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Abstract: Reasonable model soil is very important in shaking table model tests to reduce the distortion
of the soil structure stiffness ratio. Several model soils, such as sawdust soil, sawdust sand, rubber
granular soil, rubber powder soil, and sawdust kaolin were prepared and a dynamic triaxial test
proceeded to determine their dynamic characteristics. The experimental results showed that the
variation of the dynamic shear modulus and dynamic damping ratio with dynamic shear strain was
consistent with that of undisturbed soil. Finally, sawdust soil was adapted to a shaking table test
of complex interaction systems and achieved good results. The results showed that sawdust soil is
feasible as model soil. The research results can provide helpful references for the design of a similar
shaking model test.

Keywords: model soil; sawdust soil; sawdust sand; dynamic characteristics; resonance column test;
shaking table test

1. Introduction

Existing earthquake damage shows that the damage to underground structures during
earthquakes is mainly imposed on the underground structures by the surrounding soil
layers [1]. As a result, the characteristics of the surrounding soil layer have a decisive
influence on the seismic response of underground structures, and this influence is mainly
reflected by the soil structure stiffness ratio [2].

The shaking table model test is a powerful method to study the dynamic interaction
between soil and underground structures. To make the model test reflect the seismic
response law of underground structures reasonably, the selection of model soil in the model
test is of utmost significance. In the model test of underground structures, structures
are generally made of particulate concrete [3], plexiglass [4], aluminum alloy [5], and
gypsum [6]. Compared with the original concrete material, the elastic modulus of these
materials and the stiffness of the structure are much weaker than the original structure.
Therefore, the soil structure stiffness ratio of the model soil to the model structure is quite
different from that of the original soil to the prototype structure if the prototype soil is
still used in the model test. This will lead to the distortion of the soil-structure stiffness
ratio similarity ratio, by which the response of the structural model cannot truly reflect
the response of the prototype structure. To reduce the distortion of the stiffness ratio, the
model soil needs to be reconfigured, instead of using the original soil. On the other hand,
the load capacity of the early constructed shaking table is limited [3,6], and the sum of the
weights of the model box and model soil will exceed its load capacity easily. Sawdust soil,
sawdust sand, rubber granule soil, and other remolded soil can be employed as model soil
to overcome the above two problems. First, the density of the model soil can be reduced to
meet the bearing capacity requirements of the shaking table. In addition, the model soil
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with different shear modulus can be obtained by adjusting the content of sawdust, which
can effectively reduce the distortion of the soil structure stiffness ratio.

Because of the above advantages, many scholars have conducted research on model
soil. Kitada [7] performed a shaking table test in which silicone rubber was used to study the
dynamic interaction between buildings during an earthquake. Turan [8] mixed bentonite,
glycerol, and water to make model soil for the shaking table test to check the effectiveness
of a laminar soil container. The model soil was prepared by mixing kaolin, bentonite,
F-grade fly ash, lime, and water. The shear wave velocity of the model soil under different
curing periods was tested by the bending element test. The undrained shear strength of the
model soil was measured by the dynamic triaxial test, and model soil satisfying the test
requirements was obtained [9–11]. Pistolas [12] studied the effects of rubber content and
rubber particle size on the dynamic properties of rubber granular soil. El-Sherbiny [13]
studied the dynamic characteristics of a mixture of sand and EPS at small stress and small
strain. Yan [14] mixed sawdust and sand in a certain proportion to prepare sawdust for the
shaking table test based on a similar theory.

Based on the above literature review, it can be seen that there is much work on
model soil composed of silicone rubber and kaolin, but sawdust soil has been seldom
studied. Before preparing the shaking table model test of the underground structure-soil-
surface structure complex interaction system [15], we compared and selected the model
soil. Considering the applicability and convenience of model soils, five kinds of model
soils—sawdust soil, sawdust sand, rubber granular soil, rubber powder soil, and sawdust
kaolin—were selected as the research objects, and a laboratory soil dynamic test was carried
out. The dynamic characteristics of the test data were analyzed, and a reasonable model
soil was selected.

2. Preparation of Model Soil

The main materials selected in this experiment were rubber particles, rubber powder,
sawdust, kaolin, 0.2–0.8 mm quartz sand, and undisturbed silty clay. The materials are
shown in Figure 1. The undisturbed silty clay was taken from a subway station site. Its
moisture content was 20.4% and its density was 1.94 g/cm3. The sawdust was taken from
a wood processing plant, and the rubber particle size was 2–4 mm. The rubber powder
(40–60 mesh), quartz sand (0.2–0.8 mm), and kaolin (800 mesh) were purchased from the
relevant factories. First, the silty clay was dried, rolled, and screened for particle sizes less
than 3 mm. Similarly, sawdust was dried first and screened for impurities. In addition,
the silty clay was mixed with sawdust, rubber particles, or rubber powder in a certain
proportion, and the sawdust and kaolin were mixed to prepare the model soil.

