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Abstract: Conceptual cost estimation is an important step in project feasibility decisions when there
is not enough information on detailed design and project requirements. Methods that enable quick
and reasonably accurate conceptual cost estimates are crucial for achieving successful decisions in the
early stages of construction projects. For this reason, numerous machine learning methods proposed
in the literature that use different learning mechanisms. In recent years, the case-based reasoning
(CBR) method has received particular attention in the literature for conceptual cost estimation of
construction projects that use similarity-based learning principles. Despite the fact that CBR provides
a powerful and practical alternative for conceptual cost estimation, one of the main criticisms about
CBR is its low prediction performance when there is not a sufficient number of cases. This paper
presents a bootstrap aggregated CBR method for achieving advancement in CBR research, particularly
for conceptual cost estimation of construction projects when a limited number of training cases are
available. The proposed learning method is designed so that CBR can learn from a diverse set of
training data even when there are not a sufficient number of cases. The performance of the proposed
bootstrap aggregated CBR method is evaluated using three data sets. The results revealed that the
prediction performance of the new bootstrap aggregated CBR method is better than the prediction
performance of the existing CBR method. Since the majority of conceptual cost estimates are made
with a limited number of cases, the proposed method provides a contribution to CBR research and
practice by improving the existing methods for conceptual cost estimating.

Keywords: ensemble learning; case-based reasoning; conceptual cost estimating

1. Introduction

Conceptual cost estimates are usually needed at the very early stages of construction
projects for feasibility and budgeting decisions. As detailed design is performed after
the feasibility decisions, the design drawings and specifications are not available during
these early stages and conceptual cost estimates have to performed with very limited
information. Hence, conceptual cost estimates are not expected to be as precise as the
detailed cost estimates. On the other hand, since key project decisions are based on the
conceptual cost estimates, inaccurate estimates may lead to lost opportunities and lower
than expected returns [1]. Therefore, methods that enable quick and reasonably accurate
conceptual cost estimates are crucial for achieving successful decisions in the early stages
of construction projects.

Numerous statistical and machine learning methods have been presented in the
literature for conceptual estimation of construction costs. The majority of proposed methods
use historical data of project costs and the information of parameters impacting costs. In
recent years, the case-based reasoning (CBR) method has received particular attention as it
does not require the development of an explicit domain model unlike the majority of the
statistical and machine learning methods. A review of CBR methods revealed that cost
estimation has been the top CBR application area in construction management [2].
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In the CBR method, previous cases are adapted to determine a solution to a new
problem or to make a prediction for a new case. One of the main advantages of CBR is
that it does not require development of an explicit domain model [3]. CBR could also be
used when the data of cases are incomplete or limited [4]. However, in cost estimation,
as previous projects are not exactly the same as the new project, CBR may not achieve
successful predictions when there are not a sufficient number of cases [5].

Since the majority of conceptual cost estimates are based on predictions developed
with limited small data sets, a few studies suggested compensating attributes deviations
between the new case and the retrieved case for improving the accuracy of the CBR methods.
Ji et al. (2010) [6], Jin et al. (2012) [5], and Jin et al. (2014) [7] presented revision models for
improving accuracy of the CBR methods for conceptual cost estimation. Ji et al. (2018) [8]
proposed a learning method for knowledge retention based on a data-mining approach to
manage missing data set values.

In recent years, ensemble learning methods have received increasing attention within
the machine learning community as they are very effective in a broad spectrum of prob-
lem domains and real-world applications [9–11]. Numerous ensemble learning methods
have been proposed to promote diversity among different models to reduce variance and
improve accuracy. One of the ensemble learning methods is bootstrap aggregation. In the
bootstrap aggregating (bagging) method, multiple versions of a predictor are generated
by making bootstrap replicates of the learning set and these multiple versions are used to
obtain an aggregated predictor for improving accuracy [12]. Bagging is very well suited for
problems with small training data sets such as conceptual cost estimation [9]. Tests on real
and simulated data sets have shown that the bagging method can improve the accuracy
significantly for classification and regression problems [13].

Despite the fact that little research is focused on revisions models and learning meth-
ods, ensemble learning methods such as bagging have not been considered in the literature
for improving the accuracy of CBR methods. Within this context, the main objective of this
paper is to narrow these gaps in the literature and present a bootstrap aggregated CBR
method for improving the accuracy of conceptual cost estimates.

