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Abstract: This study examines the mortar materials used in the construction of the walls at the
Archaeological Roman Fortification site (Ovidiu, Romania) on the shore of Siutghiol Lake. Several
analyses were conducted to determine the mortars’ basic physical properties, mineralogical compo-
sition, and microstructural characteristics in order to describe the mortars used in the construction
of the Roman fortress. The investigation utilized X-ray diffraction (XRD), energy dispersive X-ray
fluorescence spectroscopy (XRF), scanning electron microscopy (SEM-EDAX), and differential thermal
analysis (TGA-DTA). The results indicated that siliceous aggregates and lime binders were used in
the production of the studied mortars, the structure was constructed in the sixth century, and the
raw materials used to construct the site are of local origin. Using the methods mentioned above,
there is the possibility of recreating the fortification’s mortar formula using contemporary materials
and recommending intervention materials for the preservation of the archaeology of the Roman
Fortification. Furthermore, this study opens up many other research opportunities regarding the
reuse of mortars extracted from archaeological sites in the rehabilitation process by integrating them
into new mortar recipes that can then be tested to compare the results with those obtained from
standardized recipes.

Keywords: lime mortars; mineralogy; X-ray diffraction; XRF; SEM; archaeology

1. Introduction

Archeological sites and ancient buildings are critical components in the urban planning
process. They serve as a testament to our history and cultural heritage, and thus must be
carefully preserved. The process of restoring these structures requires not just physical
labor, but also knowledge and research in selecting the most suitable materials for repair.
The use of genuine traditional materials is crucial in maintaining the authenticity and
uniqueness of the original structure. This is especially true in the case of ancient Roman
structures, where the use of original Roman mortar is considered essential in preserving
the historical significance of these buildings. It is important to remember that while the
purpose of restoration may be to make these buildings usable again, the priority should
always be to preserve their cultural and historical significance.

Cultural heritage, especially that located on archaeological sites, is of utmost im-
portance, as is the appropriate preservation of ancient structures. In most cases, during
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restoration works on buildings that are part of archaeological sites, the existing materials
that are removed from the existing structures represent waste that is not reused, thus
contributing to an increase in pollution. A sustainable solution would be to find a way
to efficiently reuse these wastes obtained from old materials extracted from construc-
tion parts by incorporating all or part of them in new materials used for archaeological
site restoration.

Important steps must be taken to preserve cultural assets for future generations,
and these include the preservation of heritage. This includes rendering interventions and
understanding the type of binder used in the ancient mortar, allowing the material specialist
to make the best decisions about the development of appropriate mortars for historical
preservation [1].

In contrast to their modern counterparts, ancient Roman mortars have withstood a
variety of climates, seismic zones, and even direct contact with seawater. Due to their
demonstrated lifespan on the order of millennia, these ancient building materials are
intriguing model systems for the creation of sustainable, long-lasting materials for modern
engineering applications [2].

This can be achieved through a good knowledge of the recipes used to make the
material applied in the restoration process and of its characteristics, as well as of the
building materials that are part of the recipe and how they interact with each other, in order
to determine to what extent the recipe can be modified without significantly influencing
the final properties of the material.

Moreover, in the current context, having the most in-depth knowledge of the com-
position of the materials that were used to make the constructions that are present in
the archaeological sites can be very useful in trying to improve the recipes so that they
are less harmful to the environment and, therefore, consume less energy for production.
This can be done by introducing fractions of recycled material into the composition of the
mortar as a substitute for the aggregates and the binder, but without significantly affecting
its performance.

Mortars are composite geomaterials (i.e., geological materials or materials derived
from technical transformations of geological materials) made up of aggregates, additives
that react with the hydraulic or aerial binder, and the binder itself, which undergoes
changes during setting [3,4].

In general, mortars are made up of a combination of aggregates and binders that are
unique to the structure’s location and the historical setting in which they were created [5–7].

