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Abstract: As one of the most widely used building materials, concrete has a dominantly brittle
or quasi-brittle behavior. Adding fibers to concrete affects its ductility behavior as well as some
mechanical properties. Finding the relationship between the addition of fibers and the change in
thickness of laboratory test samples made of concrete can help in designing the optimal thickness of
real concrete layers (especially concrete pavements) to withstand dynamic loads. The purpose of this
research is to provide an experimental model for investigating the effect of concrete specimen size, or
the thickness effect of concrete sample, on the fatigue life of concrete. Accordingly, several concrete
beams with three thicknesses (80, 100 and 150 mm), constant width, and two lengths (120 mm and
450 mm) were manufactured with fiber percentages of 0 and 4% by fraction volume. The employed
fiber was twisted macro synthetic fiber. After curing for 28 days, the samples were subjected to fatigue
loading at three stress levels until the onset of failure and cracking stage. Here, the experimental
model of the relationship between the number of loading cycles, the stress level and the thickness of
the sample is presented. The results show that increasing the specimen thickness and fiber content
can enhance the fatigue life of concrete up to 68%.

Keywords: concrete; twisted fiber; flexural fatigue life; beam specimen; thickness effect

1. Introduction

Various types of fibers are used to produce fiber-reinforced concrete, including glass,
polymer, carbon and steel [1]. Research has been conducted to investigate the effect of
fibers on concrete, such as mechanical properties, fatigue life and durability, which indicate
the positive effect of fibers on concrete performance [2–7]. In the present research, macro-
synthetic polymer fibers were used. Some of the consequences of applying macro-synthetic
fibers in concrete include reduced shrinkage of fresh and hardened concrete, increased
ductility, increased strength against fatigue stresses, increased durability and lifetime of
concrete, improved concrete mechanical properties (tensile strength, flexural strength, etc.),
control of secondary/thermal cracks of concrete, preventing the in-depth propagation of
cracks, post-cracking charge ability and reduced permeability against chloride and sulfate
ions [8].

Zeybek et al. evaluated the performance of fiber-reinforced concrete produced with
steel fibers extracted from waste tires. The experimental study was carried out to explore
the effect of fiber content on the fresh and hardened state of the concrete. Compression,
splitting tensile and flexure tests were carried out to observe the performance of the concrete
with tire-recycled steel fibers with ratios of 1%, 2% and 3%. Improvement was shown in
the mechanical properties of the concrete with the increased volume fraction of the steel
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fiber. However, a significant reduction in workability was observed after the addition of 2%
steel fibers. Therefore, they recommended utilizing 2% tire-recycled steel fibers in practical
applications [9]. Aliha et al. [10], investigated the fracture toughness of cement concrete
mixture reinforced with synthetic forta fibers under mode I and III fracture deformations.
They showed that addition of such fibers can significantly enhance the post peak failure
rupture resistance of plain concrete.

