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Abstract: Nonlinear response history analysis (NLRHA) is considered the most accurate procedure
for evaluating the seismic performance of high-rise buildings. However, it requires considerable
expertise and analysis time, making it inappropriate for some applications involving numerous high-
rise buildings (e.g., the seismic loss estimation of a city). To overcome this limitation, a simplified
procedure developed based on the uncoupled modal response history analysis (UMRHA) and
coupled shear-flexural cantilever beam model (CSFCBM) is proposed. The underlying assumption is
that the UMRHA procedure can compute the nonlinear seismic responses mode by mode, where each
vibration mode is assumed to behave as a single-degree-of-freedom system. The nonlinear seismic
responses are approximately represented by the sum of the modal responses of a few vibration modes.
However, UMRHA requires knowledge of the modal properties and modal hysteretic behaviors.
Therefore, the CSFCBM was introduced here to estimate the required modal properties and modal
hysteretic behaviors. The inelastic seismic demands of the building can be determined using the
UMRHA procedure with the computed modal properties obtained by CSFCBM. The accuracy of this
proposed procedure was verified considering four high-rise buildings of 19, 30, 34, and 45 stories
with reinforced concrete shear walls. The inelastic demands computed by the NLRHA procedure
were used as a benchmark and compared with those of the proposed procedure. The results indicate
that the proposed procedure provides reasonably accurate demand estimations for all case study
buildings. Additionally, the total calculation time for modeling one building, performing dynamic
analysis on 24 cases of ground motions, and post-processing the results required by the proposed
procedure was about 7 to 45 times lower than that of the NLRHA procedure. Therefore, it can be
used for estimating the seismic damage and losses of many high-rise buildings in a city for a specific
earthquake scenario or a quick assessment of various seismic design options of a high-rise building
in the preliminary design phase.

Keywords: high-rise buildings; nonlinear higher mode responses; modal hysteretic model; simplified
procedure; seismic evaluation; RC shear walls

1. Introduction

In recent decades, the construction of high-rise buildings has significantly increased
worldwide. Such buildings have become important elements of modern cities with a large
city population living or working therein. Typically, high-rise buildings are constructed as
reinforced concrete (RC) buildings, with RC slab-column frames or beam-column frames to
carry gravity loads and RC shear walls to primarily resist lateral loads [1,2]. The safety and
serviceability of these buildings against earthquakes are major concerns for the building
residents, city officials, and other stakeholders [3]. However, evaluating the seismic safety
and serviceability of such structures is difficult for several reasons. First, each building
comprises various structural and non-structural components with different properties and
response characteristics [4]. Second, its dynamic responses to seismic ground shaking are
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also considerably complicated, wherein several vibration modes other than the fundamental
mode often contribute significantly to the responses [5]. Third, the responses to strong
ground shakings that determine the seismic safety of the building are likely to exceed the
elastic limits of the structure, causing various types of damage to different components of
the building. Therefore, the methodology or analysis procedure selected for assessing the
seismic performance (safety and serviceability) of the building must account for all these
factors accurately.

In practice, the seismic performance of high-rise buildings is commonly evaluated
using the nonlinear response history analysis (NLRHA) procedure [6]. It begins with the
construction of a nonlinear finite element model (FEM) of the building, wherein the model
comprises several hundreds or thousands of elements. The elements whose responses are
expected to exceed the corresponding elastic limits must be modeled for their nonlinear load
response behaviors. The construction of such a complex nonlinear model requires detailed
information about the building components and advanced knowledge on their nonlinear
structural behaviors, which is a time-consuming and laborious task. Subsequently, the
nonlinear responses of the model to various input ground motions are computed by solving
numerous coupled nonlinear differential equations. This step also requires significant
amounts of computational resources and time. The computed results are obtained as the
time histories of the element responses, which require further post-processing work to
determine the maximum or minimum response values (seismic demands) and identify
the corresponding damage state of the building. Therefore, the entire process may require
several weeks or months to complete for a specific building.

The aforementioned seismic performance evaluation procedure may be suitable for
certain applications, particularly when the accuracy and reliability of the evaluation results
are crucial and only a few buildings are to be evaluated. For instance, the procedure can be
used to check the design of a high-rise building in the final design stage to ensure that all
seismic responses of interest are within acceptable limits [7]. It can also be used to guide the
seismic retrofit design of existing high-rise buildings [6]. However, this procedure may not
be suitable for other applications; for instance, the estimation of seismic losses of a city for
an earthquake scenario requires a seismic performance evaluation of numerous high-rise
buildings [8]. It is practically impossible to apply the NLRHA-based procedure to all the
buildings. Moreover, detailed information on each building may not be available, making
it unfeasible to construct nonlinear FEMs. Nevertheless, highly accurate seismic evaluation
results may not be required in such cases, and reasonable accuracy can be acceptable.

In this study, a new simplified analysis procedure for evaluating the nonlinear seismic
responses of numerous high-rise buildings with RC shear walls was proposed. It was
developed from the use of the uncoupled modal response history analysis (UMRHA)
procedure [9,10] and the coupled shear-flexural cantilever beam modal (CSFCBM) [11]. The
UMRHA procedure facilitates the computation of nonlinear seismic responses mode by
mode, where each vibration mode is assumed to behave as a nonlinear single-degree-of-
freedom (SDOF) system. The nonlinear seismic responses are approximately represented
by the sum of the modal responses of several vibration modes. The UMRHA procedure
was applied to estimate the nonlinear seismic responses of several high-rise buildings
with different heights, configurations, and arrangements of shear walls, and its accuracy
was found to be satisfactory [12–14]. By this method, the degrees of freedom could be
reduced from several thousands (NLRHA) to just a few (UMRHA), and the computational
effort and time were significantly reduced. However, the UMRHA procedure requires
knowledge of the modal properties and modal hysteretic behavior. These modal parameters
can be obtained from an eigen analysis and a cyclic modal pushover analysis (MPA) of
a complete three-dimensional (3D) nonlinear FEM. This is, as mentioned earlier, time-
and effort-consuming work. Therefore, CSFCBM was introduced here to approximately
represent high-rise buildings. CSFCBM is one of the simplest models that can simulate
the complex behavior of a wall-frame structural system. The model is used to estimate
the required modal properties and modal hysteretic parameters without constructing a
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complete 3D nonlinear FEM. Thus, the required information about the building will also be
reduced to a bare minimum, facilitating the application of the proposed procedure to cases
where detailed information of targeted buildings is unavailable.

The proposed simplified analysis procedure has several potential applications. It can
be used for estimating the seismic damage and losses of many high-rise buildings in a
city for a specific earthquake scenario. Risk-based premiums for earthquake insurance
of high-rise buildings can also be determined based on the evaluation results obtained
from this procedure. Additionally, it can be used for a quick assessment of various seis-
mic design options of a high-rise building in the preliminary design phase, where many
structural details are not yet specified, and an accurate estimate of seismic responses may
not be required. Note that the proposed procedure can be modified to match the building
information available. If detailed information is unavailable, the procedure can be adjusted
such that it provides a reasonable estimate of seismic performance under such a data
constraint. On the other hand, if detailed information is available, the procedure may
be adjusted to obtain more accurate evaluation results. The theoretical framework of the
proposed procedure and its application to selected case study buildings are presented in
the subsequent sections.

2. UMRHA Procedure

Chopra and Goel [10] initially developed the UMRHA procedure, which was later
simplified into the well-known MPA procedure. The UMRHA procedure can be considered
an extended version of the conventional modal analysis procedure. In the latter, the
complicated dynamic responses of an elastic multi-degree-of-freedom (MDOF) structure
are represented by a sum of individual response from many vibration modes. The response
of each mode is basically comparable to that of a single-degree-of-freedom (SDOF) system,
which is governed by a few modal parameters making it is thus easy to handle. Furthermore,
in most practical cases, it is sufficient to consider the first few modes to adequately represent
the complicated structural responses. The conventional modal analysis procedure can be
utilized to any elastic system.

The UMRHA procedure, which is based on the conventional modal analysis procedure,
aims to extend the scope to inelastic structures. The theoretical basis of modal analysis
is valid for linear systems; however, it is still assumed that it is approximately valid for
inelastic systems. Therefore, vibration modes continue to exist even for inelastic responses,
and complicated inelastic responses can be approximately described as a sum of these
modal responses. The responses of a building in each vibration mode can be treated as that
of a nonlinear single-degree-of-freedom system, where the governing equation of motion is
given below:

..
Di(t) + 2ξiωi

.
Di(t) + Fsi

(
Di,

.
Di

)
/Li = −

..
ug(t) (1)

Herein, Li is defined by Li = Γi Mi where Γi is the ith modal participation factor and
Mi is the ith modal mass. ωi is the ith natural circular frequency, and ξi is the ith damping
ratio. Di(t) is the ith mode response time history for any input ground motion,

..
ug(t). More

details about the derivation of UMRHA can be found in [10,13].
To compute the response time history of Di(t) from this equation, one needs to know

the modal properties (ωi, ξi, Mi, Γi) and modal restoring force Fsi, which is a nonlinear
function of Di and

.
Di. The latter defines the modal hysteretic response of a building.

A cyclic MPA is a direct technique to identify this complex modal hysteretic response
of a building. This analysis is typically performed for each and every important vibration
mode. For the ith mode, the analysis is accomplished by first applying gravity loads,
then applying lateral forces with the ith modal inertia force pattern over the height of the
building. The gravity loads are kept constant, whereas the magnitude of these lateral forces
is gradually increased and reversed to produce cyclic responses with steadily increasing
amplitude. Under this force pattern, the lateral displacements and other responses are
anticipated to be dominated by those of the ith mode. Having these responses, one can
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construct the cyclic relationship between the modal base shear, Vi(0), and modal roof
displacement, ui(H). This relationship can be transformed into the Fsi–Di relationship by
assuming the deform shape at any point during the cyclic MPA corresponds to a natural
vibration mode shape. Based on this assumption, the relationship between ui(H) and Di
can be determined using

Di =
ui(H)

Γiφi(H)
(2)

where φi(H) denotes the ith natural vibration mode shape of the building at height H.
Under this force pattern, the relationship between Vi(0) and Fsi can be calculated as

Fsi
Li

=
Vi(0)
ΓiLi

(3)

An appropriate nonlinear hysteretic model can be chosen at this stage, and its proper-
ties can be modified to fit the Fsi–Di relationship. The response time history of a nonlinear
SDOF system (Di(t) and Fsi(t)) can then be determined using Equation (1). Di(t) is used
to determine all deformation-related responses, including lateral floor displacements and
interstory drift ratios of the ith mode, whereas Fsi(t) is used to compute all force-related
responses, including story shears and overturning moments of the ith mode. For example,
the lateral floor displacement of the ith mode can be determined as follows:

ui(x, t) = Γiφi(x)Di(t) (4)

where ui(x, t) indicates the lateral floor displacement contributed by the ith mode, and
φi(x) denotes the ith natural vibration mode shape at a particular height x above the
building’s base. The interstory drift ratios can be easily calculated after determining
the lateral floor displacements. The modal base shear, Vi(0, t), is determined using
Equation (3), whereas the modal base overturning moment (OMi(0, t)), is calculated using
the following equation:

OMi(0, t) =
Fsi(t)

Li
Γi

N

∑
j=1

xjmjφi(xj) (5)

where xj denotes the elevation of the jth floor, Mj indicates the story mass of the jth floor,
and N represents the total number of floors. The relationships in Equations (4) and (5) are
the results of the modal inertia force distribution pattern. For other force-related responses,
their relationship with Fsi can be obtained from MPA in the linear response range.