The study of mortars provides information on raw materials, their origin, and manu-
facturing procedures [8]. Using the characteristics of the mortars, it is possible to determine
the historical sequences of the building [9–11] and the ages of the structures themselves [12].

Mortars are also valuable for the restoration and upkeep of ancient structures [13,14]
and the creation of innovative composite materials [15–17]. Even though the ancient
Romans outlined the recipes and technological standards for building construction, the
artisans had a difficult time implementing them [18,19]. Based on their primary func-
tion or purpose, several technological solutions were applied to ancient structures and
constructions, and these methods were widely used across the Roman Empire.

The determination of the composition of a historic mortar is commonly required
during conservation or restoration work on historic buildings. If there are no documentary
or other sources that can provide this information, then a range of analytical procedures can
be used, including X-ray diffraction (XRD), microscopic, chemical, and thermo-analytical
techniques [20].

The aim of the present work is to characterize the old mortars used in the building
of walls at the archaeological Roman Fortification site (Ovidiu, Romania) located on the
coast of Siutghiol Lake for the development of integrated conservation strategies for future
restoration works.
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2. Materials and Methods
2.1. Study Area

The region of Dobrogea, once known as Scythia Minor, had strategic importance due
to its location near the Black Sea and Danube River mouth. This has resulted in a rich
archaeological heritage, mostly located along the coast and waterways. The preservation
of this heritage is vital for historical knowledge and future appreciation. Research and
exploration efforts must be supported to fully uncover Dobrogea’s past. The archaeological
sites, such as those at Capidava, Histria, Tomis, Callatis, and Ulmetum, represent points
of attraction both from a tourist point of view and also from an academic point of view,
considering the research opportunities that arise regarding the construction materials used.

This is also the case at the archaeological site of Ovidiu, a monument of national
interest composed of the Roman fort and a Paleo-Christian basilica. The purpose of the
fortification was to strengthen the former Halmyris Bay (the current Siutghiol Lake) and
guard the aqueduct that supplied drinking water to the Tomis fortress.

The archeological site in question is located on the southern edge of the town of
Ovidiu, approximately 10 km north of Constanţa. It is situated in a recently developed
residential neighborhood on the western bank of Lake Siutghiol (Figure 1), which was once
the Gulf of the Black Sea. The site is in close proximity to the island of Ovidiu, making it an
important location for further study and exploration. The close proximity of the site to a
residential area makes it easily accessible for research and educational purposes, allowing
for greater public awareness and understanding of the cultural heritage and history of
the region. The archeological site in Ovidiu offers a unique opportunity to study the rich
history of the area and to preserve it for future generations. With proper resources and
support, the site has the potential to become a major attraction and a valuable resource for
the surrounding community [21,22].
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Figure 1. Location of the archaeological site. Figure 1. Location of the archaeological site.

The layout of the fortress is rectangular (Figure 2), with the longest side running
NNV-SSE. The interior is around 2200 square meters. The two rectangular towers to the
east are unique among fortifications of their sort since only two of their sides project outside
the enclosure, with the eastern side running parallel to the curtain [23,24].
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The two rectangular towers located to the east of the site are unique among similar
defenses because only two of their sides extend from the enclosure. One of these towers,
designated as Tower A, is situated at the southeast corner and has exterior dimensions of
8.80 m by 6.70 m, as measured from the foundation level. The interior of Tower A measures
4.10 m by 4.60 m. The other tower, designated as Tower B, is located at the northeast corner
and has exterior dimensions of 8.95 m by 6.90 m. The interior of Tower B measures 3.75 m
by 4.50 m [23,24].

The west towers of the site differ in design from the east towers, as they are round in
shape and extend beyond the perimeter of the enclosure. Tower C, located at the northwest
corner, has an outside diameter of 8.70 m and an interior diameter of 3.90 m. The thickness
of the wall at the foundation level ranges between 2.30 and 2.50 m. The fourth tower,
designated as Tower D, is located in the southwest corner and is partially exposed. Tower D
is roughly the same size as Tower C [25]. The round design of these towers provides insight
into the diverse construction methods used in the building of the site’s defenses. The size
and placement of the towers suggest that they may have had specific functions, such as
providing additional protection or acting as observation points. Further investigation is
needed to fully understand the purpose and significance of these towers in the context of
the site as a whole.