Based on the existing literature [14] and preliminary tests, three different ratios were
selected for each of the five model soils. For each model soil of the matching ratio, the density
of the model soil was measured by the cutting ring method, and the water content of the
model soil was measured. The contents of the obtained model soil are listed in Tables 1–5.

Table 1. Group A: sawdust + undisturbed soil (sawdust soil).

Group Sawdust: Undisturbed Soil: Water Density (g/cm3) Sample No.

A1 1.00: 3.50: 1.70 1.30 A11 A12 A13
A2 1.00: 3.75: 2.50 1.33 A21 A22 A23
A3 1.00: 4.00: 2.50 1.40 A31 A32 A33

Table 2. Group B: rubber powder + undisturbed soil (rubber powder soil).

Group Rubber Powder: Undisturbed Soil: Water Density (g/cm3) Sample No.

B1 1.00: 0.75: 0.74 1.30 B11 B12 B13
B2 1.00: 1.00: 0.62 1.40 B21 B22 B23
B3 1.00: 1.25: 0.66 1.45 B31 B32 B33
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silty clay powder. 

Table 1. Group A: sawdust + undisturbed soil (sawdust soil). 

Group Sawdust: Undisturbed Soil: 
Water 

Density (g/cm3) Sample No. 

A1 1.00: 3.50: 1.70 1.30 A11 A12 A13 
A2 1.00: 3.75: 2.50 1.33 A21 A22 A23 
A3 1.00: 4.00: 2.50 1.40 A31 A32 A33 

Table 2. Group B: rubber powder + undisturbed soil (rubber powder soil). 

Group Rubber Powder: Undisturbed 
Soil: Water 

Density (g/cm3) Sample No. 

B1 1.00: 0.75: 0.74 1.30 B11 B12 B13 
B2 1.00: 1.00: 0.62 1.40 B21 B22 B23 
B3 1.00: 1.25: 0.66 1.45 B31 B32 B33 

Table 3. Group C: rubber particles + undisturbed soil (rubber granular soil). 

Group 
Rubber Particles: Undis-

turbed Soil: Water Density (g/cm3) Sample No. 

C1 1.00: 0.75: 0.28 1.30 C11 C12 C13 
C2 1.00: 1.00: 0.34 1.40 C21 C22 C23 
C3 1.00: 1.50: 0.52 1.45 C31 C32 C33 

 

  

Figure 1. Model soil preparation material: (a) Rubber particle (2–4 mm), (b) Rubber powder
(40–60 mesh), (c) Kaolin (80 mesh), (d) Drying of sawdust, (e) Drying of undisturbed soil, (f) Undis-
turbed silty clay powder.

Table 3. Group C: rubber particles + undisturbed soil (rubber granular soil).

Group Rubber Particles: Undisturbed Soil: Water Density (g/cm3) Sample No.

C1 1.00: 0.75: 0.28 1.30 C11 C12 C13
C2 1.00: 1.00: 0.34 1.40 C21 C22 C23
C3 1.00: 1.50: 0.52 1.45 C31 C32 C33

Table 4. Group D: 0.2–0.8 mm quartz sand + sawdust (sawdust sand).

Group Quartz Sand: Sawdust: Water Density (g/cm3) Sample No.

D1 2.00: 1.00: 3.02 1.05 D11 D12 D13
D2 2.50: 1.00: 2.94 1.10 D21 D22 D23
D3 3.00: 1.00: 3.09 1.15 D31 D32 D33

Table 5. Group F: sawdust Kaolin (sawdust Kaolin).

Group Sawdust: Kaolin: water Density (g/cm3) Sample No.

F1 1.00: 3.50: 2.59 1.33 F11 F12 F13
F2 1.00: 3.75: 2.66 1.35 F21 F22 F23
F3 1.00: 4.00: 2.88 1.35 F31 F32 F33

Note: The model soil ratio is the mass ratio.