The force-related or deformation-related responses contributed by the ith mode can
be commonly expressed as ri(t). By summing the response histories of all the significant
modes, the total response r(t) is obtained as follows:

r(t) =
m

∑
i=1

ri(t) (6)

where m denotes the number of significant vibration modes.
The theoretical concepts of the UMRHA procedure described in this section can

be easily applied to many other types of structures. Compared with NLRHA, wherein
the seismic responses are calculated by solving numerous coupled nonlinear differential
equations, UMRHA requires only the solutions of “m” uncoupled nonlinear differential
equations (Equation (1)). In most cases, the number of significant vibration modes, m, is
as low as three to six [13,14]. Therefore, the computational time and resources required
to compute the seismic responses are extremely low in the UMRHA procedure compared
with those of the NLRHA procedure.
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However, the formulation of “m” uncoupled nonlinear differential equations requires
knowledge of the nonlinear modal restoring force Fsi

(
Di,

.
Di

)
and modal properties. If

one constructs a nonlinear FEM of the building, the former can be obtained from a cyclic
MPA, as explained earlier, and the latter can be obtained using eigen analysis of a linearized
version of the model. All these nonlinear FEM constructions and associated analyses
require a substantial amount of time and effort and detailed information about the building.
Therefore, Section 3 introduces CSFCBM to represent the building. As the model allows
the determination of the required modal properties and the nonlinear modal restoring
force without the use of nonlinear FEMs, the seismic performance analysis process can
be significantly simplified, and the required building information can be reduced to a
bare minimum.

3. CSFCBM

Figure 1 depicts CSFCBM as an approximate model of a high-rise building with a
frame-wall system. It may not be applicable to other structural systems (e.g., outrigger and
belt truss). The model comprises a vertical cantilever flexural beam connected to a vertical
cantilever shear beam by numerous axially rigid links that transmit only horizontal forces.
Owing to this arrangement, the lateral deflections of the two beams remain identical when
a lateral load is applied. The flexural beam represents the combined effects of RC walls
and other structural components that deform in the flexural mode, whereas the shear beam
represents the combined effects of frames and other structural components that deform
in the shear mode. The links represent the slabs that horizontally connect RC walls and
frames; the links are treated as rigid members because of the extremely high in-plane
stiffness of the slabs.
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CSFCBM was first proposed by Khan and Sbarounis [15] to evaluate the interaction
between walls and frames in multi-story buildings. The model was later used to identify
approximate responses of multi-story buildings, such as lateral displacements and shear
forces in walls, under various lateral load distributions [16–18]. Several closed-form
formulas for predicting responses (e.g., lateral displacements) to certain lateral loading
patterns have been derived from this model, and they are found to be sufficiently accurate
when applied to 30- and 20-story case study buildings [18,19].

For earthquake excitation, Miranda [20] used CSFCBM to estimate the maximum roof
displacement and maximum interstory drift ratio of multi-story buildings that primarily
respond in the first mode of vibration. The estimated responses for a 10-story steel moment-
resisting frame building concur well with those predicted by the detailed FEM. CSFCBM
was further extended by Miranda and Reyes [21] to non-uniform lateral stiffness cases,
where the flexural rigidity (EI) and shear rigidity (GA) were reduced along the height.
However, they determined that the stiffness reduction does not exhibit a significant effect
on the maximum interstory drift ratio demand, provided that no abrupt stiffness reductions
occur in the structure.

Miranda and Taghavi [22] used CSFCBM to derive closed-form solutions for the
vibration mode shapes, natural periods, and modal participation factors of multi-story
buildings with uniform properties along their heights. They also extended their study
to non-uniform lateral stiffness cases and determined that the stiffness reduction with
increasing height does not have significant effects on the dynamic characteristics of the
structure, particularly when the flexural action dominates the shear action. Miranda
and Taghavi’s [22] closed-form solutions were adopted by Reinoso and Miranda [23] for
estimating the floor acceleration demands in high-rise buildings subjected to earthquake
excitation. The estimated demand matched the actual acceleration records reasonably well.
Subsequently, several other studies demonstrated the ability of CSFCBM to accurately
estimate the linear elastic multi-mode responses of high-rise buildings under earthquake
excitations [24,25].

Herein, we describe CSFCBM and the closed-form solutions for its modal properties
derived by Miranda and Taghavi [22]. Several useful relationships from the CSFCBM are
also derived and explained. These relationships were used for mapping the model to a
specific high-rise building and constructing its nonlinear modal force Fsi

(
Di,

.
Di

)
.

Based on the model presented in Figure 1, the governing equation of motion of the
structure under the lateral-distributed force p(x, t) is given by

m
∂2u(x, t)

∂t2 + EI
∂4u(x, t)

∂x4 − GA
∂2u(x, t)

∂x2 = p(x, t) (7)

where u(x, t) denotes the lateral displacement at height x above the ground and time t,
m indicates the mass per unit height of the building, EI represents the effective flexural
rigidity of the flexural beam, and GA indicates the effective shear rigidity of the shear
beam. This equation applies for 0 < x < H, where H denotes the total height of the building.
The lateral-distributed force p(x, t) can be a wind-induced force, inertia force induced by
earthquake shaking, or any other lateral loads.

At the fixed end (x = 0), the boundary conditions are

u(x, t)x=0 = 0 and
∂u(x, t)

∂x

∣∣∣∣
x=0

= 0 (8)

At the free end (x = H), the boundary conditions are

EI
∂2u(x, t)

∂x2

∣∣∣∣
x=H

= 0and
(

EI
∂3u(x, t)

∂x3 − GA
∂u(x, t)

∂x

)∣∣∣∣
x=H

= 0 (9)
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The free vibration analysis can be performed by setting p(x, t) to zero in Equation (7),
and the following modal properties of the CSFCBM can be obtained:

ωi = γi

√
α2 + γ2

i

√
EI

mH4 (10)

where ωi denotes the natural circular frequency for the ith vibration mode (i = 1, 2, 3 . . .),
and α is a non-dimensional parameter of the structure, which can be defined as

α = H

√
GA
EI

(11)

Parameter γi indicates the eigenvalue parameter of the ith vibration mode, which is
obtained as the ith solution of the following characteristic equation:

2 +

(
2 +

α4

γ2
i
(
α2 + γ2

i
)) cos(γi) cosh

(√
α2 + γ2

i

)
+

 α2

γi

√
α2 + γ2

i

 sin(γi)sinh
(√

α2 + γ2
i

)
= 0 (12)

The corresponding ith vibration mode shape (φi) of the structure is given by

φi(x) = sin
(

γi
x
H

)
− γi√

α2 + γ2
i

sinh
(√

α2 + γ2
i

x
H

)
− ηi cos

(
γi

x
H

)
+ ηi cosh

(√
α2 + γ2

i
x
H

)
(13)

where

ηi =
γ2

i sin(γi) + γi

√
α2 + γ2

i sinh
(√

α2 + γ2
i

)
γ2

i cos(γi) +
(
α2 + γ2

i
)

cosh
(√

α2 + γ2
i

) (14)

Based on the closed-form solution for the ith vibration mode shape, several associated
modal parameters (Li, Mi, and Γi) can be determined as follows:

Li =

H∫
0

mφi(x)dx, Mi =

H∫
0

mφ2
i (x)dx, and Γi = Li/Mi (15)

It is evident that the α parameter is instrumental in determining the modal charac-
teristics of a building. For instance, the flexural action dominates when α is low (e.g.,
less than 1.0), and the shear action dominates when α is high (e.g., more than 10). Once
α is specified, the eigenvalue parameter (γi) can be determined using the characteristic
equation, and the corresponding mode shape (φi), modal frequency (ωi), and natural period
(Ti) can be obtained (Ti= 2π/ωi).

Furthermore, the ith period ratio, defined as the ratio of the first-mode natural period
(T1) to the ith mode natural period (Ti), also relies on α.

T1

Ti
=

γi
γ1

√
α2 + γ2

i
α2 + γ2

1
(16)

Figure 2 illustrates the second and third period ratios (T1/T2 and T1/T3) plotted
against α. The vibration mode shapes of the first three modes for α = 0 and 100 are also
depicted in the figure. In zone A, where α is less than 1.0, the period ratios T1/T2 and
T1/T3 are relatively high, approaching 6.26 and 17.52, respectively, as α decreases to 0.
These period ratio values are those of an ideal cantilever flexural beam. The corresponding
vibration mode shapes in this zone are similar to those of α = 0 shown on the left-hand side
of Figure 2. Conversely, in zone C, where α is greater than 10, the period ratios T1/T2 and
T1/T3 are relatively low and approaching 3.0 and 5.0, respectively, as α increases to 100.
These period ratio values are those of an ideal cantilever shear beam. The corresponding
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vibration mode shapes in zone C are similar to those of α = 100, as shown on the right-hand
side of Figure 2.
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The α values of typical buildings are likely to be somewhere between these two
extremes, namely, ideal flexural and shear beams. Their α values typically fall into zone
B (1 < α < 10), where the period ratios vary significantly with the change in α. This
suggests that one could easily identify the α value of a given building by simply checking
its period ratios.