Other published research concerns the strength, performance and cracking resistance
of concrete mixtures made of different additives (such as natural, synthetic and industrial
fibers or waste and recycled materials) [11–24]. According to these studies, the type
and shape of additive, size of additive (e.g., length or diameter of fibers or gradation of
granules), percentages of additives and fiber dosages relative to the volume percentage of
the total mass or volume of the concrete mixture and also the environmental conditions can
noticeably affect the strength and fracture resistance of concretes. Depending on the type
and content of additive in the mixture of concrete, the strength and mechanical properties
of asphalt mixtures can be either reduced or enhanced [25–36]. Bawa et al. investigated the
flexural fatigue life of self-compacting concrete with different proportions of steel fiber (SF)
and polypropylene fiber (PPF) reinforcement with an experimental program and reported
that the gradual replacement of SF with PPF in the mixes was found to significantly reduce
the variability in the distribution of fatigue life. A maximum increase of 62% in the shape
parameter for the fatigue life of a mix with 100% PPF, as with a mix containing 100% SF,
was observed at a stress level of 0.85 [37]. Lu et al. conducted an experimental study
on tensile fatigue strength of steel fiber reinforced concrete to show that the fatigue life
of specimens were in good agreement with the Weibull distribution. Thus, a series of
fatigue life equations under different survival probabilities were established, as well as
the ultimate fatigue strength equation containing two parameters—the ratios of maximum
and minimum stress to tensile strength [38]. Ahmad et al. indicated that polypropylene
fiber improved the mechanical strength and durability of concrete (particularly tensile
capacity) but decreased the flowability of concrete. The optimum dose is important, as a
higher dose adversely affects strength and durability due to a lack of flowability. Scanning
electronic microscopy results indicate that the polypropylene fibers restrict the propagation
of cracks, which improves the strength and durability of concrete [39]. Chee Keong Lau
et al. investigated fatigue performance of steel fiber reinforced rigid concrete pavement
and reported that the addition of fibers at 0.5% volume fraction in concrete improved the
fatigue life by at least 135% and reduced the energy dissipated per cycle by 74%. As the
volume fraction of fibers increased, it was found that the fatigue life of rigid pavements
improved [40]. Xu et al. studied the fatigue behavior of steel fiber reinforced concrete
composite girders under high cycle negative bending action. Xu et al. reported that the
fatigue load cycles in tests resulted in about 10–30% reduction of girders’ global bending
stiffness without interlay bonding, and the effect of SFRC on it was not obvious [41]. Chong
Zhang conducted an experiment on the fatigue behavior of steel fiber reinforced high-
strength concrete under different stress levels and showed that stress level significantly
influenced the fatigue life of SFRHSC beams and the fatigue behavior of the beams was
mainly determined by the tensile reinforcement [42]. Qu et al. conducted a study on
flexural fatigue performance of steel fiber reinforced expanded-shales lightweight concrete
superposed beams with initial static-load cracks and reported that with the increase of
concrete depth and the volume fraction of steel fiber, the fatigue life of the test beams was
prolonged with three altered failure modes due to the crush of conventional concrete in
the compression zone and/or the fracture of the tensile rebar. The failure pattern could
be more ductile by prevention of fatigue fracture by the longitudinal tensile rebar when
the volume fraction of steel fiber was 1.6% and crack growth, concrete strain were reduced
in the compression zone. The fatigue life of test beams was sensitive to the upper-limit of
the fatigue load. A short fatigue life appeared from the higher stress level and larger stress
amplitude of the longitudinal rebar due to the higher upper-limit of the fatigue load [43].
Alberti et al. studied self-compacting fiber-reinforced concrete by combining polyolefin
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and metal fibers, and reported that the combination had higher performance in terms of
rupture toughness and flexure than the use of a single type of fiber [44]. Jamshidi et al.
reviewed the literature on the use of hybrid fibers in concrete and reported that combining
various types of fibers would yield better results in terms of concrete toughness and energy
absorption [45]. Eswari conducted an experiment on the flexural performance of hybrid
fiber-reinforced concrete and evaluated the effect of different contents of polymer and steel
fibers on the flexural strength and performance of the fiber-reinforced concrete samples.
Thus, he reported that adding fibers could improve them in the evaluated parameters
compared to conventional concrete [46]. Singh et al. studied the flexural strength and
toughness of fiber-reinforced concrete with different percentages of polypropylene and
steel fibers with a total of 1%. Results showed that combining 75% of the steel fibers and
25% of polypropylene fibers yielded better results in terms of compressive strength, flexural
strength and flexural toughness [47]. Bedi et al. investigated the flexural fatigue lifetime of
polymer polypropylene concrete at different levels of stress using numerical analyses and
obtained parameters of the probabilistic models. They performed the flexural fatigue test
on fiber-reinforced concrete samples with polypropylene fiber contents of 0.5%, 1% and 2%.
Accordingly, they reported that the increased fiber content led to increased fatigue lifetime
of the concrete samples [48]. Jiabiao et al. experimented with the cracking behavior and
toughness of fiber-reinforced concrete as well as the advantages and features of adding
synthetic fibers to concrete. Adding micro-fibers by 0.1% of the concrete’s volume affected
plastic shrinkage. In addition, adding micro-fibers by 1% of the concrete’s volume affected
the flexural toughness, impact strength and fatigue strength of the hardened concrete.
Furthermore, the equivalent flexural strength was measured for post-cracking strength in
various samples [49]. Bordelon and Roesler studied fiber reinforced concrete with steel,
synthetic and steel mesh fibers, and reported that the use of fibers led to increased bearing
capacity and reduced thickness of concrete pavement [50]. Kreiger conducted a study on a
model to explain mode I rupture of high-performance steel fiber-reinforced concrete and
showed that increasing the fiber percentage led to increased fracture energy. Additionally,
by increasing the span length to depth ratio of the beam, the maximum rupture force was
reduced [51].