2.2. Materials and Methods

The citadel has been substantially rebuilt; therefore, only tower D (Figure 2), where
the restoration work has not yet been completed, can be used for the collection of mortar
samples. Using a hammer and a chisel, it was possible to take three mortar samples that
will later be marked with A, B, and C. These samples have an uneven shape and vary in
size from 7 to 17 cm.

The three mortar samples were processed with the help of an angle grinder in order
to bring them to the shape and dimensions mentioned in the standards for carrying out
laboratory tests to determine their physical characteristics. The material that resulted after
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processing the samples was used to determine the chemical and mineralogical properties
of the three mortar samples.

To be able to conduct all the following laboratory tests, the samples were pulverized
using an agate pestle until a powder with a particle size less than 2 µm was obtained.

The mineralogical composition of the binder from the mortars used in the building of
the walls of the archaeological Roman Fortification site was assessed by X-ray diffraction
(XRD), energy dispersive X-ray fluorescence spectrometry (XRF), and differential thermal
analysis (TGA-DTA). Further, the investigation by X-ray diffraction of the mortar powders
allows the identification of crystalline forms of compounds. The X-ray diffraction (XRD)
analyses were performed using a Shimadzu XRD 6000 diffractometer (Shimadzu, Kyoto,
Japan) with Ni filtered Cu Kα radiation (λ = 0.1054 nm), 2θ ranging between 10◦ to 60◦,
with 2◦/min and 0.02 min/step.

Multi-elemental analysis of major, minor, and trace element concentrations of the
investigated samples was determined using a SPECTRO XEPOS energy dispersive X-
ray fluorescence (ED-XRF) spectrometer with a Pd/Co tube. This equipment directly
quantifies the percentage of oxides present in the sample, which facilitates the search for
the compounds in XRD analysis. From the chemical analysis data, the Cementation Index
(CI) and Hydraulicity Index (HI) were determined using the following equations [19]:

CI =
2.8·SiO2 + 1.1AlO3 + 0.7Fe2O3

CaO + 1.4MgO
(1)

HI =
SiO2 + Al2O3

CaO
(2)

According to Table 1, based on the values of the hydraulic and cementation indices,
the limes could be considered weakly, moderately, or highly hydraulic [26].

Table 1. Classification of lime according to hydraulic and cementation indices.

Lime Weakly Hydraulic Moderately Hydraulic Highly Hydraulic

Hydraulic index 0.1–0.2 0.2–0.4 >0.4
Cementation index 0.3–0.5 0.5–0.7 0.7–1.1

Data acquired from reference [26].

The differential thermal analysis was performed using a Shimadzu DTG-60 (Shi-
madzu, Kyoto, Japan) at 30–1000 ◦C temperature range, 10 ◦C/min rate of heating, in air.
Using scanning electron microscopy (SEM), HITACHI S2600N (HITACHI, Tokyo, Japan),
coupled with energy dispersive X-ray spectroscopy (EDX), the morphological and mi-
crostructural features and elemental composition of the samples were measured (HITACHI,
Tokyo, Japan).

3. Results and Discussion

Several studies were carried out in order to determine the composition and micro-
structure of old lime-based materials, mostly mortars, used in historical buildings [7,25–37].

In addition to determining the nature of the binder and aggregates, the formulation of
the mortar must be determined for the characterization of historical materials, taking into
account the concept of compatibility in conservation interventions [7,31]. The preliminary
examinations made on the polished sections revealed that all of the mortars include lime
nodules (kankar), which is evidence that the burnt lime was slaked with a minimal amount
of water in order to convert CaO into Ca(OH)2. The samples were diverse, and the
aggregates displayed a variety of differences in terms of their form, size, and color [32].