Regarding the above-mentioned matching ratio, the clay and the selected material
were poured into a basin to be uniformly stirred. Then, water was poured in three times,
and the mixture was uniformly stirred. Next, the mixture was layered into a split mould [16]
and compacted in layers. The prepared test sample is shown in Figure 2.
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Figure 2. Original soil and model soil samples prepared: (a) Undisturbed soil, (b) Sawn soil sample,
(c) Rubber powder soil, (d) Soil sample of rubber (e) Sawdust sand and soil, (f) Sawdust kaolin sample.

3. Test Instrument and Principle

Both dynamic triaxial and resonance column tests were carried out to determine
the dynamic characteristics of the model soils. The main technical indicators for the
dynamic triaxial test were as follows: geometric dimensions of the sample: 39.1 × 100 mm
(diameter × height); vertical excitation frequency: 0.01–5 Hz; axial static/dynamic load:
0–40 kN; confining pressure: 0–1700 kPa; maximum volume change: 200 mL; resolution:
0.04 mL. With the vertical displacement sensor, the range was more than 50 mm, the
accuracy was 0.07%, and the resolution was 0.208 m.

During the resonance column test, the lower end of the sample was fixed, and torque
was generated by a driving system at the upper end of the sample. The response of the
sample after excitation was measured by the acceleration sensor located on the top disk
of the free end of the sample. In the process of resonance, the resonance frequency of
the sample was measured by changing the frequency of the applied excitation. By the
measured resonance frequency and the density and size of the specimen, the dynamic shear
modulus was calculated. The damping ratio of the specimen under this shear strain was
measured by free vibration.

For the resonance column test, the variation curves of dynamic shear strain and
dynamic shear modulus of the soil samples can be obtained directly in a small strain range.
However, the relationship between the axial force and axial strain of soil samples can be
obtained in a large strain range by the dynamic triaxial test. We obtained the relationship
between the dynamic shear strain and dynamic shear modulus of soil samples using a
previously described treatment method [16]. To correlate the results of the dynamic triaxial
test and the resonance column test, the dynamic elastic modulus Ed and the dynamic axial
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strain εd were converted into the dynamic shear modulus Gd and the dynamic shear strain
γd using Equations (1) and (2), respectively.

Gd =
Ed

2(1 + µd)
(1)

γd = εd(1 + µd) (2)

where µd is the dynamic Poisson’s ratio. Considering that the strength of the remolded
soil is relatively low and the dynamic Poisson’s ratio is difficult to determined based on
the measured and empirical methods, the connection effect of the experimental data of
the resonant column and the dynamic three-axis was very poor. Considering the aim
of this study was to find a reasonable model soil for shaking table test to obtain the
seismic response of the underground structure, the soil-structure stiffness ratio was a very
important factor, and the stiffness of the soil was generally characterized by its shear
modulus. Therefore, soil stiffness was determined in this study based on soil initial shear
modulus, which were obtained by the resonant column test in the small strain range.
Therefore, only the results of the resonant column test and the correlation analysis are given
in this study.

4. Dynamic Test Results

It is well known that the strength of model soils is lower than that of the original soil.
The model soil samples will be damaged under higher confining pressures. Therefore, the
model soil samples were only tested under confining pressures of 50 kPa and 100 kPa,
while the original soil samples were tested under confining pressures of 50 kPa, 100 kPa,
200 kPa, and 300 kPa. It can be seen from Table 1 that the three soil samples were prepared
in the shown proportions, and the average values of the three tests were taken from the
test results.

5. Discussion and Analysis of the Test Results

By the dynamic shear modulus of the undisturbed soil, the curves of the normalized
dynamic shear modulus, and the dynamic damping ratio relative to the initial dynamic
shear modulus with the dynamic shear strain (Figure 3), the typical softening effect of soft
soil can be seen; that is, the soil shear modulus decreased with an increase in dynamic
shear strain, and the damping increased with an increase in dynamic shear strain, which
was consistent with a large number of research results on soft soil. Furthermore, the stress-
strain relationship can be described by the classical Hardin–Drnevich model [17,18] or an
improved Davidenkov model [19].

Gd
Gmax

= 1 −
[

(γd/γr)
2B

1 + (γd/γr)
2B

]A

(3)

λ

λmax
=

(
1 − Gd

Gmax

)β

(4)

where Gd and Gmax are the instantaneous dynamic shear modulus and the maximum
shear modulus of soil, respectively; λ and λmax are the instantaneous damping ratio and
maximum damping ratio, respectively; γd is the dynamic shear strain; γr is the shear strain
for reference; and A, B, and β are the calibration constants.