To represent a high-rise building using CSFCBM, one needs to determine the model
parameters, namely, H, M, EI, and GA. Among these, height H is a basic building pa-
rameter that can be obtained easily. The mass per unit height m can also be estimated
conveniently if the detailed drawings of the building are available. Otherwise, m can be
approximately estimated from the gross mass density (ρb) of buildings in the same class.
The gross mass density is defined as the total building mass divided by the total encased
volume of the building. The gross mass density of RC buildings, for example, typically
varies from 250 to 350 kg/m3. However, the remaining two parameters, EI and GA, are
difficult to evaluate directly despite the availability of detailed drawings [18]. Section 4
discusses this further, where the case study buildings are examined.

Based on the relationships explained in this section, it is possible to estimate the
values of EI and GA if the first- and second-mode periods (T1, T2) of the building are
known. Initially, the value of α can be determined from the period ratio T1/T2 using
Equations (16) and (12). Subsequently, EI can be determined from T1 using Equation (10),
and GA can be calculated using the known values of EI and α. Alternatively, the values of
EI and GA can be estimated if T1 and α are known.

Several empirical formulas are available for estimating the T1 of high-rise buildings.
For instance, an empirical formula T1 = 0.019H is provided in the seismic design standard
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of Thailand, which was derived from the ambient vibration measurement data of numerous
existing RC buildings in the country [26]. Based on these vibration measurements, it is also
possible to obtain the period ratio T1/T2 or, in some cases, T1/T3 to identify the value of
α [27]. Nevertheless, if some details of RC walls and frames of the building are available,
one may calculate a certain structural index and use it for estimating the value of α; further
details are presented in Section 4. Alternatively, if a linear elastic FEM of the building is
available, the first- and second-mode periods (T1, T2) can be obtained using a standard
eigen analysis.

In summary, the CSFCBM of a specific high-rise building can be determined through
multiple alternative methods. The choice of method may rely on the available building
information. Once the CSFCBM is determined, the necessary modal properties of the
building can be readily evaluated using Equations (10)–(15). However, the evaluation of
the nonlinear modal restoring force Fsi

(
Di,

.
Di

)
requires further analysis. The subsequent

sections present certain important relationships for this evaluation.
Considering that the building vibrates in its ith mode, that is, u(x, t) = ui(x, t) =

φi(x)q(t) = Γiφi(x)Di(t), the shear forces in the flexural beam (Vi
F(x, t)) and shear beam

(Vi
s(x, t)) are given by

V f
i (x, t) = −EI

∂3u(x, t)
∂x3 = −EIΓiφi

′′′(x)Di(t) (17)

Vs
i (x, t) = GA

∂u(x, t)
∂x

= GAΓiφi
′(x)Di(t) (18)

The shear force Vi
F(x, t) is approximately equal to the sum of the shear forces in all RC

walls in that story, whereas Vi
s(x, t) is approximately equal to the sum of the shear forces in

all frames. The sum of Vi
F(x, t) and Vi

s(x, t) is equal to the story shear, denoted as Vi
t(x, t).

Note that the superscript is denoted as the responses obtained by CSFCBM.
Similarly, the overturning moments in the flexural beam (OMi

F(x, t)) and shear beam
(OMi

s(x, t)) are given by

OM f
i (x, t) =

H∫
x

V f
i (x, t)dx = −EIΓiDi(t)

H∫
x

φi
′′′(x)dx (19)

OMs
i (x, t) =

H∫
x

Vs
i (x, t)dx = GAΓiDi(t)

H∫
x

φi
′(x)dx (20)

Here OMi
F(x, t) is approximately equal to the sum of the overturning moments

contributed by all RC walls, and OMi
s(x, t) is approximately equal to the sum of the

overturning moments contributed by all frames. The sum of OMi
F(x, t) and OMi

s(x, t) is
equal to the story overturning moment, denoted as OMi

t(x, t).
Therefore, the separate contributions of RC walls and frames to the story shear and story over-

turning moment of the building can be determined based on the aforementioned relationships.
In the case of a building with well-isolated RC walls, the bending curvature (ϕi(x, t))

of each individual wall is identical and given as

ϕi(x, t) =
∂2u(x, t)

∂x2 = Γiφi
′′ (x)Di(t) (21)

The corresponding flexural strain at the extreme tension face (fiber) of any RC wall
can be calculated as

εi, f (x, t) = |ϕi(x, t)|Lt = |Γiφi
′′ (x)Di(t)|Lt (22)
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where Lt denotes the distance measured from the neutral axis of the cross-section of the
wall to the extreme tension face (fiber) of the wall. Note that if the distance from the neutral
axis to the extreme compression face of the wall (Lc) is substituted with Lt in Equation (22),
the corresponding flexural strain at the extreme compression face can also be computed.

This flexural strain can later be used to determine the flexural tensile cracks and
yielding of the rebars that occur in the wall. All these relationships are essential for deriving
the modal hysteretic response of a high-rise building. The derivation process is explained
in detail in Section 5.

4. Case Study Buildings

The four high-rise buildings chosen for the case study had heights ranging from 19 to
45 stories and were located in Bangkok, Thailand. They were used as reference cases to
verify the accuracy of CSFCBM in estimating the building modal properties and evaluating
the building seismic responses. These buildings were named S1, B1, B2, and B3, and
their typical floor plans and 3D views are depicted in Figure 3. In every building, the
gravity-load-carrying and lateral-load-resisting components were RC slab-column frames
(gray and blue regions) and RC walls or cores (red regions), respectively. Masonry infill
walls (black dashed lines) were broadly used as exterior and interior partition walls. In
all cases, the foundation structure was a mat foundation lying on piles. Buildings B1, B2,
and B3 had podiums, and B1 had an unsymmetrical arrangement of RC walls in its tower
floor plan; these are vertical and plan irregularities commonly found in high-rise buildings.
Conversely, building S1 was a regular building with a symmetrical arrangement of RC
walls and uniform structural properties along its height from the base to the top. Table 1
lists the key properties and characteristics of these buildings.
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Table 1. Key properties and characteristics of four case study buildings.

Building Name S1 B1 B2 B3

Width of the tower, B (m) 64.0 31.0 47.0 33.6
Depth of the tower, D (m) 16.0 32.5 34.0 33.6
Height, H (m) 105.0 116.9 59.5 152.5
No. of stories 30 34 19 45
Typical story height, h (m) 3.5 3.2 2.9 3.5
RC wall section area/footprint area (%) 0.88 1.62 0.54 2.42
RC column section area/footprint area (%) 2.81 1.45 1.06 2.04

RC typical wall
thickness (m)

Base–10th floor 0.35 0.25 0.25 0.45
10th–20th floor 0.35 0.25 0.25 0.40
20th floor–roof 0.35 0.25 0.25 0.35

RC column typical
dimension (m)

Base–10th floor 1.0 × 1.2 0.9 × 1.2 0.5 × 1.2 1.2 × 1.2
10th–20th floor 1.0 × 1.2 0.9 × 1.2 0.5 × 1.2 1.2 × 1.2
20th floor–roof 1.0 × 1.2 0.9 × 1.2 0.5 × 1.2 1.2 × 1.2

Longitudinal reinforcement
ratio in RC wall (%)

Base–10th floor 4.0 1.27 2.27 2.95
10th–20th floor 4.0 0.81 1.45 1.44
20th floor–roof 4.0 0.46 0.93 1.44

Specified compressive
strength of concrete, fc

′
(MPa)

RC walls 45 45 42 45
RC column 45 32 42 40
RC and PT slabs * 32 32 32 32

Specified yield strength of longitudinal
reinforcement steel bar, f y (MPa) 490 390 390 390

* PT slabs = post-tensioned concrete slabs.

4.1. FEM of Case Study Building

Perform 3D version 7 [28] was used to create nonlinear FEMs of the four buildings.
The models were utilized to determine the buildings’ modal hysteretic behavior using
cyclic MPA and to compute their nonlinear seismic responses. Linearized versions of these
models (linear FEMs) were used to determine the modal properties of these buildings.

Nonlinear fiber elements were used to model each RC wall throughout its height since
flexural cracking and yielding may form at any level. To simulate the combined axial and
flexural behaviors of the wall, it was divided into numerous horizontal layers, each of
which comprise numerous vertical concrete and steel fibers. The term “multi-vertical-line-
element model” (MVLEM) is used to describe this kind of model [29,30]. Additionally,
each layer also has a horizontal elastic shear spring to account for shear response. For the
steel fibers, a bilinear hysteretic model of the non-degrading type with 1.25% post-yield
stiffness was used. As the actual material strength is typically greater than the nominal
value, the actual yield strength of steel rebars was set to be 1.17 times its nominal yield
strength (Table 1), as recommended by LATBSDC [31] and TBI [3]. Similarly, the actual
cylinder compressive strength of concrete ( fc′) was assumed to be 1.3 times the nominal
strength [3,31]. When fabricating concrete fibers, Mander’s stress–strain model [32] was
used for either confined or unconfined concrete, and it was approximated by a trilinear
envelope. In Peform3D, although the unloading stiffness of the concrete hysteretic model
is inherently set equal to the initial elastic stiffness, the reloading stiffness can be tuned in
such the way that it decreases with an increase in the plastic strain. The tensile strength of
concrete was assumed to be 0.1 fc′MPa [33]. When the nonlinear FEM was linearized, the
axial stiffness of the fibers was set equal to their initial low-stress stiffness value, which was
approximately 1.5 times the stiffness computed using the ACI318 secant concrete modulus
(Ec = 4700

√
fc′).

For slab-column frames, every RC column was modeled by combining a linear elastic
beam-column element with nonlinear plastic zones at its upper and lower ends in each
story. The gross (uncracked) flexural rigidity was assigned to a linear element. The lengths
of the plastic zones were set equal to those of the plastic hinges, as determined by the
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formula proposed by Paulay and Priestley [34]. These plastic zones were composed of
numerous concrete and steel fibers in a manner similar to that of RC walls; this ensured
that all states of the column, including cracking, yielding, and failure, were completely
simulated. Concrete slabs, on the other hand, were assumed to be elastic and thus modeled
using linear elastic thin-shell elements. The gross bending rigidity of EcIg and gross axial
stiffness of EcAg were assigned to these slabs.

