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Abstract: Understanding the link between the energy-efficiency of buildings and climatic conditions
can improve the design of energy-efficient housing. Due to global climate change and growing re-
quirements for building energy-efficiency, the number of publications on climate zoning for buildings
has grown over the last 20 years. This review attempted to give the reader an up-to-date assessment
of the scientific literature in the field of climate mapping for buildings on a global and national scale,
filling in the gaps of previous works and focusing on details that were not presented before. There
were 105 scientific sources examined. The most dominant climate zoning variables were thoroughly
analyzed. A clear categorization of climate zoning methods with specific criteria was shown. The
most used methods were evaluated, emphasizing their similarities and differences, as well as their
essential components and advantages. The main literature review was supported with bibliometric
and bibliographic analysis. The existence of many climate zoning methods can be an indicator of the
lack of agreement on the most effective strategy. A tendency has been established for the popular-
ization among scientists of methods based on machine learning and building energy simulations,
which are relatively easy to use and have proven to be the most reliable climate zoning methods. A
transformation is emerging by shifting from a climate-based to a building performance-based climate
zoning approach.

Keywords: building energy-efficiency; building energy simulation; climate zoning; climatic variables;
cluster analysis; degree-days; machine learning

1. Introduction

People are becoming more conscious about the link between energy use and environ-
mental impacts as global warming and climate change progress more significantly [1,2].
The present energy-related greenhouse gas (GHG) emissions are around 39 Gt CO2 equiva-
lent, according to the International Energy Agency. The building industry was directly or
indirectly responsible for nearly 50% of global energy consumption and 39% of total GHG
emissions in 2018 [3]. While developed countries have taken significant progress to reduce
their energy consumption, the energy demand for buildings rose by over 20% between
2000 and 2017 due to factors including the rapidly expanding floor area of dwellings, the
relatively small reduction in energy intensity, and the rising energy requirements of the
energy services [4]. Existing and future buildings will be largely responsible for determin-
ing global energy consumption [5–10]. Future growth in energy use and accompanying
emissions is prominent. The increased access of billions of people in developing countries
to decent housing, electricity, and improved cooking facilities is a significant trend. By 2040,
buildings are expected to be the most significant source of GHG emissions [11]. In addition
to the issue of climate change, there are important economic reasons why energy-efficient
buildings are becoming increasingly attractive. There are between 100 and 150 million
people in developed countries that are unable to afford the cost of energy due to low
incomes [12]. In 2018, nearly 13% of Europeans said they live in homes that are too cold,
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and 20% said they live in homes that are not properly protected from the heat [13]. In
2022, the situation worsened, and wholesale electricity prices rose significantly in many
countries, especially in Europe. Power prices in the first half of 2022 were more than four
times as high as the average in the first half of 2016 to 2021, primarily due to gas prices
climbing to more than five times the value of the reference period [14]. Therefore, during
seasons of extremely high or low ambient temperatures, low-income households might
confront significant heating, cooling, and health difficulties. Indeed, buildings represent a
critical piece of a low-carbon future and a global challenge for integration with sustainable
development. Therefore, reducing the energy and GHG footprint in both existing and new
buildings represents a key challenge and an opportunity to tackle global warming and
energy safety.

Building energy consumption, in turn, is influenced by several elements, where en-
vironmental or climatic factors are one of the most important [15]. With other factors
(socioeconomic conditions, occupant behavior, energy management, and building design)
being equal, changes in climate characteristics affect building energy consumption [16–19].
A wide range of climate variables influence buildings’ thermal performance [20,21]. The
impact of climate variables is different in different geographic regions. Increasing energy-
efficiency is a key goal for the building sector, and the use of climatic zoning for buildings
(CZB) as a tool in the establishment of design guidelines that address lower energy con-
sumption is an important factor to consider. However, climatic zoning (CZ) methods are
diverse and there is no “standard” technique for CZB, although some are widely acknowl-
edged and implemented [22–24]. It is also known that not all existing CZB approaches are
directly related to building energy consumption [25–27].

Recognizing the relationship between the power consumption of buildings and climate
conditions can help with the engineering of climate-appropriate dwellings for various
geographical locations [28]. The relevance of precise CZ for building energy consumption
is demonstrated by the fact that discrepancies in CZB led to a significant increase in heating
and cooling energy needs [29,30]. The design of the buildings should be maximized to take
into account regional priorities. Defining climate zones makes it feasible to identify and
prevent the negative effects of the environment on buildings by identifying basic zonal
construction criteria [31,32]; additionally, this makes it possible to support the efficient
use of resources [33]. Over the past 20 years, the number of publications on CZB and the
interest of scientists has increased significantly due to global climate change and higher
requirements for the energy-efficiency of buildings [22–25,27,34–54]. Recently, numerous
measures of energy-efficiency and sustainability, specifically LEED, BREAM, VERDE, and
Passivhaus certificates, have demonstrated an inclination toward integrating environmental
criteria into buildings [55,56].

Two review articles on CZB were identified in the analyzed literature [16,24]. Walsh et al. [38]
reviewed the domestic and international standards, laws, scientific journals, and other
documents about the climatic categorization of buildings and energy-saving measures
implemented by 54 countries. Mainly using data from national and international building
codes (90% of the cases were related to normative documents), methodologies for CZB
were explored country by country. In addition to a more modern set of sources (51%
of the publications we reviewed were published between 2017 and 2022), this review is
different since it is focused on studying only scientific publications in the narrow field
of CZB. The purpose of this study is to review academic publications in the CZB field
to quantify the research output and current progress supported with bibliometric and
bibliographic analysis. Additionally, a revised criterion for determining CZ methods,
which was re-established with two new techniques, was used. We attempted to give the
reader an up-to-date assessment of the scientific literature, filling in the gaps of previous
works and focusing on details such as primary sources of climate data, its form, and
the period of observation of the climate, which was not presented in Walsh’s review.
Verichev et al. [16] investigated the most-cited climate-related studies in building from 1979
to 2019. One hundred twenty-eight publications were used in this paper, all with more than
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35 citations. The studies were investigated by employing both manual and bibliographic
analysis. This paper covers a wide range of topics, both directly and indirectly linked to
climate, climate zones, and buildings. However, the author deals with the issue of the
climate component for buildings only in a small part of the article. Conversely, this review
is purely focused on the CZB, its methods, variables, and their impact on the building’s
energy usage. To summarize, this study is unique in the following ways:

1. The information on the CZB from scientific publications in 37 countries and 95 affili-
ations was collected and reviewed. The Scopus database was selected as a primary
source of publications. Research articles represent 84% of the materials we analyzed,
while conference papers account for 10%;

2. This study is state-of-the-art since 51% of the publications reviewed were published
between 2017 and 2022;

3. The study essentially differentiates buildings’ CZ variables and buildings’ CZ meth-
ods, which were typically bundled in previously published works. Each of the
categories was extensively reviewed and analyzed;

4. An organized categorization of the most commonly used building CZ variables and
building CZ methods (with criteria used in determining each method) is presented.
The most commonly used CZB methods were evaluated emphasizing their similarities
and differences, as well as their essential components and advantages. The current
development of this field was explored and traced;

5. Several additional machine learning (ML) methods for CZB have been revealed. In
light of this, the category of conventional clustering techniques was expanded and
given a new term, “Machine Learning Methods” (MLM). Additionally, a previously
rare term, “The Interval Judgment Method” (IJM), has been put into use;

6. Covering the gaps of prior works and concentrating on information that was not
previously published, the primary sources of climate data and the form in which
climate data are commonly used were recognized. The data on climate observation
periods for CZB methods were also collected and analyzed. Other details such as the
most commonly used software for energy simulations and the number of archetypes
were mentioned;

7. All collected data are shown in the condensed table with the following extracted
features: sources, publication years, authors, publication type, country or region
of study, CZ methods used, their number and combinations, number of climate
zones, etc.

8. Several promising studies regarding future climate scenarios in CZB were identified.
In this review, 12% of publications dealt with future CZ, and their main principles
are given;

9. Using bibliometric and bibliographic analysis for evaluating and analyzing the perfor-
mance of research activities, this paper indicates substantially contributing authors,
nations, the co-citation and bibliographic coupling networks, the direct citation net-
work, etc.

2. Brief Historical Background of Climatic Zoning and Its Purpose

People have attempted the climatic classification of the earth since ancient times for
different purposes. Several attempts by Greek philosophers (Pythagoras, Aristotle, Plutarch,
and Ptolemy) are known to map and classify the climate [57,58]. The 19th century can be
considered the beginning of the modern climate classification era, with the first published
maps based on temperature and, later, precipitation parameters [59]. Vegetation-based
climate classifications were started by Köppen; his first scheme was published in 1900.
Still, the Köppen map remains the most widely used climate classification map, which was
presented in its most recent edition in 1961 by Rudolf Geiger. It is still constantly updated
and refined [38]. Because the Köppen–Geiger (KG) classification is primarily concerned
with vegetation growth, it is limited in formulating the link between outdoor and indoor
climates, as well as how climate influences building energy consumption. In the first half of
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the 20th century, building codes and standards, which contained requirements for climatic
protection and durability in conformity with defined climate zones, were introduced in
some countries [60,61]. Over time, the requirements of building codes and standards
gradually expanded. In addition to the requirements for proper weather protection and
interior comfort, the guidelines for the energy-efficiency of buildings, which sufficiently
depend on accurate climate classification, were introduced [62,63].

3. Methodology
3.1. Literature Review Framework

The framework of the literature review is shown in Figure 1 and is composed of the
following steps:
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1. General keyword-based search in Scopus database;
2. Specific keyword-based search, with refined search parameters and keywords to find

the most relevant sources;
3. The composition of the final list of sources using the following criteria. The main

idea of the source should be to study or propose methods for climatic zoning of
the territory for the needs of energy-efficient buildings or a non-CZB article with
described methods which influence CZB or can potentially be applied to its purposes;

4. Identifying and screening additional articles. The sources that were cited by an article
from the shortlist became additional candidate sources. Relevant sources outside of
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Scopus were also identified by Google web search. Further, the candidate sources
were checked following the established criteria, and the selected ones were added to
the final list;

5. Criteria were established to distinguish between climate variables and CZB methods;
6. The review of each source and extraction of information on climate variables and CZB

methods. Specific features (more details are included in the Data Collection section)
were also extracted from the sources at this stage;

7. All data were subjected to in-depth quantitative analysis (descriptive analysis);
8. Sources cited in Scopus were subjected to basic bibliometric and bibliographic analysis

to identify bibliometric networks;
9. Discussion (interpretations of the findings, directions for future research, recommen-

dations).

3.2. Adopted Bibliometric and Bibliographic Analysis

Bibliometrics is a valuable technique for evaluating and analyzing the performance
of research activities. It corresponds to scientific progress in a variety of ways, including
evaluating progress, recognizing the most authoritative sources, developing the academic
basis for analyzing novelties, identifying significant scientific performers, constructing
bibliometric measures to evaluate academic output, and so on [64].

In this work, the bibliometric analysis supported the mail literature review with the
citation analysis, an indication of research performance and collaboration identification.
Techniques such as co-citation, bibliographic coupling, co-authorship, citation, and key-
word co-occurrence networks were implemented; for more information about adopted
bibliometric analysis principles please refer to [65–68]. For bibliometric network visualiza-
tion, the VOSviewer software was used [64,68–70]. The results of the bibliometric analysis
contributed to the following data, which were explored and incorporated into the findings:

1. A map of affiliations or public organizations which publish more articles than others
in a CZB research field;

2. The top 10 most cited articles;
3. The most contributing authors in the CZB area;
4. The most popular journals for CZB;
5. Citation over time analysis;
6. The co-citation networks of researchers;
7. The bibliographic coupling network of the top 100 authors;
8. A direct citation network;
9. The network of co-occurrences of keywords;
10. The bibliometric coupling network of countries.

4. Data Collection

The Scopus database was selected as a primary source of publications. The data collec-
tion was carried out in a general-to-specific order. The search included all languages and
documents for all years of operation of Scopus (until 2022). The result of a general keyword-
based search was a long-list of 3622 articles. Local climate zoning (LCZ) articles were
excluded from the scope of this review. After final filtering, the specific list of publications
from Scopus was formed with 93 publications. During this stage, two review articles [16,24]
were found, which served as additional sources of publications. Additionally, this review
included a few non-CZB-related articles [71–78]. However, the methods presented there
still influence CZB or can potentially be applied to its purposes. Google search was used to
find possibly valuable publications outside the Scopus database; additionally, five more
articles were found.

After the filtering and selection of candidate sources, the final review list comprised
105 documents. The academic literature published from 1990 onwards was reviewed to
capture the most recent published findings. More than half of the publications in the final
list were published after 2017. Figure 2 depicts the timeline of all papers considered in
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this study. The timeline has an increasing trend, with the highest number of documents
published in recent years (2017, 2021, and 2022). The typology of the final list of sources is
shown in Figure 3.
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Figure 3. The sources of the academic papers (a) and types of documents in the review lists (b).

During the literature review, the information was gathered, which formed the basis for
further quantitative analysis. All the data are shown in the condensed table (Table 1). In the
following sections, the reader will be provided with information on the climate variables
used for CZB, quickly highlighting their impact on building energy consumption; then,
potential climate data sources and the period for climate observations will be discussed.
In the final part, the essence and characteristics of each CZB method will be addressed
in the order of their popularity, starting with the most frequent. In addition, information
regarding combinations of methods, as well as a discussion of the benefits and drawbacks
associated with each technique, will be provided.
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Table 1. Data collected during the review.
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1 [9] 2020 Entire
territory of Belgium DDs 1 Web database Agri4Cast dataset Daily mean values 1976–2004 (30) DDM 1 Base temperatures: HDD

18 ◦C; CDD 18 ◦C 7

2 [27] 2019 Part of
China (hot summer

and cold winter
(HSCW) zone)

DDs, RH, SR,
W, TMY 5

National
meteorological

service

National meteorological
service

Daily
mean/maximum/
minimum values,

Hourly values
TMY

2006–2015 (10) DDM, MLM, BES 3

Two-tier classification with
hierarchical agglomerative

clustering (HAC).
EnergyPlus simulations with

1 archetype

7

3 [23] 2017 Entire
territory of Nicaragua AT, RH, SR, W 4 Software Autodesk Green Building

Studio (GBS) Hourly values
DDM, MLM,

Administrative
division

3 K-nearest neighbors
algorithm 3

4 [79] 2019 Entire
territory of Italy DDs, Al, TMY 3

National
meteorological

service

Italian Military Air Force
weather stations.