Figures 4–8 demonstrate the dynamic test results of five kinds of remolded soils; the
following can be concluded:

1. The remolded soil satisfied the law of strain softening. The larger the surrounding
rock was, the larger the initial dynamic shear modulus of the model soil was, and the
slower the attenuation rate was. The damping ratio increased with increasing shear strain
as a whole; however, the increase rate under different confining pressures was irregular.
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2. The stiffness (initial dynamic shear modulus) of the five model soils under the same
confining pressure was reduced as follows: rubber powder soil, sawdust sand, sawdust
soil, rubber granular soil, and sawdust kaolin.

3. The content of the undisturbed soil in the soil sample was large; therefore, the
dynamic shear modulus was large, which is a logical result.

4. Compared with the original soil, the shear modulus of sawdust soil was greatly
reduced. In addition to sawdust kaolin and sawdust sand, the damping ratio of other soil
samples increased to a certain extent; the main reason for this was that compared with the
original soil, the remolded soil was loose and easy to consume because of the addition of
elastic materials such as sawdust. Therefore, the damping ratio was relatively high, while
the sawdust sand and sawdust kaolin were relatively dense because of quartz sand and
kaolin, and the damping ratio did not increase but slightly decreased.
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When the confining pressures were 50 kPa and 100 kPa, the dynamic characteristics of
the five model soils and the undisturbed soils were compared. Figures 9 and 10 illustrate
the curves of the variations in the dynamic shear modulus and the dynamic damping
ratio with the dynamic shear strain, respectively. In general, the dynamic shear modulus
attenuation law and the dynamic damping ratio of the five model soils were similar to
those of the undisturbed soil and could be used as model soil for the model test. However,
the effect of sawdust soil and sawdust sand was the best. The second was rubber granular
soil, and the effect of the rubber powder soil and sawdust kaolin was the worst. The reason
was that the main body of the sawdust soil and the sawdust sand was cohesive soil and
quartz sand, which mainly embodied the mechanical properties of the soil, and the rubber
powder and the kaolin had small particle sizes.

Therefore, the mechanical property was different from that of the original clay. In
addition, rubber granular soil, because of the large elastic characteristics of rubber particles,
leads to a large rebound of soil samples and is difficult to compact. At the same time,
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because of the disadvantages of light mixing and easy floating, it is difficult to use rubber
granular soil in a large volume. Based on the above-mentioned comparative analysis, it was
suggested that sawdust and sawdust sand be used as model soil to perform the vibration
table model test.
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6. Similarity Ratio Design of Soil-Structure Stiffness Ratio

Wang [2] provided the analytical equations for calculating the Stiffness Ratio of Tunnel—
Soil (SRTS) of a circular tunnel (Equation (5)) and single hole rectangular tunnel (Equation (6)).

SRTS =
6Et It(1 + vs)

Es
(
1 − v2

t
)

R3
(5)

SRTS =
6Et It(1 + vs)

Es
(
1 − v2

t
)

R3
(6)

where Et and Es are the elastic modulus of the soil and the tunnel structure, respectively; νs
and νt are Poisson’s ratio of soil and tunnel structure materials, respectively; R is the radius
of the tunnel structure, and It is the moment of inertia of the unit width of the tunnel section,
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which is equal to T3/12. T is the wall thickness of the structure. H and L are the height and
width of the rectangular tunnel structure, respectively, and IB and IH are the moment of
inertia of the top (bottom) plate and the moment of inertia of the side wall, respectively.

For a typical circular tunnel, the diameter was 6 m and the segment thickness was
0.35 m. It was made of C30 concrete, had a soil mass density of 1900 kg/m3, a shear
modulus of 81.67 MPa when the confining pressure was 50 kPa, and a Poisson’s ratio of
0.42. However, the structural model adopted the conventional geometric similarity ratio of
1/30, and the elastic modulus of unconventional particulate concrete was about 9.00 GPa.
Thus, the similarity ratio of elastic modulus was 0.30, and the acceleration similarity ratio
was 1. The prototype structure-soil stiffness ratio calculated according to the above formula
was 6.58. To make the model structure-model soil similarity ratio of the model structure
equal to or close to 1, the shear modulus of the model soil was set to 24.50 MPa.

For a typical single-cell rectangular tunnel, the length and width of the concrete section
were 6 m, the wall thickness of the structure was 0.35 m, and C30 was used. The material
and design of the soil parameters and structural model were consistent with the above
results. Given the above formula, the stiffness ratio of the prototype structure to soil was
13.71. To make the similarity ratio of the model structure to the model soil equal to or close
to 1, the shear modulus of the model soil was 24.50 MPa.