3.1. XRD Analysis

To perform the mineralogic analysis by X-ray Diffraction (XRD), the mortar samples
were carefully crushed in a mortar, allowing the segregation of the aggregates from the
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building matrix, but trying to avoid the crushing of the aggregates (e.g., sand grains) [33],
and the powder was separated from the aggregates by sieving. The samples were heteroge-
neous, and the aggregates showed different shapes, sizes, and colors. Figures 3–5 highlight
the X-ray diffraction patterns of the A, B, and C mortars collected from the walls of the
archaeological Roman Fortification site.

The samples appeared similar, with quartz being the predominant mineralogical
phase, followed by calcite. This may indicate a conventional mortar composition, with
calcite as the binder and quartz as the skeleton; the study reveals that calcite blended with
quartz (silica) was a common mixture for mortars prior to the widespread use of cement
mortars [34].

The XRD results showed that several crystalline phases are present (Table 2). Accord-
ing to the X-ray diffraction files, the diffraction patterns correspond to a mixture carbonate
(calcite) and siliceous aggregates. The main diffraction peaks were attributed to the calcium
carbonate–calcite (ICDD 00-081-2027), aragonite (ICDD 00-003-1067), silicon oxide–quartz
(ICDD 00-077-1060), and calcium iron magnesium carbonate–ankerite (ICDD 00-041-0586).
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Table 2. Semiquantitative XRD analysis of A, B, and C mortar samples.

Sample Crystalline Phases Abundance

A

CaCO3 (Calcite) +++
CaCO3 (Aragonite) ++
SiO2 (Quartz) +
Ca(Fe,Mg)(CO3)2 (Ankerite) -

B

CaCO3 (Calcite) +++
CaCO3 (Aragonite) +
SiO2 (Quartz) +++
Ca(Fe,Mg)(CO3)2 (Ankerite) -

C

CaCO3 (Calcite) +++
CaCO3 (Aragonite) ++
SiO2 (Quartz) +++
Ca(Fe,Mg)(CO3)2 (Ankerite) +

+++ Abundant, ++ present, + small amount, - not traceable.

3.2. X-ray Fluorescence Spectrometry (XRF)etect

The XRF technique allowed the major elements to be determined, expressed as a
percentage by oxide weight (CaO, MgO, Al2O3, SiO2, Fe2O3, P2O5, K2O, MnO, and SO3),
with some elements reported in ppm (parts per million): Ti, V, Cr, Ni, Cu, Zn, Pb, Ga, Ge,
As, Ba, Rb, Sr, Y, Zr, Nb, Ce, and Sn [34].

Table 3 presents the XRF data of the major oxides present in the investigated mortars,
expressed in weight (%), and trace elements expressed in ppm (n.d.: not detected).

In the selected historic mortar samples, XRD showed carbonates as the main crystalline
phases formed by the carbonation of lime. Calcite and aragonite, two of the calcium
carbonate polymorphs, are present in each sample. This information was also confirmed
by XRF. The results presented in Table 3 indicate that in the investigated mortars, the use of
aerial lime binders obtained from pure limestone was effective. The chemical composition
of these mortars is characterized by the highest CaO content and the lowest content of SiO2,
Al2O3, and Fe2O3. Further, the content of MgO and K2O is low. Due to their enrichment in
the non-carbonate part of the raw material, trace elements, such as Ba, Cu, and Zn, achieve
greater average concentrations. P and Mn consistently maintain low concentrations, with
minimal random changes. The mortars were composed of lime-based binders and silty–
sandy pebbles likely acquired from Pliocene deposits (sandstones and compacted sands).
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All of the investigated mortars shared extremely similar properties. The small variations in
the aggregates’ composition could be due to the compositional variability of the Pliocene
deposits. Studies by Scala et al. [30] indicate that these differences can be attributable to
intrinsic variations in the composition of the Pliocene sediments, but it is possible that a
sandy component rich in quartz–feldspar was purposefully added because of a particular
usage (fortification).