Daily mean values,
Hourly values

TMY
2000–2009 (10) DDM, BES 2

Base temperatures: HDD
12 ◦C; CDD 12 ◦C, TRNSYS

simulations with
13 archetypes

6

5 [80] 2017 Entire
territory of Iran AT, RH, DDs 3

National
meteorological

service

Iran Meteorological
Organization Daily mean values 1995–2014 (20) DDM, BCM 2 Milne-Givoni chart 8

6 [81] 2012 Europe DDs 1 Monthly mean
values DDM, BES 2 Base temperatures: HDD

18 ◦C; CDD 18 ◦C 5

7 [74] 2019 Entire
territory of Madagascar RH, GHI, Pr 3 MLM 1

Hierarchical k-means
clustering on principal
components (HCPC)

3

8 [82] 2009 Entire
territory of Madagascar AT, SR, W 3

National
meteorological

service

Meteorological forecast
utilities of Antananarivo.

Monthly mean
values (20) BCM 1 6

9 [25] 2018 Entire
territory of Nicaragua TMY 1 Software Autodesk Green Building

Studio (GBS)
Hourly values

TMY

DDM, MLM,
Administrative
division, BES

4 EnergyPlus simulations with
4 archetypes 3

10 [10] 2012 Entire
territory of Iran DDs 1 Daily mean values 1961–1990 (40) DDM 1 Base temperatures: HDD

18 ◦C; CDD 24 ◦C
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11 [32] 2019 Part of

United States
(States of Florida,

Georgia, and
Tennessee)

TMY 1
National

meteorological
service

The U.S. Department of
Energy (DOE)

Hourly values
TMY DDM, BES 2 EnergyPlus simulations with

13 archetypes 4

12 [83] 2019 Entire
territory of Chile TMY, DDs, SR,

Pr, RH, W 6 Software

Autodesk Green Building
Studio (GBS) Mesoscale
Meteorological Model,

Version 5 (MM5)

Hourly values
TMY 2007–2017 (11) DDM, MLM,

BCM, BES 4 Base temperatures: HDD
18 ◦C; CDD 10 ◦C 5

13 [84] 2010 Entire
territory of China AT, RH 2 Web database

CRU TS 2.1 data set from
the University of East

Anglia

1224 records of
monthly minimum

temperature,
maximum

temperature and
vapor pressure,

annual cumulative
heat and cold

stresses

1901–2002
(102) MLM, HCI 2

Hierarchical
cluster tree of comfort index

and heat/cold stresses,
8

14 [46] 2020 Entire
territory of Brazil DDs, AT, RH,

Pr 4
National

meteorological
service

INMET database Hourly values
TMY (10)

DDM, KGM,
BES, enhanced

degree-day
method,

MLM, etc.

7 Base temperatures: HDD
18 ◦C; CDD 10 ◦C 8

15 [85] 2016 Entire
territory of Turkey DDs 1 Hourly values

TMY 1989–2009 (20) DDM 1 Base temperatures: HDD
18 ◦C; CDD 18 ◦C 4

16 [86] 2011 Entire
territory of United States DDs 1 Daily mean values (5) DDM 1 5

17 [41] 2015 Part of Spain (Andalusia) DDs, SR, AT,
Al 4

National
meteorological

service

Agencia Andaluza de la
Energía (Andalusian

Energy Agency)
CSIM, BES 2

Approximation and
interpolation method (AIM),

CERMA software
simulations with 1 archetype

3

18 [87] 2007 Entire
territory of China SR 1 Monthly mean

values
1957–2000

(10–44) MLM 1 5
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19 [88] 2002 Entire
territory of Thailand AT, RH 2

National
meteorological

service

Meteorological
Department of Thailand 3 h values 1981–1998 (18) FDV 2

Frequency distribution of
occurrence of maximum and

minimum values
4

20 [89] 2014 Entire
territory of United States TMY 1 Research

institution
National Renewable
Energy Laboratory.

Monthly mean
values 1991–2005 (15) BES 1 EnergyPlus simulations with

9 archetypes 7

21 [43] 2008 Part of Spain (Andalusia) DDs, SR, Al 3
National

meteorological
service

the Andalusian Regional
Government

Monthly mean
values 1970–2006 (37) DDM 1

Al correction and
approximation and

interpolation method (AIM)
12

22 [73] 2017 Entire
territory of Chile AT, Pr 2 Web database

Global Historical Climate
Network

Dataset (GHCN),
FAOClim 2.0

Annual and
monthly mean

values
1950–2000 (50) KGM 1 25

23 [90] 2018 Part of Chile (southern
part) DDs, SR 2

National
meteorological

service

the Ministry of
Agriculture of Chile

(Agromet), the Ministry of
Environment (MMA) and

the Di-
rectorate General of Civil

Aviation (DGAC)

Hourly values 2008–2018 (10) DDM, CSIM 2 Base temperature: HDD
15 ◦C 5

24 [91] 2007 Part of India (northeast
region) AT, RH, Pr, W 4

National
meteorological

service

Regional Meteorological
Centre, Guwahati, India

Monthly mean
values (30) BCM 1 Milne, Givoni charts 4

25 [76] 2011 Entire
territory of Egypt AT, RH 2

National
meteorological

service

General
Meteorological Authority,

Cairo, Egypt

Monthly mean
values (30) BCM 1 ASHRAE charts 8

26 [47] 2016 Part of Spain
(Extremadura) DDs, SR, Al 3

National
meteorological

service

the National
Meteorological Agency

and the Regional
Government of
Extremadura.

Monthly mean
values 1976–2011 (10) CSIM 1 Approximation and

interpolation method (AIM) 5

27 [92] 1999 Entire
territory of Brazil AT, RH 2 Monthly mean

values BCM 1 8
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28 [93] 2003 Entire
territory of Israel AT, RH, SR, W 4 Daily mean values MLM 1 Hierarchical clustering 7

29 [94] 2003 Entire
territory of Turkey AT, Pr 2

National
meteorological

service

National Weather Service
of Turkey

Monthly mean
values 1951–1998 (47) MLM 1 Hierarchical clustering 7

30 [95] 1993 Entire
territory of United States AT, Pr 2

National
meteorological

service

National climatic data
center

Monthly mean
values 1931–1980 (50) MLM 1

Principal component
analysis, hierarchical

clustering

8,
14,
25

31 [48] 2018 Entire
territory of India AT, RH, SR,

TMY 4
National

meteorological
service

Indian Society of Heating
Refrigeration and
Air-Conditioning

Engineers (ISHRAE)

Hourly values
TMY BCM, BES 2

Ecotect analysis program
simulation with 1 archetype

(duplex house)
5

32 [96] * 2015 Entire
territory of Saudi Arabia AT, RH, W, SR 4

National
meteorological

service

MEPA. The Meteorology
and Environmental

Protection Administration
(MEPA) weather tapes in

Jeddah, Saudi
Arabia

1960–2010 (20)

KGM, TCCM,
MLM, The World

Health
Organization
classification
method, etc.

16 6

33 [72] * 2012 World AT, Pr, SR 3 Web database CRU and GPCC data sets,
ERA-Interim, MODIS

Monthly mean
values 2001–2007 (8) KGM, MLM 2 Principal component

analysis, k-means clustering 12

34 [97] 2017 World AT, Pr 2 Climate model GCM ensemble Monthly mean
values 1981–2000 (20) MLM 1 k-means clustering,

hierarchical clustering 60

35 [98] 2021 Entire
territory of China AT, RH, SR, W 4

National
meteorological

service

National Meteorological
Information Center Hourly values 1961–2010 (50) BES 1

Transient system simulation
program software (TRNSYS)

with 1 archetype (office)

36 [44] 2021 Entire
territory of China TMY 1 Software Medpha database of

China
Hourly values

TMY BES, MLM 2

K-Means and agglomerative
hierarchical clustering. DeST

(designer’s simulation
toolkits) with 1 archetype

(20-story office)

5

37 [99] 2018 Europe AT,
RH, SR 3 Web database EnergyPlus website Hourly values

TMY 1982–1999 (18) KGM, MLM 2 k-means clustering,
k-medoids clustering 5
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38 [100] * 2020 Europe AT,
RH, SR 3 Web database EnergyPlus website Hourly values

TMY 1982–2000 (18) KGM, MLM 2 hierarchical clustering with
Euclidean distances 7

39 [71] 2020 Entire
territory of China AT, RH, SR,

AP 4
National

meteorological
service

National Climate Center
of China

10 days mean
values 2004–2013 (10) MLM 1

K-nearest-neighbor and
sparse subspace
representation.

5

40 [77] 2018 World AT, Pr 2 Climate model
WorldClim V1 and V2,

and CHELSA V1.2,
CHPclim V1; Table 1

Monthly mean
values 1980–2016 (37) KGM 1 30

41 [69] 2018 Entire
territory of Turkey AT, Pr 2

National
meteorological

service

Turkish
State Meteorological

Service
1950–2010 (60) TCCM 1 9

42 [101] 2016 Part of Brazil (State of
Paraná)

AT, rainfall,
evapotranspi-

ration
3 Climate model

European Center for
Medium-Range Weather

Forecast (ECMWF) models

Monthly mean
values 1989–2014 (25)

KGM, TCCM,
Camargo
Climatic

Classification

3 3

43 [102] 2007 World AT and Pr 2 Web database

Global Historical
Climatology Network
(GHCN) version 2.0

dataset

Monthly mean
values 1909–1993 (70) KGM 1 30

44 [103] 2019 World AT, Pr, solar
irradiation 3 Web database “GPCCv2018” “CRU

TS4.01”
Monthly mean

values 1950–2016 (68) KGM 1
Köppen–Geiger-

Photovoltaic
(KGPV)

12

45 [42] * 2011 World AT, RH, TMY 3 Software

Ecotect climate
classification tool

(Autodesk Incorporated
2011)

TMY, monthly
mean values BCM, BES 2

Standard psychometric
charts with each location’s
actual temperature and RH,

“SUNREL” software
(National Renewable Energy

Laboratory 2010) with
3 archetypes

46 [35] 2020 Entire
territory of China AT, DDs, Pr,

SR, PW 5
National

meteorological
service

National Climate Center
(NCC) Daily mean value 1997–2013 (17) DDM, MLM 2

Base temperatures: HDD
18 ◦C; CDD 10 ◦C, CD 26 ◦C;

hierarchical clustering;
17
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47 [104] 2019 Entire
territory of China AT, DDs 2

National
meteorological

service

National Climate Center
(NCC) Daily mean value 1997–2013 (17) IJM, BES 2 Simulations with 1 archetype 5

48 [75] 2016 World AT, Pr 2 Web database WorldClim global climate
dataset

Monthly mean
values 1950–2000 (50) MLM 1

32 clustering methods,
hierarchical clustering,

partitioning around medoids
5

49 [105] 2013 Europe TMY 1 Software Meteonorm Hourly values
TMY BES 1 HAMBase and mathlab

software with 1 archetype

50 [106] 2020 Entire
territory of Algeria TMY 1 Web database

United States Department
of

Energy

Hourly values
TMY 2004–2018 (15) BES 1

EnergyPlus simulations
V8.9.0, energy demand and

indoor-discomfort hours
with typical multifamily

social residential building

51 [107] * 2019 Entire
territory of Brazil AT, RH, SR,

TMY 4 Software EnergyPlus database Hourly values
TMY 2005–2018 (13) BES, MLM 2

EnergyPlus simulations
V8.9.0, annual building
cooling thermal loads as
indicators. 1 archetype.

k-means clustering with the
sum of squares (within SS)

and Hubert index

5

52 [108] 2015 Entire
territory of Italy DDs 1

National
meteorological

service

Italian meteorological
database

Monthly mean
values 1978–2013 (35) DDM 1

Base temperatures: HDD
18 ◦C, HDD 20 ◦C, HDD

22 ◦C; CDD 22 ◦C, CD 24 ◦C,
CDD 26 ◦C

53 [109] 2021 Entire
territory of Spain AT, DDs 2

National
meteorological

service

State Meteorological
Agency (AEMET) 2015–2018 (4) CSIM, BES 2 HULC tool for simulation 19

54 [110] 2015 Entire
territory of Algeria DDs 1

National
meteorological

service

CNERIB, Réglementation
thermique du bâtiment DDM 1

Base temperatures: HDD
18 ◦C; CDD 26 ◦C; territory

is classified into climatic
zones according to

the annual cost of energy
consumption

7
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55 [111] 2021 Entire
territory of Belarus AT, Pr, W 3

National
meteorological

service

State Climate Cadastre of
the Republic of Belarus
(Belhy- dromet 2019)

Daily values 1971–2000 (30) BES 1 A historical simulation and
an evaluation simulation

56 [112] 2013 Entire
territory of Czech Republic 14 1961–2000 (40) Quitt’s Climate

Classification 1 23

57 [7] 2017 Europe (Cyprus,
France, Greece)

58 [113] 2017 Part of Spain (Galicia) AT, RH 2
National

meteorological
service

Monthly mean
values (15) BCM 2 Givoni bioclimatic charts 5

59 [114] 2021 Entire
territory of Ireland DDs 1 Daily values 2003–2017 (15) DDM 1 Base temperature: HDD 15,

5 ◦C

60 [115] 2015 Entire
territory of South Korea DDs 1

National
meteorological

service

Korea Meteorological
Administration

Daily values, 3 h
values 1981–2010 (30) DDM 1 4

61 [116] * 2017 Entire
territory of Philippines Pr 1

National
meteorological

service

Philippine Atmospheric,
Geophysical, and

Astronomical Services
Administration (PAGASA)

Monthly mean
values 1961–2015 (55) MLM 1 K-means clustering,

hierarchical clustering 6

62 2002 Entire
territory of Nigeria AT, RH 2 (20) MM 1 9

63 [117] 2020 Entire
territory of Nigeria AT, RH 2

National
meteorological

service

Meteorological center of
Nigeria

Monthly mean
values (5) BCM 1 Olgyay charts 5

64 [118] 2002 Entire
territory of Venezuela AT, RH, Al 3 IJM 1 Al correction 5

65 [119] 1999 Part of United States
(Puerto Rico) AT, Pr 2 Seasonal mean

values 1960–1990 (31) MLM 1
Principal component

analysis, artificial neural
networks (ANN)

4
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66 [120] 2010 Entire
territory of

Dominican
Republic AT, Pr 2

National
meteorological

service

ONAMET network,
National Institute for
Hydrologic Resources

(Instituto Nacio- nal de
Recursos Hidráulicos, or

INDRHI)

Monthly mean
values 1971–2000 (30) TCCM 1 9

67 [121] 2018 Entire
territory of

Dominican
Republic AT, RH 2

National
meteorological

service

ONAMET network,
National Institute for
Hydrologic Resources

(Instituto Nacio- nal de
Recursos Hidráulicos, or

INDRHI)