Compared with the test results of the above five model soils, it can be seen that the
dynamic shear modulus of the sawdust soil was the closest to the theoretical calculation
value when the confining pressure was 50 kPa, and the second was the sawdust sand
(31.59 MPa). Therefore, the above suggestions were verified; that is, it is recommended that
sawdust and sawdust sand be used as the model soil for the model test of the vibration table.

7. Model Test Verification

Yan [14] successfully used sawdust to study the seismic response of the raised im-
mersed tube tunnel under non-uniform vibration excitation. Based on the test results of the
above model soil, the shaking table test of the complex interaction system between under-
ground structure, soil, foundation, and surface structure was carried out using sawdust
soil [15] to explore the interaction between the underground structure and surface struc-
ture during an earthquake. The contents of this test included a free field test, soil-tunnel
test, soil-surface frame test, and tunnel-soil-surface frame test. To verify the rationality of
the sawdust soil, we only provided the results of the free field test conditions; the other
conditions can be found in the literature [15].

Because of the large volume of sawdust soil, the undisturbed soil and sawdust were
first dried on the site and then mixed and stirred in proportion (Figure 11a), filling, and
layered compaction (Figure 11b). After stratified compaction, the soil surface was sealed
and statically set for three days.
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The depth of the soil at the free field was 1 m, and the arrangement of the acceleration
sensor is shown in Figure 12.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 14 
 

 
Figure 12. Layout of the free-field vibration table test sensor: (a) Schematic of the layout of the sensor: 
elevation, (b) Schematic diagram of the layout of the sensor: plane. 

Taking the acceleration time history curve of the model soil surface under sinusoidal 
excitation as an example, the acceleration amplitude spectrum curve (Figure 13) was ob-
tained by fast Fourier transform, and then, the frequency and damping ratio of the system 
was obtained by half power method [20][21] (Table 6). 

 
Figure 13. Acceleration peak spectrum curve at point A1 for the case of sinusoidal excitation. 

Table 6. Identified system frequency and damping ratio. 

Operating Mode SIN5 SIN10 
Frequency (Hz) 10.8 10.1 

Damping ratio (%) 1.7 2.1 
Note: The working conditions such as SIN5 can be found in Ref. [15]. 

The theoretical value of the natural vibration frequency of the model was obtained 
from the empirical Equation (7) of the free-field seismic response analysis: 

(2 1) 4n sf n V h= −  (7)

where fn is the n-order natural vibration frequency of soil and VS and h are shear wave ve-
locity and soil thickness, respectively. As the density of sawdust soil is known, the shear 
wave velocity can be determined if the maximum dynamic shear modulus of sawdust soil 
is known, and the theoretical value of the natural vibration frequency of model soil can be 
determined. 

The depth of the test soil was 0.9 m, and the overburden pressure at the average depth 
of 0.45 m was approximately 5.4 kPa, which was limited because of the limitation of the test 

Figure 12. Layout of the free-field vibration table test sensor: (a) Schematic of the layout of the sensor:
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Taking the acceleration time history curve of the model soil surface under sinusoidal
excitation as an example, the acceleration amplitude spectrum curve (Figure 13) was
obtained by fast Fourier transform, and then, the frequency and damping ratio of the
system was obtained by half power method [20,21] (Table 6).
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Table 6. Identified system frequency and damping ratio.

Operating Mode SIN5 SIN10

Frequency (Hz) 10.8 10.1
Damping ratio (%) 1.7 2.1

Note: The working conditions such as SIN5 can be found in Ref. [15].

The theoretical value of the natural vibration frequency of the model was obtained
from the empirical Equation (7) of the free-field seismic response analysis:

fn = (2n − 1)Vs/4h (7)

where fn is the n-order natural vibration frequency of soil and VS and h are shear wave
velocity and soil thickness, respectively. As the density of sawdust soil is known, the shear
wave velocity can be determined if the maximum dynamic shear modulus of sawdust soil
is known, and the theoretical value of the natural vibration frequency of model soil can
be determined.
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The depth of the test soil was 0.9 m, and the overburden pressure at the average depth
of 0.45 m was approximately 5.4 kPa, which was limited because of the limitation of the
test instrument and could not be tested at such a small confining pressure. Therefore,
the maximum dynamic shear modulus and circumference were considered to be the
linear trend, and the value of the maximum dynamic shear modulus under different
confining pressures of sawdust is shown in Figure 4a. The empirical formula of the
relationship between confining pressure and initial shear modulus can be fitted based on
the existing different confining pressure test data. The corresponding shear modulus at a
lower confining pressure (especially low confining pressure that the test equipment cannot
reach) can be determined according to this formula. This method can be called the epitaxial
method. When the confining pressure of 5.4 kPa was determined, the maximum dynamic
shear modulus could be approximately determined as 3.52 MPa by the epitaxial method,
the shear wave velocity VS was 54.42 m/s, and the theoretical value of the first-order
natural frequency of model soil was 54.4/4/0.9 = 15.10 Hz. By comparing the experimental
data with the theoretical calculation results, the following results were obtained:

1. The identified system frequency value of 10.80 Hz was close to the theoretical
calculation value of 15.10 Hz. The reason for the error was that, when the soil-making
power test was performed, the model soil was formed in a sample preparation device
for convenience for the indoor test. A certain pressure was applied to the soil sample to
make the soil sample compact. Thus, by comparison with the model soil in the model box,
the compactness of the soil sample in the laboratory test was higher, so the fundamental
frequency of the system was less than the laboratory test value. In future shaking table
tests, the bending element can be used to directly measure the shear wave velocity in the
model soil to reduce the influence of sampling disturbances.

2. With the increase of the amplitude of the input ground motion, the frequency of
identification decreased and the damping increased, which indicated that the stiffness of
soil was decaying, i.e., nonlinear deformation of soil occurred, which was consistent with
the dynamic characteristics of soft soil.

Based on the above analysis, it can be preliminarily determined that the fundamental
frequency of the model soil was 10.80 Hz, the corresponding shear wave velocity was
39.96 m/s, and the density was 1190 Kg/m3. Then, the dynamic shear modulus was
1.91 MPa. In this experiment, the size of the circular tunnel was consistent with that of the
tunnel structure in Section 5; however, the tunnel was made of plexiglass with a density
of 1120 kg m3 and an elastic modulus of 2.10 GPa. The prototype structure-soil stiffness
ratio was 6.58 according to Equations (5) and (6), and the structural-soil stiffness ratio of
the structural model was only 4.03.

The structure-soil stiffness ratio of the prototype and the model was not equal to 1,
and there was still a certain gap between both the prototype and the model. The main
reason was that the thickness of the model soil (sawdust soil) was too thin, the soil was
relatively loose, and its stress level was low, which also showed that in the complex design
of the soil-structure interaction shaking table model test, it was impossible to achieve all
aspects, and only the main factors could be grasped. The structure-soil stiffness similarity
ratio distortion could only be reduced as much as possible and perhaps it could not be
completely avoided.

8. Conclusions

In this study, five types of model soil were prepared based on the undisturbed silty
clay and common additive materials, and the dynamic characteristics of soils were given.
Based on their respective dynamic characteristics, some suggestions on the selection of
model soil were given, the suggestions were applied to the shaking table model test of the
complex interaction system, and good results were obtained. The main research results of
this paper were as follows:

1. The variation of dynamic shear modulus and dynamic damping ratio of various
model soils with dynamic shear strain agreed well with that of undisturbed soil, which
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showed that the model soil could reflect the dynamic characteristics of the undisturbed soil,
and could be used in the model test instead of the undisturbed soil, and had the function
of reducing the structural-soil stiffness ratio distortion and adjusting the weight of the
model soil.

2. In theory, the structure-soil stiffness ratio distortion can be completely avoided.
However, the practical test involved the limitation of confining pressure and the elasticity
of the model soil, and the distortion of the structure-soil stiffness was inevitable. The
distortion of the structure-soil stiffness ratio could be reduced as much as possible by
adjusting the proportion, which also showed the complexity of the scale model test.

3. In comparison, sawdust soil and sawdust sand could better simulate the original
soil, and the effect of the rubber powder soil and sawdust was the worst; therefore, sawdust
soil and sawdust sand were applied in the actual vibration table test.

The test conditions and some rebound characteristics of the model soil were limited,
which resulted in the connection between the dynamic triaxial test data and the test data of
the resonance column not being ideal. At the same time, more tests need to be conducted
under different confining pressures so that the hypothesis of determining the shear modulus
of soil under small confining pressure by the method of linear interpolation mentioned
in this study can be verified or modified. Furthermore, if possible, the bending element
should be employed in the shaking model test to record the shear wave in model soil
directly, and then soil shear modulus can be obtained by shear velocity and density. This
can help to determine the soil properties correctly. These links need to be further improved
in follow-up research.
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