2. CBR Method for Conceptual Cost Estimation

CBR has received increasing attention in the construction management literature in
recent years, particularly for estimation of construction costs [2]. In an early study, Yau and
Yang (1998) [14] showed the potential use of CBR for cost estimating using hypothetically
generated cost data. Kim et al. (2005) [15] compared performances of regression, ANN,
and CBR methods based on the historical data of building projects and concluded that NN
and CBR models were appropriate for estimating construction costs. Ji et al. (2011) [16]
developed a military facility cost estimation system using CBR.

Numerous techniques were proposed to improve the accuracy of CBR methods for
conceptual cost estimation. One of the most common techniques is to use genetic algorithms
(GA) for optimal determination of the attribute weights. Ji et al. (2011) [16] developed an
attribute weight assignment technique in which GA optimization was performed along
with a similarity scoring method based on the Euclidean distance concept. Choi et al.
(2013) [17] combined rough set theory, CBR, and GA techniques to predict the costs of
public road construction projects. Ji et al. (2018) [8] presented a learning method for
knowledge retention in CBR cost models that updated the attribute weight using a GA.
Ji et al. (2011) [16], Jin et al. (2012) [5], and Jin et al. (2014) [7] focused on revision
algorithms and Ahn et al. (2014) adopted the impulse–momentum theorem of physics for
improving the accuracy of the CBR methods. Ahn et al. (2020) [18] examined the impact of
normalization techniques on the performance of CBR for conceptual cost estimation.

The majority of the CBR techniques that have been proposed for improving the
accuracy of the CBR cost models focus on the optimization of attribute weights or revision
algorithms. However, CBR may not provide adequate accuracy when limited data are
available for cost estimation. The literature includes very limited alternatives for improving
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the accuracy of CBR methods when there is not a sufficient number of cases. Ensemble
learning methods, particularly bagging, may provide a high potential for improving the
accuracy of conceptual cost estimates especially when limited data are available. Few
researchers have used bagging to improve the accuracy of regression trees and subset
selection in linear regression [13] and support vector machines [19]; however, to the best
knowledge of the authors, the bagging method has not been used to improve the accuracy
of CBR methods. Hence, the main objective of this research is to present a new bootstrap
aggregated CBR method to improve the accuracy of existing CBR methods for conceptual
cost estimation.

3. CBR Method with Bagging

In the proposed bootstrap aggregated CBR method (CBR-BSR), several training sets
are produced using the original training set with the bootstrap sampling method as sum-
marized in Figure 1. A CBR model is developed for each training data set using a GA-
integrated framework and each CBR model is used to predict the test sample. Finally, the
predictions are combined to determine an aggregate point estimate for each project in the
test sample. In the following sections, the proposed CBR method with bagging is explained.
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3.1. Bootstrap Method

The bootstrap method involves re-sampling of the existing data in which new R
samples, each the same size as the observed data, are randomly drawn with a replacement
from the observed data. The main idea of bootstrap is to mimic the process of sampling
observations from the population by resampling data from the observed sample [20].
Sonmez (2008) [21] integrated regression and probabilistic cost estimation techniques with
bootstrap for range estimation of construction costs. In a similar study, bootstrap is used
to quantify the prediction variability of neural network models for cost estimation [22].
Gardner et al. (2017) [23] used bootstrap-enabled stochastic conceptual cost estimating of
highway projects with neural networks without requiring any assumptions regarding the
probability distributions. The bootstrap method is utilized in a quantity range estimation
framework using support vector regression [24]. Tsai and Li (2008) [25] emphasized the
potential of bootstrap to generate virtual samples for filling the information gaps of sparse
data, and applied the bootstrap method for the modeling of manufacturing systems with
neural networks. However, to the best knowledge of the authors, the bootstrap method has
not been used in the literature for improving the accuracy of CBR methods, particularly for
conceptual cost estimation, which is the main focus of the proposed method.