30 min values 1998–2016 (18) FDV 1
Frequency distribution of
maximum and minimum

values of AT and RH
8

68 [34] 2021 Part of China (cold climate
zone) TMY 1 Hourly values

TMY BES, MLM 2
EnergyPlus simulation with

1 archetype, k-means
clustering

4

69 [53] 2022 Entire
territory of Ethiopia AT, RH, SR,

TMY 4
Web database,
climate model,

software

WorldClim repository,
CRU CL v. 2.0: (A

high-resolution data set of
surface climate over global

land areas), Meteonorm
software

Monthly mean
values BES, MLM 2

K-means clustering,
principal component

analysis, Mahoney method,
EnergyPlus simulation with

2 archetypes

10

70 [51] 2020 Part of Chile TMY 1 Climate model
the Mesoscale

Meteorological Model
ver.5 (MM5)

Hourly values
TMY BES 1 Simulation with 1 archetype

71 [52] 2020 Entire
territory of China AT, RH 2

National
meteorological

service

National Meteorological
Information Center 1984–2013 (30) MLM 1

Mahalanobis distance as an
indicator for evaluating the
distances between samples

7

72 [39] 2022 Part of Brazil (semiarid
region)

AT, Pr, SR, W,
PW 5 Web database World-Clim 2 Data Portal Monthly mean

values 1970–2000 (30) MLM 1
Principal component
analysis, hierarchical

clustering
3
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73 [122] 2018 Part of

Chile (south part
(La Araucanía, Los

Ríos, and Los
Lagos))

DDs, SR 2
National

meteorological
service

Ministry of
Agriculture-National

Agroclimatic Network
Hourly values 2011–2015 (4) CSIM 1 Base temperatures: HDD

20 ◦C; CDD 20 ◦C 3

74 [123] 2017 Entire
territory of Sweden

Primary
energy

consumption
1 EBSM 1

Primary energy
consumption (measured in

kWhp/m2),
3

75 [22] 2021 Entire
territory of Spain DDs 1

National
meteorological

service

Spanish State
Meteorological Agency

(AEMET) (State
Meteorological

Agency-AEMET-Spanish
Government, 2020)

Hourly values 2015–2018 (4) CSIM 1 Base temperatures: HDD
20 ◦C; CDD 20 ◦C 12

76 [124] 2009 Entire
territory of Thailand AT 1

National
meteorological

service

Department of
Meteorological Hourly values 1981–1999 (18) 3

77 [6] 2012 Entire
territory of Greece AT, SR 2 Hourly values 1961–1990 (30) BES 1

TRNSYS software
simulations with

3 archetypes
13

78 [40] 2021 Part of Spain (Andalusia) TMY (EPW) 1 Software METEONORM EPW BES, MLM 2
Simulations with

8 archetypes, k-means
clustering

12

79 [125] 2016 Part of
(Catalonia) Spain

Primary
energy

consumption
1 Catalan Institute of Energy Primary energy

consumption 1980–2008 (30) EBSM 1
Primary energy

consumption (measured in
kWhp/m2),

3

80 [126] * 2021 Entire
territory of Mexico TMY (EPW) 1 Software EnergyPlus EPW BES 1 Open Studio with

3 archetypes 10

81 [127] 2021 Entire
territory of Libya DDs 1 Daily mean values DDM 1 Base temperatures: HDD

24 ◦C; CDD 18 ◦C

conti
nu-
ous

82 [128] 2014 Entire
territory of Turkey AT 1

National
meteorological

service

State Meteorology General
Directorate (42) FDV 1 The outdoor temperature

distributions 8
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83 [50] 2021 Entire
territory of Turkey

Wall
insulation, fuel

types, DDs
3 MLM 1 Fuzzy c-mean clustering 5

84 [129] * 2014 Entire
territory of Nepal AT, RH, W 3

National
meteorological

service

Department of Hydrology
and Meteorology TMY BCM 1 Givoni charts 4

85 [130] 2017 Entire
territory of South Korea AT 1

National
meteorological

service

Korea Meteorological
Administration (KMA) 2001–2010 (10) FDV 1

Graph pattern of the
cumulative temperature

density
4

86 [131] 2011 Entire
territory of Iran AT, RH, AP 3 BCM 1 4

87 [132] 2017 Part of
(Pampas) Argentina AT, RH, W, Pr,

Al 5
National

meteorological
service

National Meteorological
Service (SMN, Argentina)

Monthly mean
values 1960–2010 (50) MLM 1

Ward agglomerative
hierarchical clustering

method
8

88 [49] 2021 Entire
territory of Iran AT, RH 2 1995–2014 (20) MLM, BCM 2

Givoni’s bioclimatic chart
modified by Brown and

Dekay
19

89 [133] 2007

Part of (San
Luis Potosí,

central–
northeastern

region of
México)

Mexico AT, Pr 2
National

meteorological
service

México’s Comisión
Nacional del Agua (CNA)

Monthly mean
values 1940–1997 (28) KGM, MLM 2 Principal component

analysis 6

90 [134] 2019 Entire
territory of India AT, RH, DDs 3

National
meteorological

service

Indian Society of Heating
Refrigerating and
Air-conditioning

Engineers (ISHRAE)

Hourly weather
data MLM 1 Hierarchical clustering 8

91 [135] 2015 Entire
territory of India AT, RH, Pr 3 Web database

SEWRA and UNEP
NASA’s Surface

meteorology

Raster and shape
file datasets 1983–2005 (25) MM 1 62
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92 [136] 2019 Part of
(Kerala) India AT, DHs, Al 3 Software Meteonorm TMY DDM, BES 2 Al correction 3

93 [137] 2004 Entire
territory of Thailand AT, RH, Pr, SR,

Al 5
National

meteorological
service

Thai meteorological
service 1990–2000 (10) Al correction

94 [138] 2021 Entire
territory of Morocco AT, RH, Pr, SR 4 Web database

The Prediction of
Worldwide Energy
Resource (POWER)

1984–2017 (32) MLM 1

Hierarchical clustering,
k-means clustering, support

vector machine classifier
(SVM-C)

8

95 [45] 2022 Entire
territory of India

96 [139] * 2003

97 [140] * 2003 Entire
territory of United States AT, RH, DDs 3 IJM, DDM 2 17

98 [141] 2022 Entire
territory of Ethiopia AT, DDs 2

National
meteorological

service

National Center for
Environmental Prediction

(NCEP)
1979–2013 (34) DDM 1

Heating degree-days (HDD)
and cooling degree-days

(CDD) with base
temperature of 18.3 ◦C

5

99 [142] 2006 Entire
territory of China AT, RH 2

National
meteorological

service

National Meteorological
Centre of China Daily values 1971–2000 (30) BCM 1 9

100 [143] ** 2014 Territory of
Eastern Africa

(Tanzania, Kenya,
Uganda)

AT, RH 2 BCM, MM 2 Givoni charts 6

101 [144] ** 1991 Entire
territory of Ethiopia AT, Pr, Al 3 Annual mean

values IJM 1 Al correction 6

102 [145] 2020

103 [24] *** 2017
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104 [146] **** 2007 Entire
territory of Bolivia AT, RH 2

National
meteorological

service

National meteorological
service (SENAMHI) 1970–2004 (35) BCM 1 Givoni bioclimatic charts,

ABC software 8

105 [147] **** 2020 Entire
territory of Ethiopia AT, RH, DDs 3

National
meteorological

service

National Center for
Environmental Prediction

NMAE, National
Meteorological Agency

of Ethiopia

1974–2013 (30) DDM 1 Heating DDs (base 18.3 ◦C) 5

* Conference paper. ** Book. *** Review paper. **** Thesis.
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5. Climate Variables Used for CZB

Several factors can influence building energy consumption: building location and
design, occupant behavior, energy management of the building, climate, and socioeconomic
and legal-related characteristics [17,18]. The issue of the energy demand of buildings is quite
complex; however, speaking of the impact of climate on buildings, it can confidently be said
that with other factors being equal, changes in climate characteristics significantly influence
building energy consumption. A wide range of climate variables, including outdoor air
temperature (AT), solar radiation (SR), relative humidity (RH), degree-days (DDs), wind
(W), etc., impact buildings’ thermal performance [20]. However, specific types of buildings
are influenced by climate variables differently. Climate, for example, does not affect
large venue buildings’ extreme daily heating or cooling energy usage, but for commercial
buildings, daily excessive heating energy consumption is closely connected to maximum
and minimum AT, dry-bulb temperature (DBT), and SR [21]. In contrast, for residential
buildings, only DBT has an impact. The wet-bulb temperature (WBT) is the primary
impacting climatic parameter for the extreme cooling energy consumption of commercial
buildings, which indicates that the combination of AT and RH influences the cooling
energy consumption [21]. For many building types, the DBT significantly impacts hourly
severe heating energy consumption, followed by the WBT. In contrast, cooling energy
consumption is closely connected to the WBT for commercial buildings or has no apparent
relationship to climate for large venue buildings [11,21]. However, the exact mechanism by
which climate influences the amount of energy that buildings consume is a complicated,
contentious, and highly studied topic in the scientific community [11,17,21,36,148–150].

This review found 99 documents with information about the variables used. The list
of the main variables that were identified consists of AT, RH, DDs, SR, precipitation (Pr),
W, typical meteorological year (TMY), altitude (Al), atmospheric pressure (AP), and the
pressure of water vapor (PW). Building energy simulation cases were explicitly indicated
as a TMY since a compilation of meteorological elements was used during the simulation,
not exact variables. In the analysis, TMY was considered as a separate independent
variable. Additionally, one climatic derivative (DDs) and one geographical feature (Al)
were identified as separate variables. To avoid confusion, the variables indicated in the
analysis are, in fact, a set of related (close) variables grouped to simplify the further analysis;
see Table 2.

Ten main variables in CZB processes, and the number of variables used simultaneously,
were revealed (Figure 4). As expected, AT was the most common variable, which was alone
or in combination with other variables used for the CZ in 63 cases out of 99 cases (63.6%). AT
and RH were the most common combination of variables among the examined documents.
To simplify, DBT, WBT, temperature ranges, diurnal, seasonal, and extreme temperatures
were referred to the AT category. RH was the second most popular variable. Out of 99
cases with available data on climate variables in this literature review, 40 cases using RH
for climate classification were found (40.4%). DDs are also common in climate classification
and were found in 30 cases (30.3%) when implemented alone or in combination with other
variables. DD and DH are essentially a derivative of AT; however, these variables were
mentioned separately as independent variables in cases where climate classification was
based on DDs or DHs. Despite the importance of SR for CZB, its use is not so significant; it
was revealed in 25.3% of cases (25 out of 99). In this review, the SR category also combines
global horizontal irradiation (GHI), sunshine duration, and daily clearness index. The use
of Pr as one of the variables was encountered in 25 cases out of 99 (25.3%). This is due to
the use of this variable in the popular KG method [102], which uses monthly AT and Pr for
classification, and due to the frequent use of this variable in hot climate countries, such as
Brazil [101], the Dominican Republic [120], Chile [73], Colombia [151], Mexico [133], and
the Philippines [152]. Wind component as a climate variable is not common in CZB and
was found in 12 cases (12.1%) in combination with other variables. We combined wind
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speed, wind frequency, and wind direction under this category. TMY was found in 15.2%
of cases, and Al correction in 13%.

Table 2. CZB variables definitions.

# Variable Group Name Abbreviations Variables Included

1 AT AT

Dry-bulb temperature

Wet-bulb temperature

Temperature ranges

Seasonal and extreme temperatures

2 Relative humidity RH
Relative humidity

Moisture content

3 Degree-days DDs
Degree-days

Degree-hours

4 Solar radiation SR

Direct solar radiation

Diffuse solar radiation

Global horizontal irradiation (GHI)

Sunshine duration

Daily clearness index

5 Precipitation Pr
Rainfall

Snowfall

6 Wind W

Wind speed

Wind frequency

Wind direction

7 Typical meteorological year TMY Set of meteorological data (TMY, EPW,
RMY, etc.)

8 Altitude Al Altitude

9 Atmospheric pressure AP Atmospheric pressure

10 The pressure of water vapor PW The pressure of water vapor
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Most often, climate classification used two variables at the same time (29.3%). The
usage of only one variable or a combination of three variables was slightly less frequent,
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accounting for 28.3% and 22.2%, respectively. It was infrequent to use more than three
variables simultaneously for CZB (Figure 5). Furthermore, when only one variable is
utilized for zoning, as seen in the first bar of Figure 4, DDs and TMY are the most popular
choices. AT and RH were the most common combination of two variables among the
examined documents, with a significant gap between AT and SR, which was the second
most prevalent combination (Figure 6).
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6. Climate Data Sources

During the course of the review, several climatic data sources became evident. Most
publications use data obtained from national meteorological services (60.0%). Authors also
frequently use web data sources such as the WorldClim repository, EnergyPlus website, or
Global Historical Climate Network Dataset (18.7%). Cases of using databases of various
software were revealed in 13.3%, with the EnergyPlus database, Autodesk Green Building
Studio, and Meteonorm being the most common. Climate models were used in 6.7% of
cases; basically, these are publications related to future climate scenarios [51,77,97,101]
(Figure 7).
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8.5 years elapses from the end of monitoring to publication, with a period from 2 to 8 years 
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use of the most appropriate, up-to-the-moment data, it is reasonable that, on average, it 
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The forms in which climate data are used for classification have also been identified.
Monthly mean values, TMY, daily mean and hourly values are four primary data forms.
Often, the data undergo some processing and can be significantly changed from the data
source to the classification itself. However, the forms that provided the core for the
classifications are depicted in Figure 8.
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7. Period of Climate Observation

Of interest is the period of climate observations, namely the monitoring duration and
the time elapsed from the end of observation to the use of data in the climate classification.
Climate change makes it preferable to use the data of recent years for accurate CZ [104].
There were 71 sources identified with an indication of the period of observations. The
longest monitoring time of 102 years used for climate classification was found in the article
by Wan [84]. Several authors used short observation periods of up to 5 years [22,109,122].
The average climate monitoring period was 28 years. Figure 9 shows the distribution of the
observation periods. Figure 10 shows a histogram of the number of years that have passed
since the last observation date until the document was published. An average of 8.5 years
elapses from the end of monitoring to publication, with a period from 2 to 8 years being the
most common. Given the quickly changing climatic conditions, which need the use of the
most appropriate, up-to-the-moment data, it is reasonable that, on average, it takes from
two to eight years between the end of observations and their utilization.
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8. Methods Used for CZB

Indeed, CZB is characterized by a wide variety of applied techniques. Here, a detailed
analysis of the most often used methods, the number of methods utilized simultaneously,
and information about authors working with specific methods will be given.