Although masonry infill walls are generally considered non-structural components,
and their contributions to the stiffness and strength of the building system might be less
than those of RC walls and frames, they were explicitly modeled in this study. Each infill
wall was idealized with two compression-only inclined struts arranged in an X pattern.
Their inelastic force–deformation relationship was defined by a trilinear envelope, and the
hysteretic model was assumed to be similar to those described previously for concrete fibers.
The wall cracking strengths and associated story drift angles were estimated using formulas
proposed by Kappos et al. [35], and their ultimate strength was estimated using the formula
recommended by MSJC [36]; further details can be found in Suwansaya [33]. When the
seismic response time history is evaluated using these compression-only struts, only one
strut in a wall panel is active at any time instant. However, when the nonlinear model is
linearized, the combined stiffness of the two inclined struts from each wall panel is counted
in the stiffness matrix of the building. Therefore, before performing the linearization, the
axial stiffness of every strut was reduced by half to obtain a correct stiffness contribution.

The modal damping ratios were taken as 2.5% for every translational vibration mode
based on the recommendations of TBI [3] and LATBSDC [31]. As the soil-foundation system
was assumed to be substantially stiffer than that of the superstructure, the soil–structure
interaction effects were neglected. Therefore, the mat foundation was considered a rigid
boundary, which was horizontally displaced by the input ground motion.

4.2. Accuracy of CSFCBM in Estimating the Modal Properties and Responses

Buildings S1 and B1 were selected as reference cases to verify the accuracy of CS-
FCBM in estimating the vibration modal properties and modal responses. Building S1
represented regular high-rise buildings with symmetrical floor plans and uniform stiffness
and mass along the height, whereas building B1 represented typical high-rise buildings
with podium and non-symmetrical floor plans. The modal properties of the two buildings
were first determined by an eigen analysis of their linearized FEMs and are summarized
in Tables 2 and 3. Two CSFCBMs were created for each building, one for the motion along
the x axis and the other for the y axis. Each model was created from four basic building
parameters, namely, H, m, T1, and T2. The building height H is listed in Table 1. The mass
per unit height m was estimated using the as-built drawings of the building. The natural
periods T1 and T2 were computed using the linearized FEM. The parameters α, EI, and GA
were determined using the procedure explained in Section 3; thus, CSFCBM was defined
completely. The natural periods (Ti), mode shape (φi), modal mass (Mi), and modal partici-
pation factor (Γi) of the first three transverse vibration modes of CSFCBM could be obtained
using Equations (10)–(15). These modal properties, along with the α parameter, are listed
in Tables 2 and 3. Herein, the modal mass was normalized by the total mass of the building
(Mt). We observed that the modal properties of CSFCBM concurred well with those of FEM
for both buildings in both the X and Y directions. The differences were extremely low in
the first mode and generally increased with an increase in the modal number.

Based on CSFCBM, various responses of each individual vibration mode can be easily
estimated using the closed-form formulas. As all types of responses of the ith mode in the
linear elastic range are proportional to the modal coordinate Di(t), their response values
for Di(t) of 0.001 m (1 mm) were evaluated. The lateral displacement of the ith mode
was determined by ui(x, t) = Γiφi(x)Di(t), where Di(t) = 0.001 m. The corresponding
interstory drift ratio was obtained by considering the partial derivative of the displacement
with respect to height x (Γiφi

′
(x)Di(t)), and the corresponding deformation curvature

was determined using Equation (21). The deformation responses in the x direction of the
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first, second, and third modes are represented by the blue, red, and black dashed lines
in Figure 4, respectively. The corresponding shear forces in the flexural and shear beams,
namely, Vi

f (x, t) and Vi
s(x, t), were determined using Equations (17) and (18) and are

represented by the blue and red dashed lines, respectively, in Figures 5 and 6. The sum of
these shear forces is the story shear, Vi

t(x, t), which is represented by the black dashed
line. Similarly, the overturning moments in the flexural and shear beams, OMi

f (x, t) and
OMi

s(x, t), were determined using Equations (19) and (20) and are represented by the blue
and red dashed lines, respectively, in Figures 5 and 6. The sum of these moments is the
story overturning moment OMi

t(x, t) and is represented by the black dashed line.

Table 2. Modal properties of building S1.

Modal Properties X Direction Y Direction
FEM CSFCBM Error (%) FEM CSFCBM Error (%)

Ti (s)
First mode 4.420 4.420 - 3.371 3.371 -

Second mode 1.088 1.089 - 0.744 0.745 -
Third mode 0.477 0.447 6.4 0.322 0.289 10.3

Mi/MT

First mode 0.677 0.666 1.6 0.657 0.647 1.6
Second mode 0.162 0.143 11.8 0.184 0.159 13.5
Third mode 0.063 0.059 6.0 0.065 0.062 5.1

Гi

First mode 1.465 1.477 0.8 1.503 1.514 0.7
Second mode −0.724 −0.767 6.1 −0.757 −0.810 7.0
Third mode 0.414 0.495 19.5 0.411 0.502 22.0

T1/T2 4.063 4.531
A 2.88 2.06

Table 3. Modal properties of building B1.

Modal Properties X Direction Y Direction
FEM CSFCBM Error (%) FEM CSFCBM Error (%)

Ti (s)
First mode 3.112 3.112 - 5.487 5.487 -

Second mode 0.613 0.613 - 1.457 1.457 -
Third mode 0.263 0.229 13.0 0.676 0.634 6.3

Mi/MT

First mode 0.597 0.631 5.8 0.649 0.685 5.6
Second mode 0.200 0.172 14.0 0.135 0.129 4.6
Third mode 0.085 0.063 25.6 0.059 0.056 4.7

Гi

First mode 1.525 1.539 0.9 1.435 1.438 0.2
Second mode −0.814 −0.838 3.0 −0.689 −0.721 4.6
Third mode 0.490 0.506 3.2 0.429 0.485 13.0

T1/T2 5.077 3.766
A 1.43 3.76
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The accuracy of CSFCBM in estimating these various modal responses was verified
by comparing their predictions with those computed from the linearized FEMs. The
modal responses of the ith mode were obtained by first applying the gravity loads and
then applying lateral forces with the ith modal inertia force pattern to the FEM of the
building (i.e., modal pushover analysis). The lateral forces were scaled such that the
lateral displacement at the building top (x = H) was exactly equal to that predicted by
the CSFCBM. The corresponding lateral displacements at other floors were obtained in a
straightforward manner; all these displacements were determined at the geometric center
of the tower’s plan section. The corresponding interstory drift ratio at any height was
computed from the difference in lateral displacements of the floors above and below that
height. The corresponding deformation curvature was computed from the difference in
the vertical strains at two opposite extreme fibers of the RC walls. All modal deformation
responses computed by the FEM are plotted in Figure 4 by blue, red, and black lines for the
first, second, and third modes, respectively. These modal deformation responses concurred
well with those predicted by CSFCBM, confirming its accuracy in this aspect. Although
the differences appeared to be significant for the curvature of the third mode, this mode
is normally not the dominant mode in the building seismic responses. Therefore, the
difference may not significantly affect the response calculation accuracy.
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The MPA results were further used to determine the story shear and overturning
moment of each individual mode. The story shear contributed by the flexural action
Vi,wall(x, t) was computed by adding up shear forces in all RC walls in that story, whereas
the story shear contributed by the shear action Vi, f rame(x, t) was computed by adding up
shear forces in all columns and masonry infill walls, as depicted in Figures 5 and 6 by the
blue and red lines, respectively. Their sum is equal to the story shear Vi(x, t), represented
by the black line. Similarly, the overturning moment contributed by the flexural action
OMi,wall(x, t) was determined by summing up the moments of the geometric center of
the tower’s floor plan based on the internal forces (axial force and bending moment) of
all RC walls. The overturning moment contributed by the shear action OMi, f rame(x, t)
was determined by summing up the moments of the center based on the internal forces
(axial force and bending moment) of all columns and masonry infill walls. The moments
OMi,wall(x, t) and OMi, f rame(x, t) are plotted in Figures 5 and 6 and indicated by the blue
and red lines, respectively. The sum of these moments is the story overturning moment
OMi(x, t), represented by the black line.

The comparisons in Figures 5 and 6 indicate that CSFCBM can provide reasonably
accurate estimates of story shear and overturning moment from the base to the top of the
case study buildings in all three transverse modes. Moreover, the load sharing between
the RC walls and frames can be determined with reasonable accuracy for all these modes.
A comparison of buildings S1 and B1 indicates that the load sharing proportions were
different, which can be explained by parameter α. For instance, the lateral load resistance
mechanism of building B1 with α as low as 1.43 was expected to be more dominated by
the flexural action; hence, the shear in RC walls was generally substantially greater than
that in frames. Building S1, with a higher value of α (α = 2.88), was expected to have an
increased shear action, and this increase in the proportion of shear in frames was shown by
FEM results and was well predicted by CSFCBM.

Noted that the comparisons were made not only for S1 and B1 in the x direction but
also for four case study buildings in both the x and y directions. Similar accuracies were
obtained in all cases. However, due to space limitations, only two cases are presented in
this paper. More details on the verification of the CSFCBM can be found in Suwansaya [37].
In the past, CSFCBM has been typically used for estimating story-level responses, such
as story shear and inter-story drift [11,16–19]. In this study, we demonstrate that it can be
used for estimating the internal load sharing between frames and shear walls as well.

4.3. Estimation of α-Value

In Section 4.2, parameter α was determined using period ratio T1/T2, which was
obtained from an eigen analysis of the FEM of the building. If the FEM was not available,
the first-mode period T1 could be estimated using empirical formulas (Section 3). However,
the second-mode period T2 cannot be estimated reliably. In such a case, parameter α may
need to be determined using another method.

One possible method is to calculate a structural index and use it to estimate the value of
α. This index should exhibit a strong relationship with α and must measure the ratio of the
shear action to flexural action of the building. At the same time, the building information
required for calculating this index should be as minimal as possible, and the calculation
involved should be simple for practical applications. One index that fits these requirements
is GAo/EIo, where GAo and EIo are indexes that measure the shear and flexural rigidities
of the building, respectively. EIo can be defined as the sum of the flexural rigidity of all RC
walls of a typical story in a building.

EIo =
Nw

∑
j=1

EIwall(x)j (23)
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where EIwall(x)j denotes the flexural rigidity of the jth RC wall, and Nw indicates the total
number of RC walls in a typical story. With a building floor plan showing RC walls and
their cross-sectional dimensions, EIo can be determined easily.