3.2. Data Normalization and Resampling

In the CBR-BSR, first bootstrap resampling is performed. Hence, the proposed method
enables R samples instead of a single case sample for training. The data are normalized
before bootstrap resampling is executed. Ji et al. (2010b) [26] and Ahn et al. (2020) [18] em-
phasized the positive effect of data preprocessing on the accuracy of CBR cost models. In a
study of performance evaluation of normalization-based CBR models, Ahn et al. (2020) [18]
concluded that interval and ratio normalization are appropriate methods. In this study,
all data are normalized first using a min-max normalization with a scale of 0–1, and the
normalized data are split into training and testing sets. Then, the training case sample
c = (c1, c2, . . . , cn), which includes the data of project1, project2, . . . , projectn, is resampled
with the bootstrap method in which R bootstrap case samples c1

* = (c11
*, c12

*, . . . , c1n
*),

c2
* = (c21

*, c22
*, . . . , c2n

*), . . . , cr
* = (cr1

*, cr2
*, . . . , crn

*) of a random sample with size n
are drawn with a replacement from the population of n projects (c1, c2, . . . , cn) that are
in the test set. The star notation indicates that c* is not the actual data set, c, but rather a
resampled version of c. The bootstrap data set (c1

*, c2
*, . . . , cr

*) consists of members of the
original data set (c1, c2, . . . , cn), some appearing zero times, some appearing once, and
some appearing twice or more. The proposed CBR-BSR method uses all of the resampled
case data c1

* = (c11
*, c12

*, . . . , c1n
*), c2

* = (c21
*, c22

*, . . . , c2n
*), . . . , cr

* = (cr1
*, cr2

*, . . . , crn
*)

in the CBR training database instead of the single case sample c = (c1, c2, . . . , cn) as shown
in Figure 1.

3.3. Case Retrieval and Case Reuse

The second step in the proposed method is case retrieval and case reuse. To retrieve
similar cases from the database of training cases, a total similarity score is calculated for
each test case using Equation (1):

SST(t) = ∑I
i=0 wixSSit (1)

where SST(t) denotes the similarity score between the training set, T, and test set variables,
and t and wi denote the attribute weight of each independent variable, i. Similarity scores of
each independent variable in total, I, and number of attributes are measured with modified
Euclidian distance [27] using Equation (2):

SST(t) =
1

2
√
(Xtrain (T)− Xtest (t))

2 + 1
(2)



Buildings 2023, 13, 651 5 of 11

where t is the case that is being tested to find the most similar training cases in the CBR
database. Modified Euclidian distance shows the similarity index of a variable where 0
denotes lowest similarity and 1 denotes highest similarity. Attribute weights, wi, measure
how much an independent variable contributes to the total similarity score.

The total similarity score shows how much a test case is similar to a training case
sample. The similar cases are determined according to the kth nearest neighborhood
algorithm [28] using the total similarity score; the most similar k training cases that have
the highest similarity score are then reused to generate the prediction of the current test
case in a query. The value of parameter k needs to be determined for the CBR model to
make a prediction. If k = 1, then the most similar case is accepted as the predicted value.
If k = 3, then the most similar 3 cases are averaged for the predicted value. Finding the
optimal parameter k can be obtained by cross validation or a grid search procedure. Once
the parameter k is determined, the average of dependent variable values of the similar k
training cases are used to predict the dependent variable value of the new case.

3.4. GA Attribute Weight Optimization Framework

Attribute weights of independent variables are used to calculate the total similarity
score. The effect of each independent variable’s similarity score on the total similarity
score is proportional to the attribute weights. Attribute weights can be optimized to
improve the accuracy of the CBR models. GAs that originated from the evolutionary
computing principles [29] are commonly used to optimize the attribute weights of the CBR
models [8,16,17].

A GA framework is integrated into the proposed CBR-BSR method for optimization
of the attribute weights. The GA weight optimization framework is applied while creating
an initial population with size P as shown in Figure 2. Since I is the total number of
independent variables, and each independent variable is denoted as i, each chromosome
consists of I number of genes. The initial population is generated randomly; however, it is
scaled such that the summation of the attribute weights satisfies Equation (3). An example
chromosome is shown in Figure 3.

∑I
i=1 I(i) = 1 (3)

A fitness evaluation function is used to determine the chromosomes that will survive in
the next generation. The selection mechanism is based on fitness evaluation. In this regard,
a fitness evaluation function that measures the closeness of fit of the predictions is defined
as in Equation (4), where Mean Absolute Percent Error (MAPE) measures the closeness of
fit values of the actual and predicted values of the independent variables according to each
chromosome’s attribute weights. The proposed fitness evaluation function enables a larger
chance of survival for the solutions with lower MAPE, where MAPE is a measure for the
fit of the CBR model to the test cases for the attribute weights determined by a particular
chromosome, and is calculated by Equations (4) and (5):

f (x) =
1

MAPE
(4)

MAPE =
1
t ∑T

t=1
|Actualt − Predictedt|

Actualt
× 100 (5)
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Figure 2. GA Attribute Weight Optimization Framework.