A contextual framework or a consolidated and logical system based on opinions, ideas,
and values that drive the activities taken by policymakers, researchers, or other users for
CZ is viewed here as a CZ method. Along with “method”, other terms such as “approach,”
“technique,” “strategy,” and “mechanism” will be used to prevent lexical repetition. Based
on previous studies, we classified CZ approaches with specific criteria. The criteria used in
determining each method of CZB in this review are indicated in Table 3. The conventional
CZ techniques list was expanded by including the IJM. The category for cluster analysis
(CA) has been enhanced with additional ML techniques; accordingly, we used the new
MLM term for this domain.

There were 98 sources found with information on applied CZ methods. Figure 11
shows the diversity of CZ approaches, where the twelve most commonly used methods
were identified. MLM, degree-day method (DDM), and buildings energy simulations (BES)
were the three most popular methods among researchers. Table 4 shows different CZB
methods and the researchers working with them. It can be seen that most of the authors
work with several methods. The number of methods used simultaneously is shown in
Figure 12 Often, only one method is used for CZB. Of 98 cases, one approach was used
in 64 cases (65.3%), a combination of two methods was used in 27 cases (27.5%), and the
simultaneous use of three or more approaches was identified in 7.2% of cases (Figure 12).



Buildings 2023, 13, 694 24 of 51

In addition, when only one method was used for CZB, as shown in the first bar of Figure 12,
the most prevalent choices were MLM, DDM, BES, and BCM. Next, a quick summary of
the main principles and key aspects of each method will be provided. A more detailed
review of each CZ method will be presented in a separate article on which the authors are
already working.

Table 3. CZ methods definitions.

# Name of a Method Abbreviations Criteria

1 Machine learning methods MLM

Classification is based on clustering
techniques, neural networks, support vector
machines, sensitivity analysis, or principal

component analysis

2 Degree-days/-hours
methods DDM

Classification is based DDs values only. OR
If several variables are used in the

classification, then DDs should be the
primary variable

3 Building energy simulation BES Classification is based on BES results

4 Bioclimatic charts method BCM

Classification is based on Givoni, Lamberts,
Milne, and Olgay charts with the

combination of temperature and humidity
as the main variables

5 Köppen–Geiger method KGM

Classification is followed by the
Köppen–Geiger system and is based on

seasonal precipitation and
temperature pattern

6 Climate severity
index method CSIM

Classification is based on the climate
severity index (a site-specific value that
defines the severity index of a specific
climate) according to Formulas 4 and 5

7

Interval judgment method
(the complex combination
of climate variables based

on the repeatability of
their elements)

IJM
The classification is based on a combination
of different variables with established limits

(threshold) of variables for each zone

8 Frequency distribution
of climate variable FDV Classification is based on the different types

of probability distributions of variable(s)

9 Mahoney method MM Classification is based on Mahoney tables

10 Thornthwaite climate
classification method TCCM Classification is based on Thornthwaite

climate classification

11 Existing building stock
performance method EBSM Classification is based on actual data of

building stock performance

12 Heating or cooling index HCI

Classification is based on heating and
cooling indexes. This index is commonly

used to determine how ambient
temperature, relative humidity, and

radiation affect human comfort

13 Other

Quitt’s climate classification
Roriz method

The World Health Organization (WHO)
classification method

Administrative division
Approximation and interpolation method

(AIM)
Camargo climatic classification
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Table 4. Authors working with different CZB methods.

Abbreviations Cases % First Authors References

MLM 34 34.7%

Aliaga, Alrashed, Anas, Bai,
Benevides, Bhatnagar,

Bienvenido-Huertas, Deng, Erell,
Falquina, Fovell, Lau, Malmgren,

Mazzaferro, Netzel, Pernigotto,
Pineda-Martínez, Praene, Roshan,

Shi, Tükel, Unal, Walsh, Wan, Wang,
Xiong, Yang, Zeleke, Zscheischler

[10,23,25,27,34,
35,39,40,44,46,49,
50,52,53,71,72,74,

75,80,84,87,93–
97,99,100,107,

119,132–134,138]

DDM 25 25.5%

Abebe, Asfaw, Bai, Bawaneh, Briggs,
D’Amico, De Rosa, Elmzughi,

Ghedamsi,
Mazzaferro, Muddu, Nair, Noh,

Pusat, Rakshit, Ramon,

Sánchez de la Flor, Tsikaloudaki,

Verichev, Walsh, Xiong

[9,23,25,27,32,35,
43,46,79,81,85,86,

90,108,110,114,
115,127,136,140,

141,147]

BES 25 25.5%

Asimakopoulos, Bai,
Bienvenido-Huertas, Carpio, Cory,

D’Amico, Danilovich,
Deng, Díaz-López, Kishore,

Mazzaferro, Meng, Nair, Semahi,

Tsikaloudaki, van Schijndeln,
Verichev, Walsh, Wang, Xiong, Zeleke

[6,25,27,32,34,
40–

42,44,46,48,51,53,
79,81,89,104–107,
109,111,136,153]

BCM 16 16.3%

Bodach, Cory, da Casa Martín,
Kishore, Lam, Mahmoud,

Mobolade, Moradchelleh, Navarro,

Rakoto-Joseph, Roriz, Roshan,
Singh

[42,48,49,76,80,
82,91,92,113,117,
131,142,146,154]

KGM 11 11.2%

Alrashed, Aparecido,
Ascencio-Vásquez, Beck,

Mazzaferro, Peel, Pernigotto,
Pineda-Martínez, Sarricolea,

Zscheischler

[46,72,73,77,96,
99–103,133]

CSIM 6 6.1%
Carpio, Diaz-Lopez, Moral,

Verichev

[22,41,47,90,109,
122]

IJM 4 4.0% Bai, Briggs, Ferstl, Hobaica [104,118,140,144]

FDV 4 4.0% Coskun, Felix, Khedari, Kim [88,121,128,130]

MM 3 3.0% Ogunsote, Pawar, Zeleke [53,116,135]

TCCM 2 2.0% Aparecido [101]

EBSM 2 2.0% Gangolells, Hjortling [123,125]

HCI 1 1.0% Wan [84]
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Machine learning methods (MLM) denote different types of multivariate data classifi-
cation and segmentation algorithms that can be successfully applied for the CZ of territories
for building energy-efficiency. It can simultaneously involve many climatic and geographic
variables or even be combined with some building properties, avoiding oversimplification
and obtaining more meaningful results [84]. Although the most common type of ML
classification in the development of climate maps is CA, other various ML approaches for
CZB were revealed during this review (neural networks, principal component analysis,
sensitivity analysis, etc.) [39,45,52,53,72,119,133]. Accordingly, we extended this category
and used the new MLM term. Still, among all possible ML methods, CA was the most
frequent technique for climate classification with hierarchical, k-nearest-neighbor, and
k-means clustering.

The study by Fovell et al. [95] is one of the early attempts to adopt MLM for climate
zoning. The U.S. territory was divided into climate zones using principal component
analysis (PCA) and hierarchical clustering (HC) with AT and Pr as the main climate vari-
ables. In total, three different candidate clustering levels (8, 14, and 25) were tested. As
the most effective with a satisfactory level of detail, an option with 14 clusters was chosen.
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Conflicting buffer zones and cluster overlap were found as drawbacks. According to the
authors, it is important to have data points outside of the research area’s boundaries that
were not included in the analysis for a categorization near the study area’s borders to make
the final climate classification more accurate. Stepinski and Netzel [75] attempted to classify
the climate of the entire globe based on a comprehensive clustering approach. This study
included 32 different clustering-based classifications. All methods were then compared
with the KG classification. The authors concluded that using three climate variables (AT, Pr,
and temperature range) provides the best results. About half of the climatic zones detected
by clustering were accurately matched with the KG classification classes; the rest, however,
differed in their climatic characteristics and geolocation. Additionally, the authors pointed
out that the k-means algorithm should be preferred over the HC algorithm in the process
of climate classification. Praene et al. [74] applied HC on principal components and spatial
interpolation using GIS to propose a new CZB of Madagascar. As main climate variables,
RH, daily GHI, and Pr were chosen. Three climate zones that correspond to dry, humid,
and highland environments were derived. The authors also investigated the relationships
between established CZ and the thermal comfort levels of conventional building typologies.
It was demonstrated that some building types can ensure a higher yearly comfort rate
and be the most effective when erected in a specific climate zone. Walsh et al. [23] per-
formed a survey on building energy performance maps of Nicaragua. Three CZ techniques
(DDs, CA, and administrative division) were compared. It was concluded that CA can
provide a more in-depth understanding of CZ than other methods, but for better results, it
needs to take BES into account during the development of climate maps. It was empha-
sized that the appropriate selection of the method plays a central role in CZ for building
energy-efficiency purposes.

Given its primary advantages, MLM provides significant potential to go deeper into
the CZB and acquire more reliable, previously unavailable results. One of the most im-
portant issues is data dimensionality reduction and the proper number of clusters. PCA
can be applied for data dimensionality reduction and elbow method or Hubert index for
solving the number of clusters problem. However, often, MLM is supplemented with other
approaches, such as BES, to generate more accurate results or to evaluate them [23,34,40,44].
It should be noted that although the problem of studying climate and its classification is
location-oriented [155,156], none of the found sources used the principles of spatial analysis
for CZB. Spatial analysis has become a standard in many research areas (such as epidemiol-
ogy, sociology, ecology, and tourism) [157–159], but this has not happened in the field of
CZB yet. The core concepts of geographical dependency and spatial autocorrelation are
founded on The First Law of Geography, which states “everything is related to everything
else, but closer things are more related than distant things” [160]. Therefore, spatial objects
and phenomena should be analyzed based mainly on their locations and relationships. In
this way, the role of space in CZB is emphasized, and the understanding of the working and
representation of space, spatial patterns, and processes is enhanced. In CZ, the recognition
of the spatial dimension is expected to yield different and more meaningful results and
helps to avoid erroneous conclusions [161].

Degree-days methods (DDM) are well-known techniques that have been used for
decades [162]. They indicate the severity of the climate in various locations by documenting
when the external AT falls below or rises above a specified temperature during a given
year, necessitating heating or cooling. This method is generally defined as the sum of
the temperature differences between the outdoor mean temperature over 24 h and a base
temperature daily (with 18 ◦C as the most frequent base temperature value). The base
temperature is arbitrary, but it is commonly described as the outside temperature at which
heating, ventilation, and air-conditioning (HVAC) systems do not have to operate to keep
the building’s internal climate comfortable. According to ASHRAE standard [163], cooling
and heating degree-days (CDD, HDD) are calculated according to Equations:
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HDDt =
Dt

∑
d=1

(
Tb − T

)+
d (1)

CDDt =
Dt

∑
d=1

(
T − Tb

)+
d (2)

where
Tb—base temperature;
+—only positive values are considered;
T—the mean value of the maximum and minimum temperatures in a given day, as

shown in Equation (3):

T =
(Tmax + Tmin)

2
(3)

Other methods for the calculation of HDD and CDD are the mean daily degree-hours
method [164], UKMO approach [162], Hitchin method [165], and Schoenau and Kehrig
technique [166]. It should be emphasized that except for the mean daily degree-hours
method, all other DDs calculation methods are aimed to approximate the true sum of
the daily outside temperature variations. Due to approximate estimations using only the
maximum and minimum values of the day or monthly mean values, those methods create
considerable inaccuracies [167]. Thus, if more detailed weather data, covering the hourly
outdoor dry-bulb temperature of the selected region, is available for more accurate climate
classification, the mean daily degree-hours method [164] is preferred over all others.

Quayle and Diaz [168] and Le Comte and Warren [169] have found that DDs are
significantly connected to electricity, natural gas, and heating consumption. HDD has also
been proven to be a reliable indicator of residential energy use [170,171]. Briggs et al. [140]
were some the first to use DDs for climate classification. The authors proposed a new
climate classification for use in characterizing the performance of energy-efficiency mea-
sures for buildings in the USA. First, according to a table composed by Strahler [172],
humid/dry/marine zones were determined, and further division was carried out based
on DDs, with established intervals for each zone. The authors also compared the new
classification with the existing IECC 90.1-2001 system. According to the authors, the
proposed classification provided a better perspective of climate, with more uniform cli-
mate zones that better characterize U.S. climates. This classification was later included in
ASHRAE Standard 169-2006. Pusat and Ekmekci [85] applied DDM to the CZB of Turkey.
Unlike the Turkish official CZ code, which only considers HDDs, the authors used the
HDD/CDD combination (18 ◦C base temperature). Six main climatic zones were identified
instead of the four of the national code. The authors proposed a reclassification of the
country’s climate from both a heating and cooling point of view. The findings emphasized
the need for the cooling loads consideration in DD climate zone classification. Katerina
Tsikaloudaki et al. [81] presented an approach for defining climatic zones in Europe based
on the number of DDs. The article also concludes that the most realistic classification can
be obtained with the simultaneous use of HDD and CDD. Tükel et al. [50] performed the
climate classification of Turkey in terms of the thermo-economic perspective utilizing the
combination of DDM and MLM. Turkey’s 80 provinces were divided into five zones by
fuzzy c-means clustering technique based on DDs, thermal insulation, main wall com-
ponent, and fuel type. The results showed that 16 out of 80 provinces moved to a new
climatic zone when the suggested CZ was compared with the existing national thermal
zones. The new classification proved that Turkey’s present national CZB is insufficient,
particularly in mild regions with significant cooling demands. Verichev et al. [90] used
a combination of HDD with a climate severity index (CSI) to update the boundaries of
climate zones in the southern regions of Chile, where three climate zones were found. After,
the relative energy consumption of houses was examined for cooling and heating in the
summer and winter seasons. The investigation showed that the energy expenditures for
cooling the same house during the summer may vary by 50% within the boundaries of a
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single thermal zone. The question of whether using only the HDD method is adequate
was brought up by these substantial differences in the theoretical estimation of a building’s
energy consumption. Mazzaferro et al. [46] proposed a new climate zoning of Brazil. The
total number of methods used in this work was seven, the largest in this review. Among
other methods, the technique of enhanced DDs was proposed, where a DBT setpoint of
10 ◦C was used to determine DDs values. The DDs data were then divided into groups
using k-means clustering. There was a total of eight fixed clusters. The authors concluded
that the enhanced DDM presented considerable performance, even though it did not in-
volve building performance data in its application. However, the authors concluded that
the quality of CZ could be significantly improved by using a preliminary assessment of
zoning by building performance data.

The popularity of the DDM for CZB is partly related to its ease of understanding
and close connection with energy use, especially in cold regions [162]. DDM can provide
quality CZ for a range of applications due to its documented relationship to building energy
consumption. However, DDM operates primarily with outside AT alone, ignoring other
key climatic factors that affect a building’s energy consumption. Choosing the correct
base temperature is also crucial, as the incorrect base temperature will lead to inaccurate
DDs [173]. Bioclimatic comfort zones, as described in [80], can be used to determine the
base temperature. The DDM is the second most common method we found in CZB.

