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Abstract: Reinforcement learning (RL) is being gradually applied in the control of heating, ventilation
and air-conditioning (HVAC) systems to learn the optimal control sequences for energy savings.
However, due to the “trial and error” issue, the output sequences of RL may cause potential opera-
tional safety issues when RL is applied in real systems. To solve those problems, an RL algorithm
with dual safety policies for energy savings in HVAC systems is proposed. In the proposed dual
safety policies, the implicit safety policy is a part of the RL model, which integrates safety into the
optimization target of RL, by adding penalties in reward for actions that exceed the safety constraints.
In explicit safety policy, an online safety classifier is built to filter the actions outputted by RL; thus,
only those actions that are classified as safe and have the highest benefits will be finally selected.
In this way, the safety of controlled HVAC systems running with proposed RL algorithms can be
effectively satisfied while reducing the energy consumptions. To verify the proposed algorithm, we
implemented the control algorithm in a real existing commercial building. After a certain period of
self-studying, the energy consumption of HVAC had been reduced by more than 15.02% compared
to the proportional–integral–derivative (PID) control. Meanwhile, compared to the independent
application of the RL algorithm without safety policy, the proportion of indoor temperature not
meeting the demand is reduced by 25.06%.

Keywords: reinforcement learning; safety policy; HVAC system control; energy saving

1. Introduction

The energy consumption by buildings accounts for about 40% of total energy con-
sumption in the world. The heating, ventilation and air-conditioning (HVAC) system
contributes to about 70% of building energy consumption [1,2]. Therefore, optimizing
the control of the HVAC system and reducing energy consumption while meeting indoor
comfort requirements is important to help with the global warming issue.

Traditional proportion integration differentiation (PID) control methods achieve pre-
cise control of the process by dynamically adjusting control variables based on signal
error [3]. It is simple and easy to operate, but it can run steadily only when the system
changes in a certain range. In real scenarios, many important factors, such as outdoor tem-
perature and humidity, lighting, system load rate, etc., are constantly changing. Therefore,
in most systems, a single PID control method mainly focuses the thermal comfort rather
than energy efficiency [4].

A PID controller is mostly used to control some equipment or subsystems of HVAC
systems, rather than the whole system. As a result, machine learning has more advantages
in global control, attributes to the decreasing cost of sensors, the development of data
collection technologies and artificial intelligence algorithms. Among them, the model
predictive control (MPC) approach has been widely used for its good performance [5].
Model-based forecasting and the control method with big data convert a building energy
efficiency problem to a constraint optimization problem [6].
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An MPC can be established by physical mechanism or data-driven technology. Then,
an actual system is simulated, and the optimal operating parameters are determined
based on the predicted information [7]. The effectiveness of this method depends on the
accuracy of the predictive model [8]. However, the complex of the HVAC system limits the
application of such algorithms. Furthermore, MPC has limited ability to adapt to changes
both inside and outside the system due to the serious data drift in the actual environment,
which also makes the accuracy of the predictive model become worse and worse over time.
As a result, the application of MPC in energy savings is limited [9,10].

To improve the adaptability of MPC technology and reduce the labor cost of estab-
lishing predictive models, reinforcement learning (RL) has been gradually applied in the
HVAC control system [11,12]. Mason and Grijalva have found that the energy saving of RL
in HVAC control is more than 10% [13]. Through the continuous interaction between agent
and the HVAC system, agent can learn the operation fundamentals of the HVAC system,
then obtain the optimal operating policy of the system. Then, operation suggestions are
provided for the HVAC system, the operating efficiency is improved on energy consump-
tion and the labor cost is reduced. In sum, RL has advantages on energy-efficient potentials,
automatic response to the changes of the HVAC system and the environment, and the cost
of personnel intervention and maintenance. Currently, there are three types of model-free
RL algorithms, including the value-based method, policy gradient, and the actor-critic
framework, which is a combination of the first two algorithms. Traditional value-based
algorithms typically use value function approximations to Q value, which can lead to
the problem of policy degradation for continuous action space (policy degradation) [14].
The policy gradient algorithm does not degrade the policy and has better convergence
characteristics and is able to learn random policy. However, it opts to converge to the
local optimum instead of the global optimum. An actor-critic is more suitable for building
energy-efficient scenarios. In the paper, the authors prove in the simulation environment
that the soft actor-critic (SAC) algorithm performs well in the control of the HVAC system
on indoor air temperature and energy efficiency [2]. Meanwhile, the SAC algorithm is more
robust, less sensitive to hyper-parameters, and has a stronger generalization ability in each
scenario [15–17].

RL maximizes the long-term return by continuously interacting with the HVAC sys-
tem. However, in a real system, the approach to minimize the phenomenon that the indoor
temperature cannot meet the demand with the safety policy of RL is also an important
and challenging topic [18]. Safe RL extends the MDP (Markov Decision Process) to CMDP
(Constrained Markov Decision Process), which is mainly solved by the Lagrangian method.
However, this method is difficult to ensure that the constraints are met in the exploration
process, even if it could have been met [19]. In addition, there are Lyapunov-based meth-
ods [20], Safety Layer [21] and other methods. None of these methods can solve this
problem well in practical scenarios.