In the case of buildings with well-isolated RC walls (no coupled walls) and the flexural
action being predominantly contributed by these RC walls, EIo is equal to EI of the flexural
beam in CSFCBM. However, EIo is typically not equal to EI owing to the presence of the
wall coupling effect and contributions of other building components to the flexural action
of the building. Despite this, EIo is expected to exhibit a strong relationship with EI. GAo
can be calculated as follows:

GAo =

12
Nc
∑

j=1
EIcol(x)j

h2 (24)

where EIcol(x)j denotes the flexural rigidity of the jth column at the typical story, Nc
indicates the total number of columns, and h represents the typical story height. With a
building floor plan showing all columns and their cross-sectional dimensions, GAo can be
easily determined.

If all beams (or slabs) in the frame system are extremely stiff compared with the
columns, each story deforms in the shear mode, wherein columns are laterally deformed in
a double-curvature bending shape. In such cases, the lateral story stiffness of the frame
system is equal to GAo/h. This condition is unlikely to occur in reality. Moreover, there
may be a significant contribution of masonry infill walls to the shear action of the building;
however, this contribution is not accounted by the index GAo. Therefore, GAo is generally
not equal to GA of the shear beam in CSFCBM. Nevertheless, GAo is expected to exhibit a
strong relationship with GA.

Table 4 summarizes the structural indexes EIo and GAo in the x and y directions
obtained using the as-built drawings of the four case study buildings. Additionally, the
α value of each building in each direction (x, y) is indicated. In all cases, the typical floor
plan properties for the floors just above the podium level were used for this calculation.
The relationship between α and the structural index GAo/EIo can be determined using
these data.

Table 4. Structural indexes and α of the four case study buildings.

Building Name X Direction Y Direction

S1 B1 B2 B3 S1 B1 B2 B3

Height of the building, H (m) 105.0 116.9 59.5 152.5 105.0 116.9 59.5 152.5
First mode period, T1 (s) 4.420 3.112 1.704 2.717 3.371 5.487 2.701 2.854

Second mode period, T2 (s) 1.088 0.613 0.410 0.574 0.744 1.457 0.800 0.564
T1/T2 4.063 5.077 4.156 4.733 4.531 3.766 3.376 5.060

α 2.88 1.43 2.68 1.80 2.06 3.76 6.58 1.45
EIo (×1012 N·m2) 1.32 9.96 1.35 25.2 3.75 0.88 0.34 20.6

GAo (×1010 N) 7.05 2.38 1.28 8.67 10.2 9.56 6.92 8.67√
GAo/EIo (1/m) 0.232 0.049 0.098 0.059 0.164 0.329 0.453 0.065

As depicted in Figure 7, α increases linearly in proportion to the increase in
√

GAo/EIo.
Their relationship can be approximated by the best-fitted linear regression formula (dashed
line in Figure 7), as follows:

α = 10.9
√

GAo/EIo + 0.85 (25)
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The correlation coefficient (r) of this regression formula was as high as 0.93, indicating
a strong correlation between α and

√
GAo/EIo. Although only four case study buildings

are considered, their results clearly suggest that the α value of other high-rise buildings can
be approximately estimated from

√
GAo/EIo using Equation (25). However, the number

of samples (eight cases from four buildings) was not sufficient to draw a firm conclusion.
Therefore, further investigation with more buildings is necessary to confirm the reliability
and accuracy of this approach. This proposed equation is merely an alternative way to
estimate the α-parameter based on the properties of the building. There might be a better
structural index that exhibits a stronger relationship with the α-parameter.

5. Modal Hysteretic Model
5.1. Modal Hysteretic Behavior

The modal hysteretic behavior of a high-rise building is the result of the combined
responses of various structural and non-structural components within the building. This
modal hysteretic behavior is different in each vibration amplitude, and monotonic and
cyclic MPAs can be used to analyze it. The monotonic MPA enables us to observe the
sequence of damage to various components of the structure when the vibration amplitude
or lateral displacement increases. Typically, monotonic MPA results will be presented in the
form of a capacity curve, which defines an envelope of the modal hysteretic response by
approximating the lateral strength and deformation capacity of the building. On the other
hand, the cyclic MPA directly demonstrates the modal hysteretic behavior of the building
at various vibration amplitudes or lateral displacements, varying from a low level to a state
close to collapse.

Recently, several monotonic and cyclic MPAs of RC high-rise buildings with various
configurations have been carried out [12–14,38]. Their results indicate that the capacity
curves of the fundamental mode and other higher modes can be approximately idealized
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as a trilinear curve, as depicted in Figure 8. In this figure, the capacity curve shows the
relationship between the modal base shear (Vi(0)) and modal roof displacement (ui(H)).
The roof displacements of the ith vibration mode (ui(H)) at points A, B, and C are denoted
by ui,c(H), ui,y(H), and ui,u(H), respectively, and the corresponding base shears (Vi(0)) are
indicated by Vi,c(0), Vi,y(0), and Vi,u(0), respectively.
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In the initial state (between points O and A), the building response is essentially linear
elastic with high stiffness, referred to as the initial stiffness. In this state, although certain
masonry infill walls may begin to crack, their effect on the capacity curve appears to be
insignificant. When the response exceeds point A, a significant reduction is observed in the
stiffness, resulting in a softening behavior. The softening effect is found to be caused by
flexural cracking in the RC walls at point A. The cracking is typically first formed in the
primary RC wall, which has the highest flexural rigidity (EI) and largest cross-sectional
dimensions, and is followed by other RC walls. In many cases where RC walls in the
buildings are similar in cross-sectional dimensions, their cracking begins at nearly the same
level of the roof displacement. As the roof displacement increases from point A to point B,
more severe cracking in masonry walls will develop, and some are even crushed, while
some RC columns may begin to crack, but all these damages appear to have no significant
effect on the softening behavior of the building. The stiffness between points A and B is
referred to as the post-crack stiffness.

When the roof displacement exceeds point B, another significant reduction in stiffness
occurs owing to the flexural yielding in RC walls. Similar to the cracking at point A,
yielding first occurs in the primary RC wall at point B and subsequently occurs in other
RC walls. As the roof displacement increases from point B to point C, some RC columns
may yield; however, they generally have no significant effect on the post-yield behavior of
the building. The stiffness between points B and C is referred to as the post-yield stiffness,
which is typically found to be about 0.1 to 0.2 times the post-crack stiffness [12–14,38].

When the response reaches and exceeds point C, there will be a significant lateral
strength degradation, and the structure will be about to collapse. It means that some
primary lateral load resisting members have already failed (e.g., shear demand has already
reached the shear capacity of the primary wall). The calculation beyond this point even
by using a nonlinear FEM is not reliable nor accurate. The modal roof displacement at
point C, ui,u(H), is approximately two to three times that of point B, ui,y(H). Previous
studies [12–14,38] have determined that the modal hysteretic response rarely reaches this
drift level, ui,u(H).

Similar to the capacity curve, the cyclic modal hysteretic response behavior can be
classified into three different states, namely, linear elastic, flag-shaped, and modified flag-
shaped. When the maximum roof displacement is less than ui,c(H) (point A), the cyclic
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behavior is essentially linear elastic (Figure 9a). When the maximum roof displacement
is between ui,c(H) (point A) and ui,y(H) (point B), the cyclic behavior is flag-shaped, as
depicted in Figure 9b. When the maximum roof displacement is between ui,y(H) (point B)
and ui,u(H) (point C), the cyclic behavior is a modified flag-shaped type, as shown in
Figure 9c.
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For the flag-shaped type (Figure 9b), in the loading phase (O→A→1), the response
follows the initial stiffness until it reaches point A, where flexural cracking of the primary
RC wall starts to form, resulting in a significant stiffness reduction. Subsequently, it follows
the post-crack stiffness until it reaches point 1. In the unloading phase (1→2→3→O), the
unloading path can be divided into three segments. The first segment is the unloading
path from point 1 to point 2 with an unloading stiffness approximately equal to the initial
stiffness. The decrease in the base shear is equal to β times Vi,y(0). The second segment is
the unloading path from point 2 to point 3, where the opening flexural cracks in the RC
walls are completely closed. The closing of the crack is primarily caused by the reduction
in the bending moment and the effect of the gravity load (axial compression) in these RC
walls. The stiffness of this unloading path is approximately equal to the post-crack stiffness
in the loading phase. The third segment is the unloading path from point 3 to point O. As
all flexural cracks are already closed, the RC walls behave as uncracked walls, exhibiting
uncracked (initial) stiffness with no residual deformation when the load reduces to zero.

Based on the aforementioned loading–unloading mechanism, the cyclic modal hys-
teretic behavior is flag-shaped, which is a nonlinear and self-centering behavior. The width
(hoist) of the flag is defined by the β parameter, whose value varies from building to build-
ing. A building with a low β value has a narrow flag shape and low hysteretic energy loss,
whereas a building with a high β value has a wide flag shape and high hysteretic energy
loss. The β value is essentially associated with the crack-closing mechanism. We observed
that buildings with high axial compression load (P) in RC walls, caused by the gravity load,
tend to have their flexural cracks closed more easily, resulting in low β values. Conversely,
in buildings with RC walls having a high number of vertical reinforcement bars, which act
as resisting elements of crack closing, flexural cracks tend to be harder to close, resulting
in high β values. Therefore, the β parameter is considered to be strongly associated with
a dimensionless structural index P/Ps, where Ps denotes the cross-sectional area of the
vertical reinforcement rebar (As) multiplied by its yield strength ( fy). For buildings with
multiple walls, this index should be determined using the parameters of the primary RC
wall at its cross-section where flexural cracks occur. More discussion on the β parameter is
given in Section 5.2.

When the maximum roof displacement is between ui,y(H) (point B) and ui,u(H) (point C),
the cyclic behavior is a modified flag-shaped type, as shown in Figure 9c. In the loading
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phase (O→A→B→4), the response follows the initial stiffness until it reaches point A,
followed by the post-crack stiffness until it reaches point B, where flexural yielding of the
RC wall occurs. Subsequently, it follows the post-yield stiffness until it reaches point 4,
where a plastic deformation of ui,p(H) is developed. In the unloading phase (4→5→6), the
unloading path can be divided into two segments. The first segment is the unloading path
from point 4 to point 5, which exhibits an unloading stiffness that is approximately equal
to the initial stiffness. The decrease in the base shear is approximately equal to β times
Vi,y(0). The second segment is the unloading path from point 5 to point 6, which is the
zero-load point. At this point, certain flexural cracks in the RC walls remain open owing to
the residual plastic strain in the vertical rebars, resulting in a residual lateral deformation
ui,r(H). After the loading direction is reversed and loading is increased, these flexural cracks
close, and the response rejoins the loading path with the initial stiffness in the opposition
direction (point 7).