Building energy simulation (BES) has shown great potential when applied to CZB [24,25].
BES is a method of determining how a building and its components will behave in real-
world scenarios. This is accomplished by using a mathematical model that simulates
situations in a virtual environment. Within the framework of this review, the term is
understood as the energy consumption of a building in a given climate based on the
heating, cooling, and lighting loads. The climate classification procedure based on BES
consists of generating performance maps showing how a set of chosen indicators, such as
energy consumption or thermal comfort, vary throughout the territory (country or region)
for given archetype buildings, for a typical year of climatic data. These maps are produced
using building performance simulation results. The building performance is then linked to
each climatic zone under study [25]. The idea of using BES for CZB is that the performance
of a building model inside a single climate zone should stay essentially the same. BES is
less common than DDM, but becomes more widely used in CZB applications.

Shaan Cory et al. [42] proved that for better climate classification, data on the weather
and climate of the region are not enough. The authors noticed that sometimes when us-
ing external climate data for classifying climatic zones, buildings of different types could
be assigned to different climatic zones during the thermal simulation within the same
location. An adjustment to the traditional approach to climate classification for build-
ings was proposed. The authors used the climate indicator determined from the results
of simulations, which was simply a three-level definition of climate challenges of build-
ing: heating-dominated, cooling-dominated, or mixed heating- and cooling-dominated.
Thus, the refined classification was made based on the external climate characteristics
together with the reference thermal data of the building. The authors also noted that
buildings in cold regions could not be classified solely by using external climatic conditions.
Walsh et al. [25,32] used BES to validate the CZB produced by other methods and reduce
misclassification. The concept of the Percentage Misclassified Areas (PMA) was introduced,
which is based on the idea that each climatic zone should have its unique climate conditions,
which leads to a unique performance (cooling and heating energy demand) for a particular
type of building. By this, there should be no overlap observed in the building performance
of an identical building type placed in different zones. Results also showed the challenges
of developing CZ to address multiple building types, as each archetype showed particular
sensitivity to climate. Mazzaferro et al. [107] developed a data-driven CZ methodology
to increase the robustness of CZB. In this study, climatic zone validation was performed
by thermal loads of three different-sized office buildings as building performance indica-
tors. An assessment was performed by comparing building thermal load results within
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each climatic zone obtained by clustering climatic variables (DBT, RH, and GHI). It has
been proven that the utilization of BES results, data analysis, and CA methods can greatly
contribute to the development of CZ methodology. In 2020, in the development of their
previous study, the same team carried out work to determine the climatic zones of Brazil
for building energy-efficiency regulations [46]. Climate classification was performed with
known CZ methodologies (ASHRAE 169, Koppen-Geiger, Brazilian regulation method
NBR 15220, Roriz method) and alternative methods (data-driven, enhanced DD, and deci-
sion tree method) supported by building performance results. The authors concluded that
the quality of CZ could be greatly improved by using a preliminary assessment of zoning
by building performance data.

BES is currently regarded as the most accurate method for predicting thermal build-
ing performance and has demonstrated significant promise as a policy tool [174] when
applied to CZ, mainly through parametric analysis. Detailed climatic data and BES,
according to several sources, could aid in the construction of a more robust climatic
categorization [23,46,83,174]. However, there are certain limitations to its use in CZB,
such as the necessity to pre-define a design hypothesis that differs depending on building
type, occupational patterns, and HVAC systems. Furthermore, thorough meteorological
data are required, which are not always available for the locations of interest [41].

Many authors use the BES method to work on the topic of the impact of climate
change on buildings and CZB [89,98,111]. This is partly because simulations can be easily
used to gain insight into the future energy consumption of buildings and, based on that,
analyze the possible future climate zones. The data from future climate models can be
easily represented as future weather files. Different methodologies and software tools can
be applied [175,176]. These files are then used to simulate buildings under future scenarios.

The bioclimatic chart method (BCM) can also be used to change or create new CZ
classifications. The BC analysis usually leads to identifying the possibility of passive design
methods to preserve thermal comfort in outdoor spaces while also contributing to a more
energy-efficient built environment. BC usually depicts the combination of AT and RH at
any given time, so it becomes easier to analyze the climate features of a given location.
This paper includes Givoni [177,178], Lamberts [92], Milne [179], Olgyay [180], and other
psychometric chart methods in the BC category. Early attempts to develop concepts for
bioclimatic building design were made by Olgyay [180]. He conducted a study on the
influence of climate on building design concepts around the world and identified four
major climate groups: cool, temperate, hot and arid, and hot and humid. Human tolerance
ranges were also established from a BC using a combination of RH and DBT. In addition
to the average radiant temperature, wind speed and SR were taken into consideration. A
zone in the middle of a psychrometric chart established the range of conditions people
find comfortable in different situations. Milne and Givoni [179] developed BC based
on typical psychrometric charts frequently used to assess the characteristics of moist air.
Additionally, four main climate categories—hot, warm–temperate, cool–temperate, and
cold—were identified, along with eleven additional sub-climatic categories. The study
of the effects of the environment on occupant comfort and thermal adaptability showed
promising implications for the design of HVAC systems and the enhancement of building
energy-efficiency. Bodach [129] proposed a foundation for creating BC zones for building
design in Nepal. The psychrometric chart was used to identify passive design ideas for
each location using a BC approach. Finally, a summary of building design tactics that are
suited for the summer and winter in each zone was created. According to the authors,
to create more climate-responsive and energy-efficient buildings, planners and architects
can use proposed climate classification to make general judgments at an early design
stage. Additionally, it might help with the creation of proper building energy regulations.
The BCM, however, has some limitations because it only takes two climate variables into
account (AT and RH). Da Casa Martin [113] offered a way for creating a CZB based on
Givoni’s design principles for the Autonomous Community of Galicia (Spain), creating
general zoning between five geographical regions (CZ) with comparable behavior. New
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climate classification could give the designers knowledge of the techniques that can be
employed to establish direct recommendations and different bioclimatic strategies that can
be adopted to obtain more energy-efficient buildings. New climate classification based on
BCM and DB-HE-2013 code were compared to identify their similarities and differences,
finding that each should have its own specific applications.

Even though the primary goal of BCs is to provide comfortable indoor conditions
under thermal comfort requirements, a consequence of adopting BCM is an increase in the
building’s energy-efficiency due to reduced energy demand. Additionally, a significant
correlation is demonstrated between bioclimatic potential and annual building energy con-
sumption [48,83]. Nonetheless, several resources recommend utilizing BCM in conjunction
with BES [42,48,83,181] to produce secure results in terms of climatic zoning.

Köppen–Geiger method (KGM), as was mentioned, is one of the oldest and most
well-established methods. A monthly record of average AT and Pr data is the only need
for determining KG climatic zones. The elevational component can be taken into account
in some circumstances. The KG climate map of the world is constantly updated and
refined [78,102]. Based on a global data set of long-term monthly AT and Pr time series
data, Peel et al. [102] used the KG method to produce a new global climate map. Climate
variables were interpolated for each continent on a 0.1 × 0.1-degree grid. With each
variable being interpolated separately, the updated KG world climate map was produced
utilizing statistics from stations during their complete record period from 1951 to 2000.
Beck et al. [77] published updated global KG climate maps with a 1 km resolution for
current conditions (1980–2016) and predicted future climate change scenarios (2071–2100).
The current map was made using an ensemble of four high-resolution, spatially adjusted
climate maps. Particularly in regions with sharp spatial or elevation gradients, the new
maps offer far more detail and classification accuracy than prior ones. Not having an
unambiguous connection with CZB or energy-efficient CZ, the KGM is still used for these
purposes [99,100,103]. Pernigotto et al. [99,100] discussed the application of the KGM
with CA (HC) to address the issues of climate classification and representative climate
identification. Results were found to be similar to KG, but the proposed climatic categories
were fewer and more homogenous. Overall, KG improved by CA is intended to characterize
building performance under various climatic conditions, support the creation of national
or international energy policies, and give an analytical reference for CZ and the selection of
representative climates.

KGM can hardly be used for precisely characterizing the performance of energy-
efficiency measures for buildings. KGM alone does not allow for the accumulation of
accurate data needed to address the issue of CZB. Multiple sources compared the precision
of a KGM classification to that of a CA (k-means clustering) and BES, revealing that CA
and BES exceed traditional KG classification quality [72,74,75].

The climate severity index method (CSIM) is capable of characterizing climate sever-
ities; accordingly, there is a wide variety of approaches to the calculation of such in-
dices [182–184]. The core concept of CSI is that climate variables can be combined into
a single site-specific value that defines the severity of a specific climate. The data can
be examined like any other meteorological parameter to identify trends, develop sector-
specific applications, and examine climate patterns or individual seasons to put their
severity into context. Speaking of the CSI in this article, we mean the index used in the
practice of Spain [43] and Chile [122], which uses the HDD, CDD, hours of sunshine dura-
tion, and regression coefficients for calculation. Accordingly, the summer climate severity
(SCS) is determined using Equation (4), and winter climate severity (WCS) is defined by
Equation (5).

SCS = a·CDD20jun− sep + b·CDD20jun− sep2 + c (4)

WCS = a·HDD20oct−may + b
n
N

+ c·HDD20oct−may2 + d·
( n

N

)2
+ e (5)

where
CDD20(jun-sep)—the hourly sum of CDD (20 ◦C base temperature) from June to September;
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HDD20(oct-may)—the sum of HDD (20 ◦C base temperature) from October to May;
n—the sum of hours of sunshine duration from October to May;
N—the sum of maximum hours of sunshine duration for October through May;
a, b, c, d, e—the regression coefficients.
In this case, SCS and WCS were produced using absolute data on heating and cooling

energy consumption. The index of relative energy use for cooling and heating buildings
was then connected with the climate-related values of meteorological indicators. Since
CSIM is based on building energy consumption translated into conditional indices, it has a
certain potential and can be applied to CZB. It is easy to establish climatic severity indices
and classify the territory into climate zones using the simple formula, DD, and sunshine
duration. In general, the idea of utilizing a regression model based on a number of the most
crucial CZB characteristics, such as building energy consumption, DD, and SR, appears to
have the potential to be successful. However, it is difficult to adapt the strategy to other
regions outside of Spain because the calculation of the regression coefficients is still not
entirely clear.

Other methods. The climate classification methods found during the literature review
are not limited to the six methods described previously. Less popular techniques are the
IJM [118,144], the frequency distribution of climate variables (FDV) [88,121] the Mahoney
method (MM) [116,135], Thornthwaite climate classification (TCCM) [101], heating or
cooling index (HCIM) [84], Quitt’s climate classification [112], and existing building stock
performance (EBSM) [123,125].

As was previously stated, the issue of CZ has long been studied, initially predomi-
nantly for agricultural purposes and later for building and construction applications. In the
first half of the 20th century, building climatology was more responsible for weather protec-
tion and interior comfort provision rather than energy-efficiency. KGM and IJM, which used
a limited number of basic climate variables (AT and Pr), were then adequate [185]. Indeed,
these fundamental methods were limited in their ability to incorporate a large number of
climatic variables into the analysis and were far from establishing an obvious and under-
standable link between the variables and the energy usage of buildings. Later, during the
1970–1980s, a clear correlation was established between the main climate variables (mostly
AT and its various derivatives) and the energy consumption of buildings [168–171,186–188].
DDs, used alongside or sometimes replacing other climate variables, started to occupy one
of the leading places in CZB. At the same time, work began in the field of bioclimatic archi-
tecture, and BC were introduced [177,179]. In the early 1990s, CA was implemented in CZ
with PCA, hierarchical clustering, and artificial neural networks, which can be considered
as the beginning of a new stage in the development of CZB [95,119]. Over time, CA has
become one of the main methods in the study of CZ along with DDM [84,87,94,96,139].
Later, experiments started on the use of BES for CZB needs, and more MLM were incor-
porated into this field [42,174,189]. Since the 2010s, scientists’ enthusiasm for MLM and
BES has grown considerably. The possibilities of traditional and contemporary methods
were extensively compared. In this way, more recent MLM and BES were interpreted with
older KG, BCM, and DDM [23,25,46,100,101,103,107,122]. Recently, BES and MLM have
shown great potential when applied to CZB. In addition, the significance of using BES to
validate CZB was proved by several publications [23,25,46,79,83,104]. Overall, BES and
MLM methods are simple to implement and have shown to be reliable in defining CZ
by transitioning from a climate-based to a performance-based approach. Additionally, a
combination of approaches yields much better and more robust zoning classification results.
Any combination of DDM, BES, and MLM techniques is likely to be the most powerful,
efficient, and promising, delivering the most consistent results. It is reasonable to claim that
there is now a solid scientific basis for widely applying BES and MLM in official national
CZ codes and regulations. However, the presence of so many strategies indicates that there
is still no consensus about the optimal CZB strategy, emphasizing the importance of further
research work in this field.
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In the next section, we will support the findings of this review with bibliometrics
and bibliographic analysis, which aims to indicate substantially contributing nations,
affiliations, journals, authors, and connections among them. A network of keywords,
articles and overall link strength among publications will be discussed. We will present
the data step by step, most clearly reflecting the performance of research activities and
academic output in the CZB field.

9. Bibliometric Analysis

In this work, 98 (Scopus cited) articles were subjected to bibliometric analysis. To
identify the most significant affiliations or public organizations in a CZB research field and
their geographical location, a map (Figure 13) was formed which indicates the affiliations
in which the researchers are registered. The larger the mark on the map, the greater the
contribution (number of papers published). In addition, a list of affiliations that have three
or more publications in a CZB is shown; those 10 affiliations are marked on the map with
signatures. Among 98 publications, the largest number of publications (six each) belong
to authors from the University of Granada (Spain), Xi’an University of Architecture and
Technology (China), and the Austral University of Chile.
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The publications considered in this analysis had a total of 9696 citations in Scopus.
Excluding two highly cited papers [77,102] concerning KG climate classification, the average
citation per article of the remaining 96 articles is about 35. The top 10 most cited articles
from our list are shown in Table 5. The largest number of articles was published in Energy
Additionally, Buildings, Building and Environment (previously Building Science), and
Energy Conversion and Management (previously Energy Conversion) journals. The list
of the most significant journals is shown in Figure 14. There are eight most-contributing
authors (with four or more papers): Carpio [41,51,83,109,122]; Verichev [22,51,83,109,122];
Walsh [23–25,32,100]; Yang [35,52,71,84,87]; Zamorano [41,51,83,109]; Attia [7,49,80,106];
Cóstola [23–25,32]; and Labaki [23–25,32]. Figure 15 shows the top 20 most contributing
authors (with two or more published papers). Articles were also analyzed by citation
over time. A trend line and articles cited above the trend were determined (Figure 16).
This indicates an increased interest in particular articles [6,7,73,89,94,95,125,190] from the
scientific community.