The size effect of samples on fatigue fracture response was analyzed in several papers.
Bazant et al. investigated this effect in fiber reinforced concrete and showed that the
sample’s fatigue life significantly depended on its size [52]. In 2006, Roesler investigated
the fatigue strength of concrete pavement. The large-scaled concrete slab fatigue test in
the laboratory showed that the fatigue life of concrete slab was much higher than that
of concrete beam and depended on slab geometry, thickness, loading, concrete materials
and boundary conditions. In addition, the flexural capacity of the concrete slab was
1.3–3.5 times more than the concrete beam samples [53]. Goel et al. investigated the
fatigue life of conventional self-compacting metal fiber-reinforced concrete beams, and
via providing Weibull distribution parameters, represented that the fatigue life of the
conventional self-compacting metal fiber-reinforced concrete exhibited better performance
than the standard concrete reinforced by fibers that had been vibrated conventionally [54].
Zhang et al. studied the effect of size on the flexural fatigue of concrete. By investigating
the S-N diagrams (where S is the ratio of stress to maximum bending stress and N is
several load cycles), they showed a strong dependence of fatigue life on the sample’s
size. Further, they reported that increasing the thickness and length of the beams led to
reduced fatigue life [55]. More recently, Hoseini et al. [56,57], studied the effect of coarse
aggregate content and wavy steel fiber percentages on mechanical properties including
compressive strength, tensile strength, pure modes I and III fracture toughness and mixed
mode I/III fracture toughness of self-compacting steel fiber reinforced concrete samples.
They used single edge notched bend (SENB) beam and edge notched disc bend (ENDB)
samples in their experimental research program. In other similar work, Ghasemi and
co-workers [58] also investigated the influence of maximum nominal aggregate size on
fracture parameters of self-compacting steel fiber reinforced concretes. Using edge notched
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prismatic beam subjected to three-point bending, Pan et al. [59] experimentally studied
the influence of steel fiber volume percentage and its length on the crack propagation
speed of self-compacting fiber reinforced concrete. They used two types of steel fibers
with lengths of 13 and 30 mm and three fiber volume ratios of 0.51%, 0.77% and 1.23%.
Four loading rates (i.e., 2.66 m/s, 1.77 m/s, 22 mm/s and 2.2 µm/s) were used in their
work to conduct the experiments. Digital image correlation (DIC) method and strain gages
attached in different locations relative to the pre-notch were utilized for determining the
velocity of growing crack in the concrete beam. Zeng et al. [60] reinforced the ultra-high
performance concrete (UHPC) plates using fiber-reinforced polymer (FRP) grids. The
influence of fiber type, fiber length and fiber content on the flexural strength value was
studied in their work by performing 26 samples loaded by three-point bend setup. They
also analyzed the microstructure of broken samples via scanning electron microscopy
(SEM) and performed an analysis between strength and cost of the manufactured concrete
samples [60]. Other testing samples and reinforcing fibers have also been investigated in
recent years on mechanical properties and fracture toughness of concrete mixtures [61–64].

In most of the studies, the concrete sample’s thickness is increased along with the
increase in the beam’s length; however, in the present work, only the thickness of the beam
samples, with and without fibers, was changed and other dimensions of the samples were
kept constant to investigate merely the effect of increased thickness. Accordingly, the size
effect of the macro-synthetic fiber-reinforced concrete sample at different thicknesses was
assessed via fatigue life variations. The inter-twisted fibers were added to the concrete
mixture by 0.4 vol.%. The experimental program was focused on assessment of influence
of two effects on the fatigue life of concrete samples, i.e., (1) addition of macro-synthetic
fibers, and (2) thickness effect of the specimens and presentation of experimental models.

2. Materials and Methods
2.1. Test Variables

To evaluate the flexural fatigue life of concrete beams, the concrete mixture was
designed based on the ACI 211 Standard [65]. All the concrete samples were made with the
same mix designs as below:

(1) Without addition of any reinforcement,
(2) With 0.4 volume percentage of twisted fibers (Figure 1) used for the fibrous mixtures.
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Figure 1. Twisted fibers used in the manufacturing of fiber-reinforced concrete.

In this research, concrete mix designs were coarse aggregate 880 kg/m3, fine aggregate
789 kg/m3, cement 442 kg/m3, water 199 kg/m3, superplasticizer 2.2 kg/m3 and fibers
with dose of 3.6 kg/m3. The concrete mix design is described in Table 1. Figure 1 presents
the fibers used in the present research [66].
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Table 1. Concrete mix design.