This modified flag-shaped behavior with residual deformation exhibits a greater hys-
teretic energy loss compared with the previous state (flag-shaped). Pandey [39] investigated
the first-mode residual deformation of three high-rise buildings and determined that this
residual deformation relies on the post-yield deformation, and their empirical relationship
can be obtained as

ui,r(H) = 0.5(ui,p(H))1.35 (26)

The correlation coefficient (r) of this regression formula is as high as 0.82, indicating a
strong correlation between ui,p(H) and ui,r(H). Although this empirical relationship was
developed from the first-mode responses, this study assumes that it is applicable to other
higher modes as well. Further investigations are required to verify this assumption. How-
ever, in most seismic response calculation cases, the modal hysteretic response of higher
modes rarely reaches this modified flag-shaped state.

This explanation of hysteretic responses can be used when the structure deforms from
the maximum positive to the maximum negative, referred to as the full cycle. However, the
structure might not deform in the full cycle when subjected to random earthquake loading.
Therefore, a set of hysteretic rules is required to predict the modal hysteretic behavior under
several different response paths. Based on the cyclic MPA of three high-rise buildings with
different loading histories, Pandey [39] identified a set of hysteretic rules, which can be
briefly explained as follows.

Figure 10a depicts the first and second full cycles of the modal hysteretic response.
In the first cycle (solid gray line), the loading curve always follows the capacity curve
(O→A→B→C) in both directions, and the unloading paths follow the full cycle responses,
as depicted in Figure 9. When the loading begins in the second cycle (O→1), denoted
by the blue line, the response curve aims toward the previous maximum point (point 1).
After it reaches this point, the curve follows the capacity curve until it is unloaded. When
it is unloaded (3→4→5), the curve follows the unloading rule for the first cycle until it
reaches the residual deformation point (point 5). Subsequently, it is reloaded to the previous
maximum point in the opposite direction (point 2), and it follows the backbone capacity
curve in the opposite direction. The response curve follows a similar rule when unloaded.

Figure 10b shows the path when the structure is reloaded before it deforms in the
opposite direction. When the structure is reloaded from a certain point (point a, b, or c) in
the positive direction, the reloading curve aims toward the previous maximum point in
that direction (point 2). Conversely, if it is on the negative side, the reloading curve aims
toward the previous maximum negative point (point 6). Figure 10c shows the path when
the structure is unloaded before reaching the previous maximum point. The unloading
curve follows the unloading rule of the full cycle.

The aforementioned hysteretic behaviors are referred to as modal hysteretic rules. A
more complete set of modal hysteretic rules was reported by Pandey [39]. For any given
vibration mode, if the coordinates of points A and B of its capacity curve and β value
are known, then one can construct the modal hysteretic model by following these modal
hysteretic rules.
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5.2. Construction of the Modal Hysteretic Model Using CSFCBM

As mentioned earlier, monotonic and cyclic MPAs are the direct methods of esti-
mating the coordinates (points A and B) and β value, respectively. However, these are
time-consuming and laborious tasks as a nonlinear FEM of the building is required for
performing such analyses. Hence, this section explains the method of estimating the co-
ordinates and β value for each vibration mode of the building without using MPAs. The
coordinates were determined using CSFCBM, whereas the β value was estimated using the
structural index (P/Ps).

As explained in Section 5.1, the primary RC wall begins to crack at point A. Therefore,
at this point, the strain at the extreme fiber of the primary wall should reach the concrete
cracking limit (εcr). When the building vibrates in the ith mode, the maximum strain at the
extreme fiber of the primary wall at height x above the ground (εi,ext(x, t)) is the sum of
the initial compressive strain induced by the gravity load (εg(x)) and the flexural strain
induced by the lateral deformation of the ith mode (εi, f (x, t)). When εi,ext(x, t) reaches εcr
at any height x, flexural cracking is expected to form at that height.

εi,ext(x, t) = εg(x) + εi, f (x, t) = εcr (27)

The cracking limit εcr can be estimated by dividing the tensile strength ( ft) of the
concrete by its elastic modulus (Ec). As recommended by ACI-318 [33], ft is approximately
0.1 times the expected compressive strength (1.3 fc′). As Ec is the modulus at the low-
stress level, it is assumed to be approximately 1.5 times the ACI’s concrete secant modulus
(4700

√
fc′ ) to account for the nonlinear stress–strain relationship of concrete. Based on these

assumptions and approximations, εcr for concrete with fc′ of approximately 35–50 MPa is
approximately 100 µmm/mm.

The initial compressive strain at height x (εg(x)) depends on the axial compression
load in the primary wall (P(x)), which is equal to the sum of gravity loads of all floors
above that height. On each floor, the gravity load can be estimated by multiplying the
distributed gravity load per unit area by the tributary area of the wall. For simplicity, this
initial compressive strain is assumed to be uniformly distributed across its cross-section;
therefore, it can be estimated as εg(x)= P(x)/(E c Ag(x)), where Ag(x) denotes the gross
cross-sectional area of the primary wall at height x. Herein, Ag(x), the tributary area,
and the gravity load can be determined using the as-built drawings of the building. In
every building, εg(x) increases from zero at the top to the maximum value at the base, as
indicated by the solid black line in Figure 11.
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The flexural strain at the extreme fiber of the primary wall (εi, f (x, t)) is equal to
the absolute curvature (|ϕi(x, t)|) multiplied by the distance from the neutral axis to the
extreme tension face (Lt): εi, f (x, t) = |ϕi(x, t)|Lt. The distance Lt can be determined by
a section analysis of the uncracked section of the primary wall. According to the derived
relationship of the CSFCBM (Equation (21)), the curvature is linearly proportional to the
modal coordinate (Di(t)). The modal coordinate at which flexural cracking occurs in the
primary wall (denoted by Di,c) can be determined using Equation (27). For instance, when
the building deforms in its first mode, cracking occurs at the base when D1,c = 92.5 mm.
Alternatively, if the building deforms in its third mode, cracking occurs at x = 0.7H when
D3,c = 8.2 mm. Based on Equation (4), the corresponding modal roof displacement at this
cracking condition (point A) can be determined as ui,c(H) = Γiφi(H)Di,c.

The next step involves determining the corresponding modal base shear at point A,
Vi,c(0). Considering that the responses of the ith mode from the initial state (point O) to the
cracking point (point A) remain in the linear elastic range, the corresponding governing
equation of motion (Equation (1)) should be that of a linear SDOF system with a natural
circular frequency ωi. Therefore, the modal restoring force at the cracking point Fsi,c of the
ith vibration mode can be evaluated as

Fsi,c/Li = ωi
2Di,c (28)

Using the relationship between the modal base shear (Vi(0) and Fsi in Equation (3)),
the corresponding modal base shear at point A (Vi,c(0)) can be determined as

Vi,c(0) = ωi
2ΓiLiDi,c (29)
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Subsequently, the coordinates of point B are determined. As explained in Section 5.1,
the flexural yield in the primary RC wall begins at point B. Therefore, at this point, the
maximum strain at the extreme fiber of the primary wall should reach the steel yielding
limit (denoted by εyl). For the ith vibration mode, the yielding condition can be expressed
as follows:

εi,ext(x, t) = εg(x) + εi, f (x, t) = εyl (30)

The yielding limit is assumed to be equal to the yield strain of the longitudinal
reinforcement steel of the wall, which is computed by dividing its expected yield strength
(1.17 fy) by its elastic modulus (Es). For typical steel reinforcement bars with fy = 400 MPa,
the yielding limit (εyl) is 2340 µmm/mm.

As explained earlier, the flexural strain at the extreme fiber of the primary wall
(εi, f (x, t)) is equal to |ϕi(x, t)|Lt. However, in this case, the distance Lt has to be deter-
mined by a section analysis of the cracked section of the primary wall because the wall has
already been cracked. The section analysis will give us not only the distance Lt but also the
nonlinear moment–curvature relationship for the wall section under the axial compression
load P(x). As flexural yielding may occur at any height above the ground, the section
analysis should theoretically be conducted for several different heights. However, since the
distance Lt may not vary much along the height, and flexural yielding typically occurs at
the base region (see Figure 11b), it is reasonable to first check this yielding condition by
using the distance Lt of the base section of the primary wall. If it turns out that yielding
may occur at any other height, one can revise the calculation of Lt for the wall section at
that height.

Assuming that the vibration mode shapes remain approximately unchanged even
after cracking or yielding of RC walls, the relationship between the bending curvature and
the modal coordinate (Di) applies as stipulated by Equation (21). The modal coordinate at
which the flexural yielding occurs in the primary wall (denoted by Di,y) can be determined
using Equation (30), as illustrated graphically in Figure 11b. Finally, based on Equation (4),
the corresponding modal roof displacement at this yielding condition (point B) can be
determined as ui,y(H) = Γiφi(H)Di,y.

The corresponding modal base shear at point B (Vi,y(0)) can be approximately esti-
mated using the following four-step procedure. Step 1 is to determine the overturning
moment at the base of the primary wall at this point. Step 2 is to estimate the corresponding
overturning moment at the base resisted by all the RC walls of the building. Step 3 is to
estimate the corresponding overturning moment at the base resisted by all components
(walls, frames, etc.) of the building. Step 4, which is the final step, is to determine the
corresponding base shear of the building.

In step 1, at point B, the flexural yielding occurs in the primary wall, where the strain
at an extreme fiber at a certain height x reaches the yielding limit (εyl). From the section
analysis, the yielding moment occurring at that height can be determined. If yielding
occurs at the wall base (x = 0), then this moment is the base overturning moment at the
yielding point. However, if yielding occurs at any other height x, then the corresponding
base overturning moment can still be estimated since the bending curvature throughout
the entire height at this yielding point is known (see also Figure 11b).

In step 2, since all RC walls in the building are laterally deformed in the same shape,
all RC walls exhibit the same bending curvature profiles. We can then estimate the corre-
sponding base overturning moment of each individual RC wall at this yielding point. This
estimate requires the cross-sectional properties of every RC wall and its section analysis.
By assuming that all RC walls are isolated (i.e., no coupled walls), the overturning moment
at the base resisted by all RC walls, OMi,wall,y(0), can be estimated by summing the base
overturning moments of all individual walls. In reality, there might be coupled walls in the
building. However, as long as the effect of coupling is not significant, the “isolated wall” as-
sumption should be approximately valid. Note that this estimate can be further simplified
by considering that in most cases, all RC walls yield at the base, and their yielding occurs
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at the roof displacement close to ui,y(H). In such cases, OMi,wall,y(0) can be approximately
estimated by summing all the yielding moments at the wall bases.