Table 5. The most-cited publications in the review.

# Authors Title Year Journal Cited
by

Document
Type Reference

1 Peel M.C.
Updated world map of

the Köppen–Geiger
climate classification

2007
Hydrology and
Earth System

Sciences
5580 Article [102]

2 Beck H.E.

Present and future
Köppen–Geiger climate
classification maps at 1

km resolution

2018 Scientific Data 1091 Article [77]

3 Fovell R.G.

Climate zones of the
conterminous United
States defined using

cluster analysis

1993 Journal of
Climate 286 Article [95]

4 Unal Y.
Redefining the climate
zones of Turkey using

cluster analysis
2003

International
Journal of

Climatology
235 Article [94]

5 Wang H.

Impact of climate change
heating and cooling

energy use in buildings in
the United States

2014 Energy and
Buildings 193 Article [89]

6 Attia S.

Overview and future
challenges of nearly zero
energy buildings (nZEB)

design in Southern
Europe

2017 Energy and
Buildings 156 Article [7]

7 Sarricolea P. Climatic regionalisation
of continental Chile 2017 Journal of Maps 121 Article [73]

8 Asimakopoulos
D.A.

Modeling the energy
demand projection of the
building sector in Greece

in the 21st century

2012 Energy and
Buildings 115 Article [6]

9 Nguyen A.T.

An investigation on
climate responsive design

strategies of vernacular
housing in Vietnam

2011 Building and
Environment 88 Article [190]

10 Gangolells M.
Energy mapping of

existing building stock
in Spain

2016
Journal of
Cleaner

Production
79 Article [125]

Since the early days of bibliometric research, the concept of visualizing bibliometric
networks, often known as “science mapping” has gotten a lot of attention. Visualization is
an effective method for analyzing a wide range of bibliometric networks [68]. In the next
section, the results of performed bibliographic analysis will be provided.
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10. Bibliographic Analysis

Co-citation analysis in this review is represented by the co-citation networks of re-
searchers (Figure 17). To better perceive the visualization, the number of its nodes has
been reduced, and the top 36 authors out of 5036 who passed the threshold level with
the minimum number of citations of 15 were used for visualization. Each circle in the
visualization represents an author. The size of a circle reflects the number of citations an
author has received. Authors that are located close to each other in the visualization tend
to be more strongly related, based on co-citations rather than authors/journals that are
located far away from each other. Three clusters of most-cited authors are revealed.

1. Koppen, W.; Rubel, F.; and Kottek, M. are authors whose research topic is Köppen–
Geiger climate classification in the upper left area [78,191–194];

2. Santamouris, M.; Attia, S.; Givoni, B.; and Carlucci, S. are authors that publish articles
on the energy-efficiency of buildings, bioclimatic studies, and urban or local climate
zoning research in the upper right area (green cluster) [7,177,178,195–200];

3. Costola, D.; Labaki, L.C.; Carpio, M.; Verichev, K.; and Yang, L. are directly focused
on climate classification methods for buildings [16,23–25,32,41,51,83,84,90,122].

Additionally, the bibliographic coupling network of the top 100 authors (Figure 18)
was created by analogy with the bibliographic coupling network of journals. Here, the
closer two researchers are located to each other in the visualization, the more strongly they
are related to each other based on bibliographic coupling. In other words, researchers that
are located close to each other tend to cite the same publications. The network shows three
groups of closely related authors:

1. Yang, L. and Walsh, A;
2. Almeida, M., Attia, S., and Roshan, G.;
3. Carpio, M., Verichev, K., and Diaz Lopez, C.

A direct citation network (Figure 19) based on articles that have at least one citation
(90 out of 98) was constructed. We used normalized citations to correct the fact that
older documents have had more time to receive citations than more recent documents.
In VOSviewer the number of citations in a document is normalized by dividing it by
the average number of citations in all publications issued in the same year and used for
the VOSviewer files [70]. Using overlay visualization means that not only can a direct
indication of the relatedness of publications be recognized, but the papers that have a high



Buildings 2023, 13, 694 37 of 51

direct citation in this group of documents can be recognized, which indicates high interest
from researchers working at the moment.
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The network of co-occurrences of keywords has also been analyzed (Figure 20). The
main objective here was to obtain a sense of the terms that researchers used and to see
whether there were any new subtopics. Of 2433 keywords, 58 keywords that occurred
more than 10 times met the threshold and were used in the analysis. Keywords were
extracted from the title and abstract of publications. Here, the larger the circle, the more
often a keyword appears in the title, abstract, or keyword list of publications, and the closer
keywords are to each other in the network, the greater the frequency of co-occurrences
of the two terms in one publication. Using overlay visualization, the average publica-
tion year of each keyword can be recognized with a differentiation of colors from purple
for the average publication year around 2012 to yellow for 2018. The top three key-
words were: “buildings”, “energy efficiency”, and “climate change” with 31, 31, and 21
occurrences, respectively.
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Keyword analysis shows that in the area of energy-efficient buildings, the issue of
climate change is becoming quite important. To design energy-efficient and climate-resilient
buildings, it is critical to gain insights into the energy demand across the building’s service
life from the early design stage onwards. Thirteen articles connected with climate change
were found in the studied literature. However, in this article, we limit ourselves to specific
information. As it becomes trendy to incorporate climate change into CZB studies, a more
detailed review of this field may become the topic of our future publications. Here, we
only give information about the number of publications in this review concerning future
climate scenarios (Figure 21) and other details such as predicted period, climate model, and
scenario type (Table 6).
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Figure 21. Histogram of publications in this review concerning future climate scenarios.

In addition to the above-discussed map of affiliations or public organizations, the
bibliometric coupling network of countries is shown in Figure 22. However, unlike the
above-discussed map, which is based on the number of publications, Figure 22 is based on
bibliographic coupling information, which is, in general, an overlap in the reference lists of
publications. Here, the larger the number of references two countries have in common, the
stronger the bibliographic coupling relation between the countries. All 46 countries were
mapped. By analogy with the bibliographic coupling network of journals, here, each circle
represents a country. Large circles represent countries that have high normalized citation
weight, and small circles are countries with a low number of citations. Generally, the closer
two countries are placed in the visualization, the more closely they are connected based on
bibliographic coupling. A group of Spain, China, the US, Australia, and Chile has close
relations, with the strongest link between Spain and Chile.
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Table 6. Summary of papers for future climate scenarios.

Reference Country/Region Scenario Predicted
Period Climate Model Name Scenario

Type

[9] Entire
territory of Belgium Current/Future 2070–2098

EC-Earth driven CPM
for the Belgian domain

extended with
land-surface scheme

TERRA_URB

RCP 8.5

[10] Entire
territory of Iran Current/Future 2025, 2050,

and 2075
MAGICC and

SCENGEN

[97] World Current/Future 2081–2100

CCSM
CSIRO-Mk3.6.0
MPI-ESM-MR

GFDL-CM3
GISS-E2-R

IPSL-CM5A-LR
MRI-CGCM3
HadGEM2-ES

RCP8.5

[77] World Current/Future 2071–2100 CMIP5 32 climate
model projections RCP8.5

[103] World Current/Future 2015-2100

“SSP5-8.5” climate
change scenario,

created by the Institute
Pierre Simon Laplace

(IPSL)

SSP5-8.5

[109] Entire
territory of Spain Current/Future 2055

and 2085

RCP 4.5 and
RCP
8.5

[110] Entire
territory of Algeria Current/Future 2040

[111] Entire
territory of Belarus Current/Future

2021–2040,
2041–2060,
2061–2080,

and
2081–2099

92 regional circulation
model (RCM) from

EURO-CORDEX RCM
ensemble

RCP2.6,
RCP4.5, and

RCP8.5

[22] Entire
territory of Spain Current/Future 2055 and 2085 IPCC AR5 RCP2.6 and

RCP8.5

[6] Entire
territory of Greece Current/Future

2041–2050
and

2091–2100

IPCC AR5 12 different
regional climate

models of the
European ENSEMBLES

project

RCP2.6,
RCP4.5, and

RCP8.5

[40] Part of
Spain

(Andalu-
sia)

Current/Future 2050 and 2010
18 climate models

included in the 2007
IPCC report

A2 scenario of
the Special
Report on
Emissions
Scenarios

(SRES)

[89] Entire
territory of

United
States Future

2020,
2050, and

2080
HadCM3

RCP2.6,
RCP4.5, and

RCP8.5

[51] Part of Chile Future 2050–2065 IPCC AR5 RCP2.6 and
RCP8.5

11. Discussion

In this literature review, extensive detailed data were extracted from the available
documents regarding CZB. Publication years and their type, authors, country or region of
study, climate variables used, climate zoning methods used and their combinations, period
of climate observations, number of climate zones, and other pertinent details served as the
foundation for the subsequent analysis. Climate data sources and the period for climate
observations were also highlighted.

For the categorization of CZ variables and CZ methods, detailed criteria were estab-
lished. Ten major variables and the number of variables employed simultaneously for CZB
were found. As anticipated, AT was the most prevalent variable used alone or in combina-
tion with other variables (63.6%). AT and RH were the most often occurring combination of
variables across the articles reviewed. CZB employed two climatic variables simultaneously
in 29.3% of cases. The use of a single variable or a combination of three variables was



Buildings 2023, 13, 694 41 of 51

marginally less common, accounting for 28.3% and 22.2% of all cases, respectively. The use
of more than three variables simultaneously for climate categorization was uncommon.
In addition, when only one variable was used for zoning, DDs and TMY were the most
common options. AT and RH were the most prevalent pairing of two variables in CZB.
Typically, national meteorological services were the source of climate data. Less often
used, but still popular, were web databases and software applications such as EnergyPlus,
Autodesk Green Building Studio (GBS), and Meteonorm. Climate models were used in
6.7% of cases, basically for future climate scenarios. It is preferable to use contemporary
climate data (last 20–30 years) for appropriate climatic zoning due to climate change.

CZB is characterized by a wide variety of applied methods and not all of them are
directly related to building energy consumption. The twelve most commonly used methods
were identified. MLM, DDM, and BES were the three most popular approaches. Often,
only one method was used for CZ. One approach was used in 65% of cases, a combination
of two methods was used in 28%, and the simultaneous use of three or more approaches
was identified in 7% of cases. In addition, when only one method was used for CZB, the
most prevalent choices were MLM, DDM, BES, and BCM.

Given its primary advantages, MLM provides significant potential to go deeper into
the CZB and acquire more reliable, previously unavailable results. However, often, MLM is
supplemented with other approaches, such as BES, to generate more accurate results or to
evaluate them.

Due to its well-documented connection to building energy, DDM can offer high-quality
CZ for a variety of applications. However, DDM primarily uses the outside AT and ignores
other significant climatic variables that have an impact on a building’s energy use. It
should be underlined that the mean daily degree-hours technique is favored over all others
for more accurate DDs calculation if more comprehensive meteorological information
encompassing hourly outdoor AT of the chosen location is available.

BES is currently regarded as the most accurate method for predicting thermal building
performance and has demonstrated significant promise as a policy tool when applied
to CZB. Detailed climatic data and BES, according to several sources, could aid in the
construction of a more robust climatic categorization [23,46,83,174].

Multiple methods can be used simultaneously as a strategy to improve CZB or validate
its results. Any combinations based on DDM, BES, and MLM techniques tend to be the
most powerful, efficient, and promising, providing the most reliable results. The main
quality criteria of CZB assume that the energy consumption of one building archetype
within one climatic zone should be nearly identical.

The dynamics of climate change are forcing scientists to predict future climate con-
ditions and adapt buildings accordingly. To ensure the growth of a building stock that is
sustainable and resilient, it is crucial to design and construct buildings today that can take
on the dynamics of the environment during their entire life cycle. Several studies regarding
future climate scenarios in CZB were revealed [37,51,54,97,98,109,176]. In this review, 12%
of publications dealt with future climate zoning for buildings. BES can be easily used to
gain insight into the future energy consumption of buildings and, based on that, analyze
the possible future climate zones.

A bibliometric analysis was performed to support the main part of this review, which
made it possible to evaluate and analyze the performance of research activities in the
CZB field, including evaluating the scientific progress, recognizing the most authoritative
journals, and identifying significant scientific performers. This evaluation and analysis were
performed using bibliometric networks of co-citation, bibliographic coupling, keyword
co-occurrence, and co-authorship techniques.

12. Conclusions

The energy consumption of buildings is affected by environmental or climatic con-
ditions and varies with climate variability. Proper climate zoning is essential for most
building energy-efficiency policies, with great importance in meeting growth targets for
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energy security and reducing GHG emissions. Thus, consideration should be given to
the use of climatic zoning as a tool in the formulation of construction guidelines that
address the energy-efficiency of buildings. Most sectors are implementing stricter energy-
efficiency standards due to concerns over climate change and the diminishing availability
of natural resources; here, CZB should be an essential factor to take into account. The
ability to correctly categorize climates is fundamental to sustainable design, which can
reduce the need for heating and cooling by a significant amount. Defining zones not only
makes it possible to identify and mitigate the adverse impacts of climate on buildings
by specifying basic zonal construction criteria, but also makes it possible to support the
effective utilization of climate resources. Understanding the relationship between energy
conservation and climate conditions in buildings can be beneficial to the design of housing
that is climate-appropriate for a variety of geographical locations.

With this review, we set the goal of understanding at what level of scientific progress
the CZB is now, and whether there have been positive cardinal changes in the study of
climate zoning for buildings. We analyzed scientific publications in the field of CZB which
have already been put into practice or are just being developed. In the last 10 years, there
has been a significant increase in the number of publications on the CZB topic.

Now, climatic zoning approaches vary, and there is no “standard” strategy for CZB,
though several are generally recognized and used. At the current stage, two global climate
zoning systems are used for the needs of buildings and construction. The KG map is
popular among researchers but can be hardly used for characterizing the performance of
energy-efficiency measures for buildings. KG did not allow for the accumulation of accurate
data needed to address the issue of CZB. Multiple sources compared the precision of a KG
classification to that of an MLM and BES, revealing that ML and BES exceed traditional KG
classification quality [72,74,201]. The degree-day-based global map of ASHRAE Standard,
first presented in 2014, remains essentially the only solution providing data on climate
zones for buildings globally. It is worth noting that, based only on degree-days, the
ASHRAE map inherits its shortcomings, such as the use of outside AT and eliminating
other environmental variables that affect a building’s energy consumption. Additionally,
the usage of only seven main zones with rather wide intervals of degree-days can lead
to simplification of zoning. The use of more advanced zoning methods such as MLM or
BES is still limited to the territories of countries and continents [7,50,81,105]. The official
government standards for climate zoning, especially in developing countries, are very often
criticized by the scientific community for not being able to be used with high accuracy
and reliability [2,27,43,47,50,53,104,142]. The introduction of a standard global climate
zoning approach or map for energy-efficient buildings based on methods recognized as
the most effective among scientists could positively influence the problem of energy use in
buildings at the global level. This action currently appears to be reasonably realistic given
the sufficiency and quality of the available climatic data on a global scale.