New solutions are obtained though crossover and mutation operations. A one-point
crossover methodology is applied in order to create new candidate solutions. A random
number, m, is generated between 1 and I, where I is the total number of independent
variables. Genes from 1 to m and m + 1 to I between father and mother chromosomes are ex-
changed. The amount of crossover is determined according to the crossover ratio. Mutation
is applied in order to overcome premature convergence to a local optimum. In mutation,
a chromosome is selected randomly and only one gene of the selected chromosome is
randomly changed with a random number between 0 and 1. The number of mutations is
determined by the mutation ratio. For each crossover and mutation, the operation genotype
of the chromosomes is normalized so that Equation (3) is satisfied.
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Figure 3. GA Chromosome Representation.

The chromosomes that will survive in the next generation are determined by an
elitist selection method, where a predetermined ratio of the best chromosomes is directly
copied to the next generation. The elitist selection method guarantees survival of the best
chromosomes in the next generation. The idea of evolutionary computing generates higher
changes to those chromosomes that have higher fitness values. Therefore, as the population
evolves, better chromosomes should have a higher chance to be selected. The roulette
wheel selection method is used to determine the chromosomes that will survive in the
next generation in addition to the best chromosomes selected by the elitist selection. A
probability of selection, P(s), is assigned to each chromosome, s, based on their fitness value
ratio according to Equation (6), in which S is the total population size:

P(s) where; P(s) =
Fitness (s)

∑S
s=1 Fitness(s)

(6)
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GA parameter selection is an important step in order to achieve high quality solutions.
DeJong (1975) [30] and Bramlette (1991) [31] suggested that the optimal range values for
population size should be in the range of [50–100], crossover ratio between 50% to 70%,
and mutation ratio around 0.01. Different combinations of GA parameters were tested for
adequate selection of the parameters. Finally, a crossover ratio of 60%, a population size of
50, and a mutation rate of 0.01 were selected as the GA final parameters.

In CBR-BSR calculations, as the number of generations increases, the total computation
time increases significantly due to the computational load. Since a fast convergence is
needed, the number of generations is selected as 100 and 1000. The results of the 100 gener-
ation and 1000 generation are compared with each other, and due to the lower computation
load and fast convergence, 100 generation is selected.

3.5. Aggregation

Ensemble learning heavily relies on the combining strategy of multiple predictions
into one prediction. In the proposed CBR-BSR method, bagging [13] is selected as the
ensemble learning method. Bagging combines each bootstrapped data set’s prediction
and uses the average of the predictions as the final prediction, as shown in Figure 4. The
advantages of bagging are two-fold. First, CBR can learn from a diverse set of training sets
that were created using bootstrapping. Second, bagging as an ensemble learner reduces the
overfitting of the model [32].
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4. Model Comparison
4.1. Data Sets

In order to compare the prediction performance of the proposed CBR-BSR method
with the existing CBR methods, and to highlight its domain independence, three data
sets are used. Data sets are taken from previous cost estimating studies and are sum-
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marized in Table 1. Data set 1 consists of 24 office building costs that were published in
Karshenas (1984) [33]. Data reported in this study consists of location, time of construction,
number of floors, building height, floor area, and total cost data of office buildings. Total
cost data were adjusted for location and the year of construction. Data set 2 consists of
the field canal improvement project compiled from Elmousalami et al. (2018a) [34] and
Elmousalami et al. (2018b) [35]. Area served, pipeline length, number of irrigation valves,
and construction year of field canal improvement project data for the years 2010 to 2015
are included in the data set. Data set 3 consists of 30 continuing care retirement commu-
nity projects (CCRC) in the USA used in the research conducted by Sonmez (2004) [36].
Sonmez (2004) [36] used seven independent variables and these variables were eliminated
through a backward elimination strategy. Finally, time index, total building area, location
index, percent health center and common area, and area per unit are the independent
variables used to build the models in the study.

Table 1. Test Cases.