Materials Fine Aggregate Coarse Aggregate Cement Water Fiber Superplasticizer

Weight per unit volume
(kg/m3) 789 880 442 199 0, 3.6 2.2

2.2. Materials and Specimen Preparation

The physical properties of siliceous aggregates are shown in Table 2.

Table 2. Aggregate properties.

Nominal maximum aggregate size (mm) 19
Bulk specific gravity, g/cm3 (ASTM C127) 2.59
Absorption fine aggregate/% (ASTM C127) 2.4
Absorption coarse aggregate/% (ASTM C127) 1.2
Los Angeles abrasion loss/% (ASTM C131) 11.3
Two fractured faces/% (ASTM D5821) 93
Soundness (ASTM C88) 1.7
Sand equivalent (ASTM D2419) 70

The same gradation was selected for all the designed mix proportions. Moreover, Type
I cement was used in this research. The chemical compositions and the mechanical and
physical properties of this cement are given in Tables 3 and 4.

Table 3. The chemical composition of Type I Portland cement.

Oxide CaO SiO2 Fe2O3 SO3 Al2O3 MgO Na2O K2O LOI TiO2 MnO

(%) 64.73 19.98 4.11 3.79 3.50 2.07 0.15 0.63 0.35 0.27 0.20

Table 4. The compressive strength of Type I Portland cement.

Days Compressive
Strength (MPa)

3 22
7 26
28 35

To evaluate the flexural fatigue life of the fiber-reinforced concrete, cement was mixed
with sands, gravel and fibers, and then the water was mixed with superplasticizer ac-
cordingly. Several rectangular beam specimens with and without twisted fiber were
manufactured. According to the standard, the concrete samples were kept in the water
pond for 28 days. Then, to obtain the stress levels in the fatigue test, the bending strength
of at least three samples from each of the dimensions of the concrete samples was obtained
and averaged. Table 5 shows the geometrical properties of the prepared specimens.

Table 5. Specification of tested specimens.

Specimen No. Shape of Fiber Fiber Volume
Fraction (%) Specimen Size (mm)

D1 Twisted 0.4 80 × 20 × 450
D2 Twisted 0.4 100 × 120 × 450
D3 Twisted 0.4 150 × 120 × 450
N1 - 0 80 × 120 × 450
N2 - 0 100 × 120 × 450
N3 - 0 150 × 120 × 450
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2.3. Experimental Settings and Measurements

The UTM (Universal Testing Machine) with 100 ton capacity was used to determine
flexural fatigue of the manufactured concrete samples. The tests were performed with
constant sinusoidal loading at the frequency of 10 Hz. The input information for the
test included

• Loading curve shape,
• Minimum and maximum loading values,
• Loading frequency,
• The maximum number of loadings.

To measure the values of stress levels, first, the average flexural strength of samples
had to be determined; then, the stress levels could be calculated from the obtained results.
Table 6 shows the input data for the UTM device.

Table 6. Input data for concrete samples with different thicknesses.

Specimen S PMax (Average) PxS Amplitude Bios

D1
0.7 12,211.5 8548.05 2137.01 6411.04
0.8 12,211.5 9769.2 2442.3 7326.9
0.9 12,211.5 10,990.35 2747.59 8242.76

D2
0.7 17,527.2 12,269.04 3067.26 9201.78
0.8 17,527.2 14,021.76 3505.44 10,516.32
0.9 17,527.2 15,774.48 3943.62 11,830.86

D3
0.7 32,420 22,694 5673.5 17,020.5
0.8 32,420 25,936 6484 19,452
0.9 32,420 29,178 7294.5 21,883.86

N1
0.7 9676.6 6773.62 1693.41 5080.22
0.8 9676.6 7741.28 1935.32 5805.96
0.9 9676.6 8708.94 2177.24 6531.71

N2
0.7 14,301.8 10,011.26 2502.82 7508.45
0.8 14,301.8 11,441.44 2860.36 8581.08
0.9 14,301.8 12,871.62 3217.91 9653.72

N3
0.7 29,735.9 20,815.13 5203.78 15,611.35
0.8 29,735.9 23,788.72 5947.18 17,841.54
0.9 29,735.9 26,762.31 6690.58 20,071.73

Figure 2 shows how to set the device and the analyzed sample.
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3. Results and Discussion

Table 7 presents the fatigue life of different concrete samples with three different
thicknesses with and without fibers at three stress levels.