It was revealed that BES and MLM have shown great potential when applied to climate
zoning. It is reasonable to claim that there is now a solid scientific basis for applying BES
and MLM for climate zoning needs. In addition, the significance of using BES to validate
climatic zoning for buildings was proved by several publications. Overall, BES and MLM
methods are simple to implement and have shown to be reliable in defining climate zones
by transitioning from a climate-based to a performance-based approach. Additionally, a
combination of approaches yields much better and more robust zoning classification results.
It can also be assumed that over the next decade, we might see the gradual introduction of
MLM and BES into the official standards of different countries, which could certainly have
a positive impact on the energy-efficiency of buildings in particular and may also have a
positive impact on the global climate change problem.

It is important to note that uncommon methods such as EBS and FDV can be used
to create new CZ or to amend and enhance existing CZ. The real energy consumption
of buildings in the EBS approach is very useful information that can help to understand
how certain aspects (including climate) affect a building’s final energy consumption. How-
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ever, there are no publications to date that compare these methods to others to assess
their quality.

Although the problem of studying climate and its classification is location-oriented,
none of the found sources use the principles of spatial analysis or did not mention it. Spatial
analysis has become a standard in many research areas (such as epidemiology, sociology,
ecology, and tourism), but this has yet to be applied in the field of CZB. The role of the
spatial aspect in CZB research is underestimated, and the understanding of the working
and representation of space, spatial patterns, and processes is limited. One of the strongest
future improvements in the field is the recognition of the spatial component in CZB, which
has the potential to be favorable and is predicted to produce results that are more accurate
and robust.
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Al Altitude
AP Atmospheric Pressure
ASHRAE The American Society of Heating, Refrigerating, and Air-Conditioning Engineers
AT Air Temperature
BCM Bioclimatic Charts Method
BES Building Energy Simulation
CA Cluster Analysis
CSIM Climate Severity Index Method
CDD Cooling Degree-Day
CDH Cooling Degree-Hour
CZ Climatic Zoning
CZB Climatic Zoning For Buildings
DBT Dry-Bulb Temperature
DDs Degree-Days
DHs Degree-Hours
DDM Degree-Days Methods
EBSM Existing Building Stock Performance Method
FDV A Frequency Distribution Of Climate Variables
GHG Greenhouse Gas
GHI Global Horizontal Irradiation
HCI Heating Or Cooling Index
HC Hierarchical Clustering
HDD Heating Degree-Day
HDH Heating Degree-Hour
HVAC Heating, Ventilation, and Air-Conditioning Systems
IJM Interval Judgment Method
IPCC Intergovernmental Panel on Climate Change
KG Köppen–Geiger
KGM Köppen–Geiger Method
LCZ Local Climate Zoning
ML Machine Learning
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MLM Machine Learning Methods
MM Mahoney Method
PCA Principal Component Analysis
PMA Percentage Misclassified Areas
Pr Precipitation
PW The Pressure of Water Vapor
RCP Representative Concentration Pathway
RH Relative Humidity
SR Solar Radiation
TCCM Thornthwaite Climate Classification Method
TMY Typical Meteorological Year
W Wind
WBT Wet-Bulb Temperature

References
1. Li, D.H.W.; Yang, L.; Lam, J.C. Impact of climate change on energy use in the built environment in different climate zones—A

review. Energy 2012, 42, 103–112. [CrossRef]
2. van Ruijven, B.J.; De Cian, E.; Wing, I.S. Amplification of future energy demand growth due to climate change. Nat. Commun.

2019, 10, 2762. [CrossRef]
3. UN Environment Programme. Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and

Resilient Buildings and Construction Sector, Global Status Report. Available online: https://globalabc.org/sites/default/files/20
22-11/FULL%20REPORT_2022%20Buildings-GSR_1.pdf (accessed on 1 May 2022).

4. IEA. Perspectives for the Clean Energy Transition. The Critical Role of Buildings. 2019. Available online: https://www.iea.org/
reports/the-critical-role-of-buildings (accessed on 1 May 2022).

5. Tootkaboni, M.P.; Ballarini, I.; Corrado, V. Analysing the future energy performance of residential buildings in the most populated
Italian climatic zone: A study of climate change impacts. Energy Rep. 2021, 7, 8548–8560. [CrossRef]

6. Asimakopoulos, D.A.; Santamouris, M.; Farrou, I.; Laskari, M.; Saliari, M.; Zanis, G.; Giannakidis, G.; Tigas, K.; Kapsomenakis, J.;
Douvis, C.; et al. Modelling the energy demand projection of the building sector in Greece in the 21st century. Energy Build. 2012,
49, 488–498. [CrossRef]

7. Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al.
Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155,
439–458. [CrossRef]

8. Bell, N.O.; Bilbao, J.I.; Kay, M.; Sproul, A.B. Future climate scenarios and their impact on heating, ventilation and air-conditioning
system design and performance for commercial buildings for 2050. Renew. Sustain. Energy Rev. 2022, 162, 112363. [CrossRef]

9. Ramon, D.; Allacker, K.; De Troyer, F.; Wouters, H.; van Lipzig, N.P.M. Future heating and cooling degree days for Belgium under
a high-end climate change scenario. Energy Build. 2020, 216, 109935. [CrossRef]

10. Roshan, G.; Orosa, J.A.; Nasrabadi, T. Simulation of climate change impact on energy consumption in buildings, case study of
Iran. Energy Policy 2012, 49, 731–739. [CrossRef]

11. Li, L.; Sun, W.; Hu, W.; Sun, Y. Impact of natural and social environmental factors on building energy consumption: Based on
bibliometrics. J. Build. Eng. 2021, 37, 102136. [CrossRef]

12. Santamouris, M. Green commercial buildings save energy. Nat. Sustain. 2018, 1, 613–614. [CrossRef]
13. WHO. Housing and Health Guidelines. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/276001/978

9241550376-eng.pdf (accessed on 22 June 2022).
14. IEA. Electricity Market Report. July 2022—Update. Available online: https://www.iea.org/reports/electricity-market-report-

july-2022/executive-summary (accessed on 25 August 2022).
15. Bohne, R.A.; Huang, L.; Lohne, J. A global overview of residential building energy consumption in eight climate zones. Int. J.

Sustain. Build. Technol. Urban Dev. 2016, 7, 38–51. [CrossRef]
16. Verichev, K.; Zamorano, M.; Salazar-Concha, C.; Carpio, M. Analysis of Climate-Oriented Researches in Building. Appl. Sci. 2021,

11, 3251. [CrossRef]
17. De Silva, M.N.; Sandanayake, Y.G. Building energy consumption factors: A literature review and future research agenda. In

World Construction Conference 2012—Global Challenges in Construction Industry; University of Moratuwa: Colombo, Sri Lanka, 2012.
18. Inambao, A.I.F. Review of Factors Affecting Energy Efficiency in Commercial Buildings. Int. J. Mech. Eng. Technol. 2019, 10,

232–244.
19. Torres, M.G.; Pérez-Lombard, L.; Coronel, J.; Maestre, I.; Yan, D. A review on buildings energy information: Trends, end-uses,

fuels and drivers. Energy Rep. 2022, 8, 626–637. [CrossRef]
20. Fathi, A.; El Bakkush, A.; Bondinuba, F.; Harris, D. The Effect of Outdoor Air Temperature on the Thermal Performance of a

Residential Building. J. Multidiscip. Eng. Sci. Technol. 2015, 2, 3159–3240.
21. Li, M.; Shi, J.; Guo, J.; Cao, J.; Niu, J.; Xiong, M. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings.

PLoS ONE 2015, 10, e0124413. [CrossRef]

http://doi.org/10.1016/j.energy.2012.03.044
http://doi.org/10.1038/s41467-019-10399-3
https://globalabc.org/sites/default/files/2022-11/FULL%20REPORT_2022%20Buildings-GSR_1.pdf
https://globalabc.org/sites/default/files/2022-11/FULL%20REPORT_2022%20Buildings-GSR_1.pdf
https://www.iea.org/reports/the-critical-role-of-buildings
https://www.iea.org/reports/the-critical-role-of-buildings
http://doi.org/10.1016/j.egyr.2021.04.012
http://doi.org/10.1016/j.enbuild.2012.02.043
http://doi.org/10.1016/j.enbuild.2017.09.043
http://doi.org/10.1016/j.rser.2022.112363
http://doi.org/10.1016/j.enbuild.2020.109935
http://doi.org/10.1016/j.enpol.2012.07.020
http://doi.org/10.1016/j.jobe.2020.102136
http://doi.org/10.1038/s41893-018-0177-y
https://apps.who.int/iris/bitstream/handle/10665/276001/9789241550376-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/276001/9789241550376-eng.pdf
https://www.iea.org/reports/electricity-market-report-july-2022/executive-summary
https://www.iea.org/reports/electricity-market-report-july-2022/executive-summary
http://doi.org/10.1080/2093761X.2016.1167642
http://doi.org/10.3390/app11073251
http://doi.org/10.1016/j.egyr.2021.11.280
http://doi.org/10.1371/journal.pone.0124413


Buildings 2023, 13, 694 45 of 51

22. Díaz-López, C.; Verichev, K.; Holgado-Terriza, J.A.; Zamorano, M. Evolution of climate zones for building in Spain in the face of
climate change. Sustain. Cities Soc. 2021, 74, 103223. [CrossRef]

23. Walsh, A.; Cóstola, D.; Labaki, L.C. Comparison of three climatic zoning methodologies for building energy efficiency applications.
Energy Build. 2017, 146, 111–121. [CrossRef]

24. Walsh, A.; Cóstola, D.; Labaki, L.C. Review of methods for climatic zoning for building energy efficiency programs. Build. Environ.
2017, 112, 337–350. [CrossRef]

25. Walsh, A.; Cóstola, D.; Labaki, L.C. Performance-based validation of climatic zoning for building energy efficiency applications.
Appl. Energy 2018, 212, 416–427. [CrossRef]

26. Butera, F.; Aste, N.; Adhikari, R. Sustainable Building Design for Tropical Climates; United Nations Human Settlements Programme
(UN-Habitat): Nairobi, Kenya, 2015.

27. Xiong, J.; Yao, R.; Grimmond, S.; Zhang, Q.; Li, B. A hierarchical climatic zoning method for energy efficient building design
applied in the region with diverse climate characteristics. Energy Build. 2019, 186, 355–367. [CrossRef]

28. Wang, R.; Lu, S.; Feng, W.; Zhai, X.; Li, X. Sustainable framework for buildings in cold regions of China considering life cycle cost
and environmental impact as well as thermal comfort. Energy Rep. 2020, 6, 3036–3050. [CrossRef]

29. Rahman, M. Impact of Climatic Zones of Bangladesh on Office Building Energy Performance. J. Build. Sustain. 2018, 1, 55–63.
30. Albogami, S.; Boukhanouf, R. Residential building energy performance evaluation for different climate zones. IOP Conf. Ser.

Earth Environ. Sci. 2019, 329, 012026. [CrossRef]
31. Chen, X.; Yang, H. Integrated energy performance optimization of a passively designed high-rise residential building in different

climatic zones of China. Appl. Energy 2018, 215, 145–158. [CrossRef]
32. Walsh, A.; Cóstola, D.; Labaki, L.C. Validation of the climatic zoning defined by ASHRAE standard 169-2013. Energy Policy 2019,

135, 111016. [CrossRef]
33. Khambadkone, N.K.; Jain, R. A bioclimatic analysis tool for investigation of the potential of passive cooling and heating strategies

in a composite Indian climate. Build. Environ. 2017, 123, 469–493. [CrossRef]
34. Wang, R.; Lu, S. A novel method of building climate subdivision oriented by reducing building energy demand. Energy Build.

2020, 216, 109999. [CrossRef]
35. Bai, L.; Yang, L.; Song, B.; Liu, N. A new approach to develop a climate classification for building energy efficiency addressing

Chinese climate characteristics. Energy 2020, 195, 116982. [CrossRef]
36. López-Ochoa, L.M.; Las-Heras-Casas, J.; López-González, L.M.; Olasolo-Alonso, P. Environmental and energy impact of the

EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain. Energy 2018, 161, 618–634. [CrossRef]
37. Yang, Y.; Javanroodi, K.; Nik, V.M. Climate change and energy performance of European residential building stocks—A

comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment. Appl.
Energy 2021, 298, 117246. [CrossRef]

38. William, M.A.; Suárez-López, M.J.; Soutullo, S.; Fouad, M.M.; Hanafy, A.A. Enviro-economic assessment of buildings decar-
bonization scenarios in hot climates: Mindset toward energy-efficiency. Energy Rep. 2022, 8, 172–181. [CrossRef]

39. Benevides, M.N.; Teixeira, D.B.D.S.; Carlo, J.C. Climatic zoning for energy efficiency applications in buildings based on multivari-
ate statistics: The case of the Brazilian semiarid region. Front. Archit. Res. 2022, 11, 161–177. [CrossRef]

40. Bienvenido-Huertas, D.; Marín-García, D.; Carretero-Ayuso, M.J.; Rodríguez-Jiménez, C.E. Climate classification for new and
restored buildings in Andalusia: Analysing the current regulation and a new approach based on k-means. J. Build. Eng. 2021,
43, 102829. [CrossRef]

41. Carpio, M.; Jódar, J.; Rodíguez, M.L.; Zamorano, M. A proposed method based on approximation and interpolation for
determining climatic zones and its effect on energy demand and CO2 emissions from buildings. Energy Build. 2015, 87, 253–264.
[CrossRef]

42. Cory, S.; Lenoir, A.; Donn, M.; Garde, F. Formulating a building climate classification method. In Proceedings of the 12th
Conference of International Building Performance Simulation Association Building Simulation 2011, BS 2011, Sydney, NSW,
Australia, 14–16 November 2011; pp. 1662–1669.