Data Set No Reference Case Instances

Data set 1 [33] 24 Office Buildings

Data set 2 [37] 144 Field Canal Improvement Projects

Data set 3 [36] 30 Retirement Community Projects

4.2. Test Results

The performance of the proposed CBR-BSR method is compared with the existing
CBR method with a GA (CBR-GA) prediction attribute weight optimization to reveal the
advancement achieved with the new method CBR-BSR. In order to ensure fair evaluation of
the CBR-BSR method performance, random selection of test data sets is crucial. A five-fold
cross-validation technique is used to make the comparisons using the aforementioned
three data sets. Five-fold cross-validation requires random splitting of each data set into
a train and test split. For each and every fold, 20% of the total data set is used for testing
purposes and the remaining 80% is used for training purposes. Averaging five- fold results
provide a reasonable and fair comparison of the overall results since all data sets are used
for testing purposes.

In the first data set, for each fold, the CBR-BSR method improved the prediction
performances of the CBR-GA method except for Fold 5, as shown in Table 2. The overall
performance of the CBR-BSR method was improved from 32.75% to 25.88%. The reason
for low performance in Fold 5 is due to the random selection mechanism of the test cases.
However, the five-fold cross validation technique uses an average of all folds’ MAPE%
values, which outperformed the existing CBR-GA method for all three data sets. For the
second data set, the MAPE values of CBR-BSR (11.32%) were less than the MAPE values
of CBR-GA (15.29%), as shown in Table 3. The proposed CBR-BSR method with a MAPE
value of 15.59% also performed better than CBR-GA for Data set 3, which had a MAPE
value of 16.38%, as shown in Table 4.

Table 2. MAPE % Performances of Data set 1.

CBR-GA CBR-BSR
(This Study)

Fold 1 37.19 19.71

Fold 2 9.45 9.22

Fold 3 42.17 14.79

Fold 4 32.19 26.74

Fold 5 45.20 67.25

Overall MAPE % 32.75 25.88
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Table 3. MAPE % Performances of Data set 2.

CBR-GA CBR-BSR
(This Study)

Fold 1 21.26 12.84

Fold 2 14.46 12.35

Fold 3 14.71 11.89

Fold 4 9.85 7.05

Fold 5 16.21 12.46

Overall MAPE % 15.29 11.32

Table 4. Prediction Performances of Data set 3.

CBR-GA CBR-BSR
(This Study)

Fold 1 13.52 12.63

Fold 2 15.66 13.32

Fold 3 14.78 12.67

Fold 4 17.93 19.63

Fold 5 19.93 19.69

Overall MAPE % 16.38 15.59

To test the significance of the improvements achieved with the new method, a paired
t-test with α = 0.05 is conducted using all of the absolute percent error values that are
obtained from the three data sets. The t value for the conducted test was calculated as 2.19
and the critical t value (tc) for α = 0.05 with degrees of freedom (df) = 221 is 1.97. Thus,
the results revealed that CBR-BSR predictions are statistically improved compared to the
CBR-GA for the three data sets used in this study, which underlines the contribution of the
new method.

5. Conclusions

In this paper, a bootstrap aggregated CBR method was presented for conceptual cost
estimation of construction projects. The ensemble learner uses the bagging method to gen-
erate multiple versions of the predictor by making bootstrap replicates of the learning set.
These multiple versions are used to obtain an aggregated predictor for improving accuracy.
Three data sets were used to evaluate the prediction performance of the new ensemble
learner-integrated CBR method and to highlight the method’s domain independence. The
results reveal that bootstrap aggregated CBR improves the prediction performance of the
existing CBR method. Hence, the proposed method presents an advancement to the re-
search in CBR and to the practice, in particular when a limited number of cases are available
for conceptual cost estimation.

The focus of this paper was the CBR method, as conceptual cost estimation is usually
performed with limited data sets and CBR may not achieve successful predictions when
there is not a sufficient number of cases. However, the bootstrap aggregated CBR method
can be integrated into other machine learning methods, such as neural networks, or support
vector regression for improving conceptual cost estimates when limited data are available.
Integration of alternative ensemble learning methods, such as random forest trees or
AdaBoost, could be areas for future research on conceptual cost estimation. Moreover,
results can also be validated with more data sets from different research areas. The results
of this paper indicate the potential of bootstrap aggregation for improving the prediction
accuracy of CBR in conceptual cost estimation with limited data availability.
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Nomenclature
N Training Case Sample Size
n Training Case Sample Index Starting From 1 to N
T Test Case Sample Size
t Test Case Sample Index Starting From 1 to T
I Independent Variable Size
i Independent Variable Starting From 1 to I
R Bootstrapped Training Sample
r Bootstrapped Training Sample Index Starting From 1 to R
V Predicted Sample Size
v Predicted Values Starting From 1 to V
m Random Number Between 1 to I
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