Table 7. Number of loadings of different fiber concrete samples.

Specimen S
N N N N Percent Change with Respect to

Plane Concrete (%)No. 1 No. 2 No. 3 Average

D1
0.7 88,003 94,504 91,000 91,169 8.18
0.8 11,502 12,488 12,014 12,001 29.14
0.9 2018 1637 1916 1857 68.46

D2
0.7 273,485 301,275 284,043 286,268 59.36
0.8 17,683 17,560 17,496 17,580 43.97
0.9 2086 2381 2201 2223 52.9

D3
0.7 1,042,247 1,273,845 1,003,452 1,106,515 48.67
0.8 32,870 29,381 28,947 30,399 24.53
0.9 3367 3172 3045 3195 19.31

N1
0.7 86,732 83,764 82,319 84,271 0
0.8 9542 9126 9211 9293 0
0.9 1040 1087 1180 1102 0

N2
0.7 178,392 194,527 165,984 179,634 0
0.8 12,634 11,996 12,005 12,211 0
0.9 1317 1482 1562 1454 0

N3
0.7 742,891 738,265 751,672 744,276 0
0.8 23,671 24,678 24,882 24,410 0
0.9 2543 2871 2619 2678 0

Considering the purpose of modelling, which was to evaluate the effect of fibers and
sample size variations on the fatigue life of the concrete beam samples, and according to
the literature review, the variables shown in Table 8 were used in constructing the model.
The model used in this study was a multiple linear regression with the variables depicted
in Table 8 as well as its common forms including double exponential, logarithmic and
multiplication forms, in case of need.

Table 8. Variables used in modelling.

Variable Parameter Unit

N Number of loading In cycle

S Level of stress -

H Thickness of concrete
specimen Centimeter

Fiber dosage Fiber content Percent by volume

Table 9 presents the general statistical data derived from the observations of the
experiments for the given variables. The number of observations was 18.

Table 9. General information of observations for variables.

Variable Observation Average Deviation Minimum Maximum

N 18 146,260.2 299,901.3 1402.333 1,106,515
S 18 0.8 0.084017 0.7 0.9
H 18 11 3.022927 8 15

Fiber dosage 18 0.2 0.205798 0 0.4

In the primary study of the data before modelling, it was observed that variable N
with the correlation coefficient of −0.5832 had the highest correlation coefficient with S
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among the independent variables. Thus, it was likely to have a significant effect on N. In the
next ranking, variable H with a correlation coefficient of 0.4201 had the highest correlation
with S.

For modelling, the independent variables S, H and Fiber dosage as well as their
double exponential forms (S2, H2 and Fiber dosage2) were considered. In addition, to
investigate the mutual effect of independent variables, the multiplication forms of the
variables (S.H, S. Fiber dosage and H. Fiber dosage) were considered in the modelling.
Regarding the wide range of the dependent variable N as well as the literature review,
the normal logarithmic form (Log(N)) of this variable was considered. After fitting the
multiple regression model on the observations, the variables with no significant effect were
removed from the model in successive steps. Subsequently, the final model was obtained,
which is shown in Tables 10 and 11.

Table 10. ANOVA table.

DF SS MS F-Value p-Value

Total 17 78.32623 4.60742 - -

Model 5 77.99716 15.59943 568.86 0.0000

Residual error 12 0.32907 0.02742

R2 0.9958 - - - -

Adjusted R2 0.9940 - - - -

Table 11. Values of regression coefficients for Log(N).

Independent Variable Regression Coefficient p-Value T-Value Standard Error Standardized Coefficients

Constant 39.7292 0.000 7.29 5.45081 -

S −68.12385 0.000 −5.09 13.37625 −2.66646

S2 35.03476 0.001 4.23 8.279896 2.195526

H 1.068757 0.000 8.18 0.1305801 1.5083

Fiber dosage 0.63435 0.007 3.25 0.1951583 0.060819

H S −1.11486 0.000 −6.87 0.1623815 −1.353224

According to Table 10, the high F-value, or its equivalent low p-value, indicated the
overall significance of the model at the confidence level of above 99%. Furthermore, since
the initial objective of this modelling was to construct a powerful prediction model, the
highness of the adjusted R2 value was very important; accordingly, having a value of
0.9940 in this model indicated a very high capability of this model in prediction. The value
of adjusted R2 implied that the independent variables used in the model could justify 99.4%
of the variations in the dependent variable, i.e., Log(N).