Table 3. XRF data of the major oxides present in the A, B, and C mortar samples, expressed in weight
(%), and trace elements expressed in ppm (n.d.: not detected).

Oxide (%) Sample A Sample B Sample C

CaO 62.83 52.57 55.99
MgO 6.85 6.25 7.13
Al2O3 0.87 1.20 2.33
SiO2 9.42 14.26 12.54

Fe2O3 1.11 0.49 0.89
P2O5 0.06 0.10 0.16
K2O 0.23 0.28 0.64
MnO 0.03 0.02 0.04
SO3 0.06 0.07 0.10

Trace elements (ppm)
Ni n.d. 3.20 12.09
Cu 34.27 30.45 33.11
Zn 36.76 52.2 122
Ga 2.25 2.51 4.13
Ge 0.400 n.d. 0.470
As 1.62 1.71 3.41
Ba 91.7 141 151
Br 5.03 7.12 11.02
Rb 10.92 10.10 21.46
Sr 812 742 654
Y 7.62 7.97 10.55
Zr 36.56 24.01 102
Nb n.d. 2.41 3.43
Pb 3.18 3.60 8.13
Ce n.d. 27.64 n.d.
Sn n.d. 1.10 n.d.

Loss on Ignition (LOI) 18.53 24.75 20.19

Hydraulicity Index (HI) 0.16 0.29 0.27

Cementation Index (CI) 0.39 0.68 0.58

The calcium carbonate polymorphs’ occurrence and abundance appear to be related
to the hydraulicity of the investigated mortars. The evaluation of the hydraulicity of the
investigated mortars was conducted by the calculation of the Cementation Index (CI)
and Hydraulicity Index (HI) using Boynton’s formula [26]. Based on the results obtained
(Table 3), the hydraulicity index of the investigated mortars was in the range of 0.16 (A
sample) and 0.29 (C sample).

3.3. SEM-EDS

The elemental compositions and microstructural characteristics of the mortars were
determined by SEM-EDS analysis. Scanning electron microscopy (SEM) was used to obtain
the morphology and textural relations of the different mineral phases identified by XRD.

Figures 6–8 show that a mixture of large and small grains with different morphologies
is present in the mortar samples. The SEM investigation shows a well-carbonated matrix of
calcitic lime-based mortar that is in accord with literature information [35].
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Carlos Rodríguez-Navarro [29] believed that the existence of whitish clusters (lumps),
with dimensions varying from a few mm to 1 or 2 cm, is one of the most distinguishing
characteristics in antique lime mortars. These nodules could either correlate to completely
carbonated slake lime lumps or uncalcined limestone chips because they are made of the
mineral calcite.

The EDX spectra were also drawn to be able to identify the elemental composition
(Figures 9–11).

The chemical elements found in each specimen are revealed by the EDX spectra
recorded on the mortar samples. It is possible to see maxima particular to each of the
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studied elements (Ca, Mg, Si, and O), as well as variations in intensity that are probably
attributable to local inhomogeneities.

The elemental compositions of the mortars determined by EDX analysis indicated
that they were mostly composed of calcium. This high Ca content shows that the lime was
obtained from pure calcareous stones.
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3.4. Thermal Analysis

Mortar matrices containing fine aggregates and lime had a homogeneous structure that
was evidence of adequate mixing. Gel-like structures, mostly formed of calcium and silicon,
may also be seen within the matrices, as confirmed by XRD examination (Figures 3–5 XRD).
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This may suggest that the reaction with lime and pozzolanic fine aggregates resulted in the
creation of hydraulic products, such as calcium silicate hydrates [36].