In step 3, the overturning moment at the base resisted by all components (walls,
frames, etc.) of the building is to be evaluated; this moment is denoted as OMi,y(0).
According to CSFCBM, OMi,wall,y(0) is the base overturning moment of the flexural beam
(OMi

f (0, t)), and OMi,y(0) is the combined base overturning of the flexural and shear
beams (OMi

t(0, t)). By using Equations (19) and (20), the ratio of these two moments can
be determined. Therefore, OMi,y(0) can be estimated as

OMi,y(0) =
OMt

i (0, t)

OM f
i (0, t)

OMi,wall,y(0) (31)

Note that CSFCBM was created to approximately represent the building in the linear
elastic range. As the yielding point B is well beyond this range, the model’s predictions
for OMi

f (0, t) and OMi
t(0, t) are inaccurate. However, by checking with all case study

buildings, the ratio of these two moments was found to be accurately predicted by CSFCBM,
even up to this yielding point.

In step 4, the modal base shear at point B (Vi,y(0)) is determined. Throughout this study,
the deformation shape of the building in the ith mode was assumed to remain identical
to that of the ith elastic mode shape, even after cracking or yielding. By this assumption,
the modal inertia force pattern also remains unchanged. Consequently, the base shear
and base overturning moment of this mode are both proportional to Fsi/Li, as indicated
in Equations (3) and (5), respectively. The ratio between them is constant, and as a result,
Vi,y(0) can be determined from OMi,y(0) by

Vi,y(0) =
OMi,y(0)

Hi,e f f
(32)

where Hi,e f f denotes the effective modal height, determined as follows:

Hi,e f f =

N
∑

j=1
xjmjφi(xj)

Γi Mi
(33)

After the coordinates at points A and B in each vibration mode are determined by
the procedures explained above, the next (and final) step is to estimate the β value, which
is considered to be strongly associated with dimensionless structural index P/Ps of the
primary wall. To determine the relationship between β and P/Ps, cyclic MPAs were
performed for the first three modes of all four case study buildings. The maximum roof
displacements of these MPAs were set between points A and B to obtain the clearest flag-
shaped relationship between Vi(0) and ui(H). Subsequently, a flag-shaped hysteretic model
with a certain β value was mapped to the result. The mapping process was repeated
iteratively with different coordinates of points A and B and different β values by trial and
error until the hysteretic model best fit the result, particularly the area enclosed by the
hysteretic loop (flag area).

The best-fitted β values from all study cases are plotted against their corresponding
P/Ps in Figure 12. Their relationship can be approximated by the best-fitted linear regression
formula (dashed line in Figure 12), as follows:

β = −0.13(P/Ps) + 0.40 (34)
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The correlation coefficient (r) of this regression formula is as high as 0.75, indicating
a strong correlation between β and P/Ps. The result clearly indicates that the β value
of other high-rise buildings can be approximately estimated from P/Ps using the above
formula. Further investigation on this β–P/Ps relationship using more case study buildings
is recommended to confirm the reliability and accuracy of this approach. There might be a
better structural index that has a stronger relationship with β.

It should be noted that if a linear FEM of a high-rise building is available, there is no
need to construct the building’s CSFCBM since the required relations and parameters in
this section can be obtained from its linear FEM.

5.3. Verification of the Modal Hysteretic Model

In this sub-section, the accuracy of the proposed procedure for estimating the modal
hysteretic model is verified. First, the coordinates at points A and B computed using the
procedures explained in Section 5.2 are checked by comparing them with those determined
directly from the capacity curves. These curves are obtained from the monotonic MPA for
the first three modes in both the x and y axes of all four case study buildings. Comparisons
of the normalized modal base shears and roof drift ratios at points A (cracking) and B
(yielding) are illustrated in Figure 13. It should be noted that the roof drift ratios can be
calculated as the roof displacement divided by its height (H), presented in percentage units,
whereas the normalized modal base shears can be calculated as the base shears divided by
the building’s weight (W). The results indicate that the coordinates at points A and B can
be estimated with reasonable accuracy using the proposed procedure.
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Second, the modal hysteretic models generated from the coordinates (point A and
B) and β values estimated using the proposed procedure are verified by comparing them
with those determined directly from the cyclic MPA. In these models, the hysteretic rules
and residual deformation relationship developed by Pandey [39] are followed, and the
post-yield stiffness is assumed to be 0.2 times its post-crack stiffness for estimating the
response beyond point B. The comparison is presented as cycle-by-cycle plots of the modal
hysteretic responses of building B2 on the x axis, as depicted in Figure 14. Four levels
of displacement amplitude were selected for this comparison, namely, low (0.1ui,y(H)),
middle (0.5ui,y(H)), yield (1.0ui,y(H)), and post-yield (1.5ui,y(H)). The results verify that
the estimated modal hysteretic models concur reasonably well with those obtained from
the cyclic MPA in all displacement ranges. Similar verification was also conducted for
three other case study buildings in both directions, and similar good results were obtained,
confirming the applicability of the proposed procedure. More details on the verification of
the developed modal hysteretic model can be found in Suwansaya [37].

It should be noted that this hysteretic model is novel, so it is not available in any
conventional software packages. Therefore, we created a personal version subroutine for
this hysteretic model using C++ code that can used with the Opensees platform [40]. This
subroutine is shown as a Supplement File of this article.
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6. Verification of the Simplified Procedure

In this section, the validity and accuracy of the proposed simplified procedure based
on UMRHA and CSFCBM are carefully checked. Various seismic demands of the four
case study buildings under different ground motions were computed using the proposed
simplified procedure, and these demands were compared with those computed by NLRHA
using 3D nonlinear FEMs. Three pairs of horizontal ground motions, namely, EQ1, EQ2, and
EQ3, were selected from the Pacific Earthquake Engineering Research Center (PEER) strong
ground motion database for the comparison [41]. These motions were recorded on site class
D, with VS30 between 180 and 360 m/s, during three different shallow crustal earthquake
events with moment magnitudes between 6.8 and 7.3 and source-to-site distances between
2.5 km and 57 km. Figure 15 illustrates the geometric mean response spectrum with a
damping ratio of 2.5% for each and every pair. It can be seen that EQ1 exhibits a relatively
short-period motion, EQ3 exhibits a relatively long-period motion, and EQ2 is somewhere
in between.

To determine the seismic responses of each case study building using the NLRHA
procedure, a pair of horizontal motions were applied as simultaneous base excitations
along the x and y axes of the building. Its 3D nonlinear FEM is described in Section 4.1. The
time histories of story-level responses, such as story shear and interstory drift ratio, and
component-level responses, including bending curvature in a wall, were calculated. Addi-
tionally, the seismic demands, including the positive and negative maximum responses,
were determined. Although this procedure was straightforward, it was highly laborious
and time-consuming, as mentioned earlier.

The seismic response analysis performed using the simplified procedure begins with
the formation of a CSFCBM for each orthogonal axis (x and y) of the building. The model
was formulated using the four basic building parameters, namely, H, m, T1, and α, obtained
from the process described in Section 4.3. With this CSFCBM, important modal properties
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of the building in the axis of interest can be determined using closed-form formulas, as
described in Section 3; these properties include the mode shape (φi), natural period (Ti), and
modal parameters (Li, Mi, and Γi) for i = 1, 2, 3, . . . . At this step, the governing equation
of motion of the ith mode can be formulated in terms of the modal coordinate Di(t) in a
standard format (Equation (1)). The modal damping ratio ξi was set to 2.5% in every mode.
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Subsequently, the ith modal hysteretic model was formulated using the procedure
described in Section 5.2. This model, which is expressed as the relationship between the
modal base shear (Vi(0)) and modal roof displacement (ui(H)), was then transformed into
the corresponding Fsi–Di relationship using Equations (2) and (3). Based on this, the modal
responses of the building to an input ground motion

..
ug(t) can be numerically calculated

from the standard nonlinear governing equation (Equation (1)), and they are expressed as
the time histories of Di(t) and Fsi(t). To satisfy the requirement that the sum of the effective
participating masses of the building should exceed 90% of the total mass, the responses
of the first five transverse modes must be computed for each orthogonal axis. As the
modal responses of the fourth and fifth modes are found to be linear elastic in all excitation
cases, the calculation can be further simplified for such higher modes by assuming a linear
elastic behavior.

At this step, all deformation-related responses, including the lateral floor displacement
and interstory drift ratio of the ith mode, were computed from Di(t), whereas all force-
related responses, including the story shear and story overturning moment, were computed
from Fsi(t) using the procedure described in Section 2. By direct summing the responses of
all significant modes, which include five modes each on the x and y axes, the time histories
of various seismic responses can be obtained, and the corresponding seismic demands can
be determined.

Figure 16 shows examples of the computed seismic responses of building B3 to EQ1.
Figure 16a depicts the modal base shear of the first five modes in the x axis computed
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using the simplified procedure. As can be observed, the modal base shear of the second
mode is the highest among those of all participating modes. Their sum, the base shear, as
shown in Figure 16b, is also dominated by the contribution from the second mode and
is well matched with that computed by the NLRHA procedure. The latter is obtained
by adding the shear forces of all RC walls, columns, and masonry infill walls at the base
of the building. The base shear demand from the NLRHA procedure, as denoted by the
white dot, is extremely close to that of the simplified procedure denoted by the red dot. A
similar comparison is also made for the story shear at the 13th floor, which is approximately
one-fourth of the building height; the results concurred adequately in this case as well.
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Figure 17 illustrates the comparison of various story-level seismic demands of building
B3 subjected to EQ1, EQ2, and EQ3 computed using the two procedures. In all cases,
reasonably adequate concurrence was obtained, confirming the reliability and accuracy of
the simplified procedure. The figure also includes the contributions to seismic demands
from each individual mode computed using the simplified procedure. The contributions
from all five modes to the story shear demand are found to be significant, and none of them
can be neglected. Conversely, the lateral displacement and interstory drift ratio demands
are well dominated by the contributions from the first two modes; the contributions from
other higher modes can be ignored. These results provide an improved understanding of
the contributions from different vibration modes to various seismic demands.