As demonstrated in Table 11, regarding the p-values, all three variables of S, H and
Fiber dosage became significant at the confidence level of 99%. As for the stress level vari-
able (S), its double exponential form became significant as well. Furthermore, this variable
and H had a mutual effect, meaning that a change in one of them would influence the
effect of these variables on the number of loadings. To investigate the effect of stress level
variations on the number of loadings, Equation (1) was obtained through mathematical
calculations and with regard to the resulting model. This equation %∆N represents the
percentage of variations in the number of loadings. Equation (1) indicates that the percent-
age of variations in the number of loadings due to the stress level variations depended
on the initial stress level and height of the sample. For example, changing the stress level
by 0.1% resulted in the variation percentage of the number of loadings, s in accordance
with Figure 3. As can be seen, for such a change in stress level, the smaller the initial stress
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level and the more the thickness of the sample, the higher the variation percentage of the
number of loadings would be.

%∆N
100

≈ (−68.12385 + 70.694S − 1.11486H)∆S (1)
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3.1. The Effect of the Sample Thickness

The effect of the sample’s thickness variations on changes in the number of loadings
was obtained in accordance with Equation (2), which indicated that the effect of thickness
variations on the variation percentage of the number of loadings depended on the initial
stress level. Figure 4 represents the effect of height variations at different stress levels on
the variation percentage of stress level. As can be observed, for a certain change in height,
the lower stress level would lead to lower variations in the number of loadings.

%∆N
100

≈ (1.068757 − 1.11486S)∆H (2)
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3.2. The Effect of the Fiber Content

The effect of change in the fiber content percentage on the variation percentage of
the number of loadings was obtained through Equation (3), which indicated a linear
relationship between the change in fiber content percentage and variation percentage of the



Buildings 2023, 13, 642 10 of 15

number of loadings. As can be observed, per 0.1% increase in the fiber content percentage
led to an increase by 6.3435 in the number of loadings. The relationship between the change
in fiber content percentage and the variation percentage of the number of loadings is shown
in Figure 5.

%∆N
100

≈ 0.63435∆Fiberdosage (3)
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To determine the variable with maximum effect on the loading percentage, the stan-
dardized coefficients were calculated for the variables, which are shown in the last column
of Table 11. As can be observed, the largest effect was related to the stress level with a
degree of two and then, the sample thickness. Figure 7 depicts the constructed model for
the constant values of different variables as well as their upper and lower levels.

3.3. Assessment of Ruptured Cross-Section and Fibers

After the tests, the cross-sectional area of the sample was broken, and the tips of the
fibers were examined.

Figure 6 shows a picture of broken fibers. A cross-sectional analysis of the broken
sample showed that the failure of most tested concrete samples was initiated and extended
from the aggregate and mortar parts. This indicates the transfer of load between cement
mortar and aggregate and load bearing by aggregates of concrete. Thus, it can be stated
that the concrete mix design was suitable. Additionally, according to Figure 6, it is seen
that the fibers have not been ruptured due to elongation and also have not been pulled out
which indicates good performance of the fibers.
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4. Conclusions

In the present research, fatigue life was measured for macro-synthetic fiber-reinforced
concrete samples with the same mix design with three different thicknesses and the ex-
perimental model of the variations was provided. The results showed that increasing the
thickness of the sample and adding fibers to concrete increases the bending strength and
fatigue life. In other words, by adding fibers to concrete, the thickness of the concrete layer
can be reduced to achieve a certain bending strength, which is effective in the implemen-
tation of concrete pavements and in places where there is a limit to the thickness of the
concrete layer.

The main results of the present research are as follows:

- Results of the number of loadings of the concrete samples with different thicknesses
show that with the addition of the macro-synthetic fibers to the concrete mixture, the
number of loadings for the stress levels of 0.7, 0.8 and 0.9 was increased by 8.18–68.46%,
43.97–58.36% and 19.31–48.67%, respectively.

- According to the results, the intensity of degree-2 stress level and, additionally, thick-
ness had the largest effects on the fatigue life of the concrete beam samples.

Finally, research on the effect of changing the width of the concrete beam on the
fatigue life in order to simulate it with a concrete slab and research on the fatigue life
of self-compacting, self-acting, polymer concrete, etc. are future research projects of the
authors. Further, in the numerical modelling of crack propagation under flexural fatigue of
concrete samples a fracture process zone will be included in the analysis by introducing
microdamage models presented in [67–72].
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