Strong adhesion bonds are created by the creation of these compounds, which gives
the mortar its stiffness and durability. Thermal analyses were also used to evaluate the
mortars’ hydraulicity (Figures 12–14).
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The thermal analysis (TGA-DTA) highlighted a total mass loss in the investigated
mortars between 32% and 37%, as well as some endothermic effects. The endothermic
effects of temperatures ranging from 30 to 300 degrees Celsius are typically attributed to
the processes of physically bound water loss and water bound to hydraulic components
loss. Table 4 presents the weight losses (%) of the A, B, and C mortar samples.

Table 4. Weight losses (%) of the A, B, and C mortar samples.

Sample
Temperature (◦C) Total Weight

Loss (%)35–660 660–860 860–1000

A 4.115 32.578 0.285 36.978
B 3.687 32.406 0.183 36.275
C 4.329 27.450 0.248 32.028

Thermal analysis (DTA/TG) of the 3 selected samples highlights a small shoulder at
576 ◦C, 574 ◦C, and 569 ◦C that can be attributed to quartz inversion, and an important
endothermic effect can be attributed to the decomposition of carbonates in the temperature
range 660–860 ◦C [34,37].

The thermogravimetric analyses indicated that in the range 30–660 ◦C, the loss of
the structurally bound water in the mortar samples was between 3.687% (mortar B) and
4.329% (mortar C). The lost weight from the temperature range 660–1000 ◦C is due to
decarbonation (removing carbon dioxide), and it was 32.578% for mortar A, 32.406% for
mortar B, and 27.45% for mortar C. This result shows that the mortars A and B can be
regarded as hydraulic lime mortars.

Moreover, several physical and mechanical properties (apparent density, water ab-
sorption, and compressive strength) were established and published in a prior article [38].
The average compressive strength of the samples was 0.6 MPa, and their apparent density
was 1532.56 kg/m3.
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Given that more than 95% of the entire amount of water utilized was absorbed within
the first 2 hours of the 24 h test, it is obvious that the material has a very high porosity in
terms of its water-absorbing capacity (Figure 15).
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Independent of the type of intervention, resources are essential. Prior to any preser-
vation or conservation action, a significant effort should be made to identify the original
materials and evaluate the construction techniques, together with a careful analysis of
the compatibility with new materials and a careful assessment of the stability and perma-
nence of the proposed restoration work. Before specifying and carrying out conservation–
restoration work, it is critical to understand the building’s structure and materials [39].

In the field of conservation, the selection of mortars and plasters is crucial in relation
to the three key variables governing the performance of historic fabrics: porosity, flexibility,
and strength. Any variation in these values will have a significant impact on the stability
and durability of the structure. Therefore, the composition and qualities of the materials
used must be strictly regulated to ensure compatibility with current materials [32].

In future studies, several mortar recipes will be prepared with different types of lime
in all its known forms (quicklime, slaked lime, and lime putty), with different binder–
aggregate ratios, and with percentages of aggregate replaced by mortar waste obtained
from the restoration process. These recipes will be subjected to the same analysis to
determine which is the most suitable to be used for the rehabilitation of buildings within
archaeological sites.

4. Conclusions

In this paper, the chemical and mineralogical characterization of old mortars used
in the building of walls at the archaeological Roman Fortification site (Ovidiu, Romania),
located on the coast of Siutghiol Lake, is investigated. The binding material of the original
mortars used for rendering and cladding the walls of the archaeological Roman Fortification
site (Ovidiu, Romania) was characterized using X-ray diffraction (XRD), energy dispersive
X-ray fluorescence (ED-XRF), Scanning Electron Microscopy (SEM-EDX), and differential
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thermal analysis (TGA-DTA). The results showed that the binding material was moderately
hydraulic, calcitic, lime-based mortars mixed with siliceous aggregates. It can be assumed
that the mixture morphology and heterogeneity of the investigated mortars could be due
to the use of hot lime technology, and the endurance of these materials may be linked
to both the chemical properties of the mixture and the microstructure and compatibility
features of the system, which result from the combination of raw ingredients and processing
technologies. This information could be a useful investigation tool for the development of
integrated conservation strategies in future restoration projects, so that ancient architectural
heritage is preserved during the restoration process.
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