Buildings 2023, 13, 670 30 of 36

Buildings 2023, 13, x FOR PEER REVIEW 31 of 38 
 

Figure 17 illustrates the comparison of various story-level seismic demands of build-
ing B3 subjected to EQ1, EQ2, and EQ3 computed using the two procedures. In all cases, 
reasonably adequate concurrence was obtained, confirming the reliability and accuracy of 
the simplified procedure. The figure also includes the contributions to seismic demands 
from each individual mode computed using the simplified procedure. The contributions 
from all five modes to the story shear demand are found to be significant, and none of 
them can be neglected. Conversely, the lateral displacement and interstory drift ratio de-
mands are well dominated by the contributions from the first two modes; the contribu-
tions from other higher modes can be ignored. These results provide an improved under-
standing of the contributions from different vibration modes to various seismic demands. 

 
Figure 17. Comparison between various responses of the simplified and NLRHA procedures for all
ground motion of building B3 in the x axis (a) Floor displacement under EQ1, (b) Interstory drift under
EQ1, (c) Story shear under EQ1, (d) Story overturning moment under EQ1, (e) Floor displacement
under EQ2, (f) Interstory drift under EQ2, (g) Story shear under EQ2, (h) Story overturning moment
under EQ2, (i) Floor displacement under EQ3, (j) Interstory drift under EQ3, (k) Story shear under
EQ3, (l) Story overturning moment under EQ3.

In addition to story-level seismic demands, component-level seismic demands play a
significant role in the building’s seismic evaluation. Although CSFCBM can be used to esti-
mate the responses contributed by all RC walls and frames, it cannot be used to determine
the individual component responses. Therefore, several assumptions were introduced to
distribute such responses to individual component responses. Two shear walls of building
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B3, a C-shaped shear wall and a box core wall (Figure 18), were selected to demonstrate the
estimation of the responses in each individual wall using the simplified procedure.
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Assuming that the vibration mode shapes, and modal inertia loads of the ith mode
remain approximately unchanged during the response time history, the force-related re-
sponses contributed by all RC walls of the ith mode, such as the story shear and over-
turning moment, can be determined by multiplying the force-related responses of the
ith mode with the modal force contribution of the flexural beam to the total responses
(Equations (17)–(20)). For example, the story shear contributed by all RC walls of the
ith mode (Vi,wall(x, t)) can be determined by multiplying the story shear of the ith mode
(Vi(x, t)) with the ratio of modal shear force in the flexural beam (Vi

f (x, t)) to the total
responses (Vi

t(x, t)) in CSFCBM. To distribute these force-related responses among the RC
walls, all RC walls are assumed to be isolated; hence, their bending curvature profiles of the
ith mode are identical. Based on this assumption, the story shear and overturning moment
of the ith mode in each individual wall (Vi,wall(x, t)j and OMi,wall(x, t)j) are proportional
to the ratio of its flexural rigidity to the total flexural rigidity in that story. The total flexural
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rigidity can be determined by adding the flexural rigidity of all RC walls in a specific story.
Therefore, Vi,wall(x, t)j and OMi,wall(x, t)j can be estimated as follows:

Vi,wall(x, t)j =
EIwall(x)j

Nw
∑

j=1
EIwall(x)j

Vi,wall(x, t) (35)

OMi,wall(x, t)j =
EIwall(x)j

Nw
∑

j=1
EIwall(x)j

OMi,wall(x, t) (36)

The flexural rigidity of each individual wall (EIwall(x)j) can be determined using the
gross properties specified in the as-built drawings. Although each individual wall might
crack or yield at any level, resulting in changes in its flexural rigidity, we determined that
this ratio computed under gross properties accurately distributes the responses among
all RC walls in all case study buildings. The force-related responses of each wall of the
ith mode can be combined using Equation (6) to determine the force-related demands.
Figure 18a,b show examples of the computed story shear and overturning moment demands
of the two RC walls in building B3 when subjected to EQ1. The results indicate that the
simplified procedure computes responses that are reasonably close to those computed by
the NLRHA procedure.

Next, the deformation-related responses, such as the section curvature and strain at
the extreme fiber, are determined. The section curvatures of all RC walls of the ith mode
can be determined using Equation (21). Similarly, the section curvatures of the ith mode of
each wall can be combined using Equation (6) to determine the section curvature demands.
On the other hand, the section curvature demands from NLRHA are computed from the
maximum of the difference in vertical strains at two opposite extreme fibers of the wall.
Figure 18c illustrates examples of the computed section curvature demands of the two RC
walls in building B3 when subjected to EQ1. The results indicate that the estimated section
curvatures concur well with those obtained from the NLRHA, and the curvatures along
the height of both walls are nearly identical. The latter verifies that the “isolated wall”
assumption is valid.

Subsequently, the corresponding maximum tensile and compressive strain demands at
the extreme fiber of the wall are computed. The strain computed by the NLRHA procedure
was determined directly using the strain gauge element attached to the extreme fiber of the
wall. The corresponding maximum tensile and compressive strains were determined by the
maximum positive and negative strains, respectively. These strains are already included in
the initial compressive and flexural strains.

For the simplified procedure, the initial compressive and flexural strains of the ith

mode of the wall can be determined using the procedure described in Section 5.2. If the
distance from the neutral axis to the tension face (Lt) is used in Equation (22), the flexural-
induced tensile strain of the ith mode can be determined. Conversely, if the distance
from the neutral axis to the compression face (Lc) substitutes Lt in Equation (22), the
flexural-induced compressive strain of the ith mode can be determined. Herein, Lt and Lc
were determined from the section analysis of the cracked section at the wall bases. The
total flexural-induced compressive and tensile strain can be determined by combining the
flexural-induced compressive and tensile strain of the ith mode using Equation (6).

The corresponding maximum tensile and compressive strain demands can be com-
puted by adding the initial compressive strain to the total flexural-induced tensile and
compressive strain demands, respectively. Figure 18d depicts examples of the computed
maximum tensile and compressive strain demands at the extreme fiber of two RC walls in
building B3 when subjected to EQ1. The location of the computed strain is denoted by a
circle in this figure; the results match adequately.



Buildings 2023, 13, 670 33 of 36

Subsequently, the influence of the building configurations, characteristics of ground
motion, and intensity level on the accuracy of the simplified procedure are examined. For
this purpose, the selected ground motions (EQ1, EQ2, and EQ3) were scaled to eight levels
ranging from 0.2 to 1.6 and applied to entire case study buildings using both NLRHA
and the proposed procedure. Owing to numerous output seismic demands (96 cases),
the maximum normalized base shear (Vi(0)/W), normalized base overturning moment
(OMi(0)/WH), roof drift ratio (ui(H)/H), and interstory drift ratio (IDR) are primarily
considered in this comparison.

Figure 19 depicts a comparison of the seismic demands obtained from the simplified
and NLRHA procedures under eight scales of three ground motions. It is noted that
the roof drift ratios and interstory drift ratios, which are measured at the top story of
the building, are presented in percentage units. The filled and unfilled shapes represent
the responses on the x and y axes, respectively. The results indicate that the simplified
procedure can accurately estimate the seismic responses of all case study buildings when
they are subjected to various intensities and characteristics of ground motion. Even when
the buildings are subjected to extremely strong ground motion (scale > 1.0), the simplified
procedure estimates the structural responses of the buildings with reasonable accuracy.
Furthermore, no discernible effect of building configuration, ground motion characteristics,
or seismic intensity is observed on the accuracy of the simplified procedure.
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In this study, an Intel Core i5-11400 32G RAM computer was used for all of the
analysis. Table 5 shows the total calculation time for each case study building excited by
the eight levels of EQ1, EQ2, and EQ3 using both procedures. The total calculation time is
divided into three phases: modeling phase, analysis phase, and post-processing phase. The
modeling phase refers to the time to construct the nonlinear FEM for NLRHA procedure
and to estimate the six hysteretic models for simplified procedure. The analysis phase
refers to the time to perform dynamic analysis of nonlinear FEM for NLRHA procedure
and of ten SDOF systems for the simplified procedure for eight levels of EQ1, EQ2, and
EQ3 (24 cases). The post-processing phase refers to the time to process the results into
the final format for both procedures (Figures 17–19). Obviously, the total calculation time
required by the NLRHA procedure varies from about 7 to 45 times that required by the
UMRHA procedure. For a large number of analysis cases, NLRHA may require weeks or
months to complete the calculations, whereas the simplified procedure can complete them
in a few days.

Table 5. Total calculation time of the four case study buildings.

Times (Hour)
S1 B1 B2 B3

NLRHA Simp. NLRHA Simp. NLRHA Simp. NLRHA Simp.

Modeling phase 40.4 1.0 80.5 1.0 30.2 1.0 137.0 1.0
Analysis phase 44.4 1.0 88.7 1.0 33.2 1.0 150.8 1.0

Post-processing phase 13.5 8.3 26.8 7.8 10.1 7.6 45.7 8.3

Total calculation 98.3 10.4 196.0 9.7 73.4 9.6 333.5 10.3

7. Conclusions

This study presents a simplified analysis procedure for estimating the inelastic seismic
responses of numerous high-rise buildings with RC shear walls. The proposed procedure
was developed from the UMRHA procedure and the CSFCBM. The UMRHA procedure
was used to compute the inelastic seismic responses mode by mode, with each vibration
mode acting as a nonlinear SDOF system. Because such a model requires knowledge
of modal properties and modal hysteretic behavior, the former can be determined by a
cyclic MPA of a nonlinear FEM, and the latter can be determined by an eigen analysis of
a linearized FEM. However, creating such a model necessitates a significant amount of
effort and expertise. Therefore, CSFCBM was introduced to avoid the use of a nonlinear
FEM, allowing rapid computation of the inelastic seismic responses of high-rise buildings.
Four high-rise buildings with RC shear walls that have different floor plan configurations,
shear wall arrangements, and heights ranging from 19 to 45 stories were used to verify its
accuracy. The results show that the proposed procedure can estimate the nonlinear seismic
demands of these buildings with reasonable accuracy, at both the story and the component
level. The proposed procedure has several possible applications due to the advantages
of extremely low computational time, minimal data requirements, and minimal use of a
nonlinear technique. It can be used to estimate the seismic damage and losses of many high-
rise buildings in a city in the event of an earthquake. It can also be used in the preliminary
design phase of a high-rise building to quickly assess various seismic design options.
However, the proposed procedure has the limitation of being based on several empirical
relationships derived from the four case study buildings. Further research including
additional buildings is required to confirm the accuracy and reliability, as there might be
better relationships that can be used to determine the required parameters (for example, α
and β). In such cases, the proposed procedure’s accuracy can be improved further.
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