43. de la Flor, F.J.S.; Domínguez, S.A.; Félix, J.L.M.; Falcón, R.G. Climatic zoning and its application to Spanish building energy
performance regulations. Energy Build. 2008, 40, 1984–1990. [CrossRef]

44. Deng, X.; Tan, Z.; Tan, M.; Chen, W. A clustering-based climatic zoning method for office buildings in China. J. Build. Eng. 2021,
42, 102778. [CrossRef]

45. Jain, K.; Gupta, G.; Verma, K.K.; Agarwal, A. Climatic Classification of India for Building Design Using Data Analytics. Natl.
Acad. Sci. Lett. 2022, 45, 235–239. [CrossRef]

46. Mazzaferro, L.; Machado, R.M.S.; Melo, A.P.; Lamberts, R. Do we need building performance data to propose a climatic zoning
for building energy efficiency regulations? Energy Build. 2020, 225, 110303. [CrossRef]

47. Moral, F.J.; Pulido, E.; Ruíz, A.; López, F. Climatic zoning for the calculation of the thermal demand of buildings in Extremadura
(Spain). Theor. Appl. Climatol. 2017, 129, 881–889. [CrossRef]

48. Kishore, K.N.; Rekha, J. A bioclimatic approach to develop spatial zoning maps for comfort, passive heating and cooling strategies
within a composite zone of India. Build. Environ. 2018, 128, 190–215. [CrossRef]

49. Roshan, G.; Farrokhzad, M.; Attia, S. Climatic clustering analysis for novel atlas mapping and bioclimatic design recommendations.
Indoor Built Environ. 2021, 30, 313–333. [CrossRef]

http://doi.org/10.1016/j.scs.2021.103223
http://doi.org/10.1016/j.enbuild.2017.04.044
http://doi.org/10.1016/j.buildenv.2016.11.046
http://doi.org/10.1016/j.apenergy.2017.12.044
http://doi.org/10.1016/j.enbuild.2019.01.005
http://doi.org/10.1016/j.egyr.2020.10.023
http://doi.org/10.1088/1755-1315/329/1/012026
http://doi.org/10.1016/j.apenergy.2018.01.099
http://doi.org/10.1016/j.enpol.2019.111016
http://doi.org/10.1016/j.buildenv.2017.07.023
http://doi.org/10.1016/j.enbuild.2020.109999
http://doi.org/10.1016/j.energy.2020.116982
http://doi.org/10.1016/j.energy.2018.07.104
http://doi.org/10.1016/j.apenergy.2021.117246
http://doi.org/10.1016/j.egyr.2022.05.164
http://doi.org/10.1016/j.foar.2021.08.003
http://doi.org/10.1016/j.jobe.2021.102829
http://doi.org/10.1016/j.enbuild.2014.11.041
http://doi.org/10.1016/j.enbuild.2008.05.006
http://doi.org/10.1016/j.jobe.2021.102778
http://doi.org/10.1007/s40009-022-01109-7
http://doi.org/10.1016/j.enbuild.2020.110303
http://doi.org/10.1007/s00704-016-1815-9
http://doi.org/10.1016/j.buildenv.2017.11.029
http://doi.org/10.1177/1420326X19888572


Buildings 2023, 13, 694 46 of 51

50. Tükel, M.; Tunçbilek, E.; Komerska, A.; Keskin, G.A.; Arıcı, M. Reclassification of climatic zones for building thermal regulations
based on thermoeconomic analysis: A case study of Turkey. Energy Build. 2021, 246, 111121. [CrossRef]

51. Verichev, K.; Zamorano, M.; Carpio, M. Effects of climate change on variations in climatic zones and heating energy consumption
of residential buildings in the southern Chile. Energy Build. 2020, 215, 109874. [CrossRef]

52. Yang, L.; Lyu, K.; Li, H.; Liu, Y. Building climate zoning in China using supervised classification-based machine learning. Build.
Environ. 2020, 171, 106663. [CrossRef]

53. Zeleke, B.; Kumar, M.; Rajasekar, E. A Novel Building Performance Based Climate Zoning for Ethiopia. Front. Sustain. Cities 2022,
4, 3. [CrossRef]

54. Andric, I.; Al-Ghamdi, S.G. Climate change implications for environmental performance of residential building energy use: The
case of Qatar. Energy Rep. 2020, 6, 587–592. [CrossRef]

55. Awadh, O. Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. J. Build. Eng.
2017, 11, 25–29. [CrossRef]

56. Rezaallah, A.; Bolognesi, C.; Khoraskani, R.A. LEED and BREEAM; Comparison between policies, assessment criteria and
calculation methods. In Proceedings of the 1st International Conference on Building Sustainability Assessment (BSA 2012), Porto,
Portugal, 23–25 May 2012.

57. Sanderson, M. The Classification of Climates from Pythagoras to Koeppen. Bull. Am. Meteorol. Soc. 1999, 80, 669–673. [CrossRef]
58. Oliver, J. The history, status and future of climatic classification. Phys. Geogr. 2013, 12, 231–251. [CrossRef]
59. Robinson, A.H.; Wallis, H.M. Humboldt’s Map of Isothermal Lines: A Milestone in Thematic Cartography. Cartogr. J. 1967, 4,

119–123. [CrossRef]
60. Construction Committee of the Russian Soviet Federative Socialist Republic. Rules and Regulations for the Development of Populated

Areas, Design and Construction of Buildings and Structures; State Technical Publishing House: Moscow, Russia, 1930.
61. National Building Code: 1941; National Research Council of Canada: Ottawa, ON, Canada, 1941.
62. American Society of Heating, Engineers. ASHRAE Standard 90-75: Energy Conservation in New Building Design; American Society

of Heating, Refrigerating, and Air-Conditioning Engineers, Incorporated. 1975. Available online: https://www.ojp.gov/ncjrs/
virtual-library/abstracts/energy-conservation-new-building-design-impact-assessment-ashrae (accessed on 20 July 2022).

63. Laustsen, J. Energy Efficiency Requirements in Building Codes: Policies for New Buildings; International Energy Agency (IEA): Paris,
France, 2008.

64. Moral-Munoz, J.A.; López-Herrera, A.G.; Herrera-Viedma, E.; Cobo, M.J. Science Mapping Analysis Software Tools: A Review.
In Springer Handbook of Science and Technology Indicators; Glänzel, W., Moed, H.F., Schmoch, U., Thelwall, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 159–185.

65. Small, H.G. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci.
1973, 24, 265–269. [CrossRef]

66. Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [CrossRef]
67. Glänzel, W. National characteristics in international scientific co-authorship relations. Scientometrics 2001, 51, 69–115. [CrossRef]
68. van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y.,

Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320.
69. Selek, B.; Tuncok, I.K.; Selek, Z. Changes in climate zones across Turkey. J. Water Clim. Chang. 2018, 9, 178–195. [CrossRef]
70. van Eck, N.J.; Waltman, L.R. VOS Viewer: A Computer Program for Bibliometric Mapping; Research Paper, 01/01; Erasmus Research

Institute of Management (ERIM), ERIM Is the Joint Research Institute of the Rotterdam School of Management; Erasmus
University and the Erasmus School of Economics (ESE) at Erasmus Uni: Rotterdam, The Netherlands, 2009.

71. Shi, J.; Yang, L. A climate classification of China through k-nearest-neighbor and sparse subspace representation. J. Clim. 2020, 33,
243–262. [CrossRef]

72. Zscheischler, J.; Mahecha, M.D.; Harmeling, S. Climate classifications: The value of unsupervised clustering. In Proceedings of
the 12th Annual International Conference on Computational Science, ICCS 2012, Omaha, NB, USA, 4–6 June 2012; pp. 897–906.

73. Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73.
[CrossRef]

74. Praene, J.P.; Malet-Damour, B.; Radanielina, M.H.; Fontaine, L.; Rivière, G. GIS-based approach to identify climatic zoning: A
hierarchical clustering on principal component analysis. Build. Environ. 2019, 164, 106330. [CrossRef]

75. Netzel, P.; Stepinski, T. On using a clustering approach for global climate classification. J. Clim. 2016, 29, 3387–3401. [CrossRef]
76. Mahmoud, A.H.A. An analysis of bioclimatic zones and implications for design of outdoor built environments in Egypt. Build.

Environ. 2011, 46, 605–620. [CrossRef]
77. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate

classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [CrossRef]
78. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z.

2006, 15, 259–263. [CrossRef]
79. D’Amico, A.; Ciulla, G.; Panno, D.; Ferrari, S. Building energy demand assessment through heating degree days: The importance

of a climatic dataset. Appl. Energy 2019, 242, 1285–1306. [CrossRef]
80. Roshan, G.R.; Farrokhzad, M.; Attia, S. Defining thermal comfort boundaries for heating and cooling demand estimation in Iran’s

urban settlements. Build. Environ. 2017, 121, 168–189. [CrossRef]

http://doi.org/10.1016/j.enbuild.2021.111121
http://doi.org/10.1016/j.enbuild.2020.109874
http://doi.org/10.1016/j.buildenv.2020.106663
http://doi.org/10.3389/frsc.2022.684148
http://doi.org/10.1016/j.egyr.2019.09.030
http://doi.org/10.1016/j.jobe.2017.03.010
http://doi.org/10.1175/1520-0477(1999)080&lt;0669:TCOCFP&gt;2.0.CO;2
http://doi.org/10.1080/02723646.1991.10642430
http://doi.org/10.1179/caj.1967.4.2.119
https://www.ojp.gov/ncjrs/virtual-library/abstracts/energy-conservation-new-building-design-impact-assessment-ashrae
https://www.ojp.gov/ncjrs/virtual-library/abstracts/energy-conservation-new-building-design-impact-assessment-ashrae
http://doi.org/10.1002/asi.4630240406
http://doi.org/10.1002/asi.5090140103
http://doi.org/10.1023/A:1010512628145
http://doi.org/10.2166/wcc.2017.121
http://doi.org/10.1175/JCLI-D-18-0718.1
http://doi.org/10.1080/17445647.2016.1259592
http://doi.org/10.1016/j.buildenv.2019.106330
http://doi.org/10.1175/JCLI-D-15-0640.1
http://doi.org/10.1016/j.buildenv.2010.09.007
http://doi.org/10.1038/sdata.2018.214
http://doi.org/10.1127/0941-2948/2006/0130
http://doi.org/10.1016/j.apenergy.2019.03.167
http://doi.org/10.1016/j.buildenv.2017.05.023


Buildings 2023, 13, 694 47 of 51

81. Tsikaloudaki, K.; Laskos, K.; Bikas, D. On the establishment of climatic zones in Europe with regard to the energy performance of
buildings. Energies 2012, 5, 32–44. [CrossRef]

82. Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A. Development of climatic zones and passive solar
design in Madagascar. Energy Convers. Manag. 2009, 50, 1004–1010. [CrossRef]

83. Verichev, K.; Zamorano, M.; Carpio, M. Assessing the applicability of various climatic zoning methods for building construction:
Case study from the extreme southern part of Chile. Build. Environ. 2019, 160, 106165. [CrossRef]

84. Wan, K.K.W.; Li, D.H.W.; Yang, L.; Lama, J.C. Climate classifications and building energy use implications in China. Energy Build.
2010, 42, 1463–1471. [CrossRef]

85. Pusat, S.; Ekmekci, I. A study on degree-day regions of Turkey. Energy Effic. 2016, 9, 525–532. [CrossRef]
86. Bawaneh, K.; Overcash, M.; Twomey, J. Climate zones and the influence on industrial nonprocess energy consumption. J. Renew.

Sustain. Energy 2011, 3, 063113. [CrossRef]
87. Lau, C.C.S.; Lam, J.C.; Yang, L. Climate classification and passive solar design implications in China. Energy Convers. Manag.

2007, 48, 2006–2015. [CrossRef]
88. Khedari, J.; Sangprajak, A.; Hirunlabh, J. Thailand climatic zones. Renew. Energy 2002, 25, 267–280. [CrossRef]
89. Wang, H.; Chen, Q. Impact of climate change heating and cooling energy use in buildings in the United States. Energy Build. 2014,

82, 428–436. [CrossRef]
90. Verichev, K.; Salimova, A.; Carpio, M. Thermal and climatic zoning for construction in the southern part of Chile. Adv. Sci. Res.

2018, 15, 63–69. [CrossRef]
91. Singh, M.K.; Mahapatra, S.; Atreya, S.K. Development of bio-climatic zones in north-east India. Energy Build. 2007, 39, 1250–1257.

[CrossRef]
92. Lamberts, R.; Roriz, M.; Ghisi, E. Bioclimatic zoning of Brazil: A proposal based on the givoni and mohoney methods. In

Proceedings of the Sustaining the Future: Energy, Ecology, Architecture: Plea ′99—The 16th International Conference Plea
(Passive & Low Energy Architecture), Brisbane, Australia, 22–24 September 1999.

93. Erell, E.; Portnov, B.; Etzion, Y. Mapping the potential for climate-conscious design of buildings. Build. Environ. 2003, 38, 271–281.
[CrossRef]

94. Unal, Y.; Kindap, T.; Karaca, M. Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol. 2003, 23, 1045–1055.
[CrossRef]

95. Fovell, R.G.; Fovell, M.Y.C. Climate zones of the conterminous United States defined using cluster analysis. J. Clim. 1993, 6,
2103–2135. [CrossRef]

96. Alrashed, F.; Asif, M. Climatic Classifications of Saudi Arabia for Building Energy Modelling. In Proceedings of the 7th
International Conference on Applied Energy, ICAE 2015, Abu Dhabi, United Arab Emirates, 28–31 March 2015; pp. 1425–1430.

97. Falquina, R.; Gallardo, C. Development and application of a technique for projecting novel and disappearing climates using
cluster analysis. Atmos. Res. 2017, 197, 224–231. [CrossRef]

98. Chen, Y.; Li, M.; Cao, J.; Cheng, S.; Zhang, R. Effect of climate zone change on energy consumption of office and residential
buildings in China. Theor. Appl. Climatol. 2021, 144, 353–361. [CrossRef]

99. Pernigotto, G.; Gasparella, A. Classification of European Climates for Building Energy Simulation Analyses. In Proceedings of
the International Conference on High Performance, Tokyo, Japan, 28–31 January 2018.

100. Pernigotto, G.; Walsh, A.; Gasparella, A.; Hensen, J.L.M. Clustering of European climates and representative climate identification
for building energy simulation analyses. In Proceedings of the 16th International Conference of the International Building
Performance Simulation Association, Building Simulation, Rome, Italy, 2–4 September 2019; Volume 2019, pp. 4833–4840.

101. Aparecido, L.E.O.; Rolim, G.S.; Richetti, J.; de Souza, P.S.; Johann, J.A. Köppen, Thornthwaite and Camargo climate classifications
for climatic zoning in the State of Paraná, Brazil. Cienc. Agrotecnol. 2016, 40, 405–417. [CrossRef]

102. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst.
Sci. 2007, 11, 1633–1644. [CrossRef]
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