initial position.

Dynamic analyses were also performed considering the tower alone.
The base motion parameters were derived from the floor spectrum reported in Figure 8.

In the single-block model, the rotation time histories of the tower due to the floor spectrum
(dark grey line) are considered, while in the double-block problem those of the entire
complex (light grey line) are considered. Both the one sine pulse and the continuous sine
pulse excitations, together with two different combinations of the kinematic and static
friction coefficients, were taken into account. For greater clarity, a summary scheme of the
motion conditions is reported in Table 4.

Table 4. Motion Conditions.

Mechanical Model Type of Motion Amplitude Frequency µs µk

Single block One sine 2.25 g 7.98 Hz - -

Double block

Continuous sine 0.4 g 7.98 Hz 1.25 1.0
Continuous sine 0.4 g 7.98 Hz 2.0 1.5
Continuous sine 0.5 g 7.98 Hz 1.25 1.0
Continuous sine 0.5 g 7.98 Hz 2.0 1.5

The rotation time histories for the conditions indicated in Table 4 are reported in
Figure 12. As can be see, the maximum values of the tower rotations were obtained using
the double-block model, even though they were, in all the examined cases, lower than the
overturning angle, defined by arctan b/h = 0.35, corresponding to geometric instability. In
general, the rotations obtained using the floor spectrum at the tower base were 10−1 smaller
with respect to those due to the double-block model. The larger rotation angles shown in
the double-block model, both in the one sine pulse and in the continuous base excitation
case, confirm the reliability of the presented model for a safe preliminary analysis.
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5. Discussion and Conclusions

This paper focuses on the structural behaviour of bell towers. This type of structure,
often set in ancient monumental complexes, shows a particular vulnerability to seismic
action due to its pronounced slenderness and age. Different methodologies to analyse
the dynamic response of bell towers exist and require knowledge of a significant number
of parameters. A rigid-block-based rapid method is offered, which can provide crucial
information on the dynamic response of bell towers in a first-level analysis.

The vulnerability of the bell tower of S. Anna in Cervino (Caserta, Italy), belonging to
an ecclesiastical complex of several masonry buildings, was evaluated.

The dynamic behaviour of the bell tower was analysed according to several different
approaches. Among them two models, one with reference to two rigid blocks (bell tower
and lower building), and one to a single block (bell tower), were evidenced.

In the double-block model, the rocking of the bell tower was associated with the
sliding motion of the underlying building. Different friction coefficients were considered
for the contact sliding surfaces. In the single-block model, the rocking of the bell tower
was considered subjected to a floor spectrum obtained after a finite element analysis of the
entire complex.

The results, in terms of the time histories of the rotation angle with different ground
accelerations and different couples of friction coefficients, were taken into account and
discussed. It was shown that high values of excitation frequencies and friction coefficients
made the bell tower stable.

Analysis with the double-block model, for which a limited amount of knowledge
data is required, as shown in Table 1, appears to offer a safety advantage. Therefore, a
preliminary evaluation, which is often helpful for territorial scale evaluations, could be
carried out with the proposed method. Since the influence of the masonry complex was
computed via its total mass and soil friction coefficients, it was shown that the presented
simplified analysis can be used to make a preliminary assessment of the bell tower stability,
avoiding the computational efforts needed for the finite element modelisation of the entire
complex. Future work will involve improved modelling of the soil-structure interaction
and impact conditions.
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