Some algorithms described above have been utilized in commercial or open-source
software for engineers. Stavrakakis [22] provides an overview of commercial or freely
available computational tools that can be used to assess building energy performance
and Urban Heat Island effect in open spaces. So far, most studies on RL algorithms in
an HVAC system are remaining at the simulation phase [23–25]. Their performances need
field verification.

To this end, we propose an RL algorithm with dual safety policies for energy savings
in the HVAC system. The algorithm takes full advantage of the exploration ability and
adaptability of RL to solve the data drift issue. To ensure the safety of RL, an implicit
safety policy and an explicit safety policy are constructed. This algorithm gives priority
to ensuring the safety of exploration. At the same time, to avoid a large amount of time
required to accumulate offline data, considering the characteristics of the streaming data in
the HVAC system control process, the algorithm adopts the real-time online learning based
on the residuals learning, which improves the availability of the algorithm.

The novel contributions of this paper are described as follows:
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(1) This paper proposes an RL algorithm with dual safety policies to ensure the safety
of RL. Implicit safety policy is an optimization policy integrated into RL to make the
agent learn optimal safety policy by long-term learning. In order to ensure the safety
of real-time action, especially in the early phase of the explore process, explicit safety
policy is proposed. Through the dual safety policies, it can not only ensure the safety
of real-time action, but also enable the agent to learn long-term safety policy.

(2) Rather than offline learning, explicit safety policy adopts an online learning method,
which makes the learning process more difficult. In order to solve the above problem,
we propose a method based on residual learning, based on the characteristics of the
HVAC real-time data, which not only ensures the accuracy of the algorithm, but also
improves the stability of the algorithm.

(3) Most importantly, unlike most RL algorithms that are still in the experimental simula-
tion stage, our algorithm has been deployed in practical scenario. The results showed
that the implemented algorithm achieved impressive energy savings while maintaining
indoor temperature requirements, compared to rule control and PID control.

2. Methods
2.1. Reinforcement Learning

RL is an adaptive machine learning method, which aims to optimize the decision-
making based on the evaluation of the environmental feedback signal [7]. Agent and
environment are the two main elements in RL. In an HVAC problem, the environment
(controlled system) is all those indoor and outdoor factors that influence a room or zone of
the building, and the agent is a decision maker to manage a room or zone actuators of the
building, according to specified setpoints [6].

Besides agent and environment, RL also includes some basic elements. A state (short
for s) is the description of the environment and the agent. An action (short for a) is the
description of the behavior of agent. A policy π(a|s) is the function of action that agent
determines based on the state s. A reward R is a measure of the action that environment
feeds back to the agent after the agent has made the action based on the state s.

As shown in Figure 1, each time step the agent takes action at to interact with the
environment based on state st. Environment gives the agent reward Rt and next state st+1,
usually a bigger reward means a better action. The agent adjusts the policy according to
the reward.
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Figure 1. The schematic map of RL (the solid lines represent that the state, action and reward are
generated from current timestep t, the dotted line of st+1 is obtained from the next timestep t + 1 ).
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A return G is the accumulation of each moment (step) reward from the moment of t to
the end of episode. The mathematical expression of return Gt is shown as Equation (1).

Gt = Rt + γRt+1 + γ2Rt+2 + . . . . . . =
n

∑
k=0

γkRt+k (1)

where Gt is a return following time step t; γ is a discount factor, a number between 0 and 1,
which is introduced because of rewards work differently at each moment.

A state value Vπ(s) represents the expectation of the return that agent can obtain in a
state based on a given policy π shown as Equation (2).

Vπ(s) = Eπ [Gt|st = s] (2)

An action value Qπ(s, a) represents the expectation of the return that agent can obtain
by taking action a in state s based on a given policy shown as Equation (3).

Qπ(s, a) = Eπ [Gt|st = s, at = a] (3)

2.2. SAC

Soft actor-critic (SAC) algorithm is an off-policy actor-critic DRL algorithm based on
the maximum entropy RL framework. In this framework, actor is designed to maximize the
expected return and entropy. This ensures greater exploration capabilities of the algorithm
while completing tasks. By combining an off-policy update with an actor-critic framework,
the stability of the algorithm is guaranteed. Meanwhile, the use of off-policy provides a
better data efficiency.

The SAC algorithm is developed based on policy iteration (PI) in two steps. In step
1, Policy Evaluation is used to evaluate the quality of a policy using state value function
V(st). In step 2, Policy Improvement is used to update the policy π(at|st). There are several
ways to update the policy. To improve the exploration ability, SAC has transformed policy
iteration into a soft policy iteration process. In the policy evaluation step, entropy is added
to construct the soft state value function V(st) shown as Equation (4).

V(st) = Eat∼π [Q(st, at)− log π(at|st)] (4)

The soft action value function Q(st, at) is constructed based on V(st) and shown as
Equation (5).

Q(st, at) = r(st, at) + γEst+1∼p[V(st+1)] (5)

Unlike previous policies of certainty in the policy update process, soft policy iteration
Jπ aligns the distribution of the policy π(at|st) with the distribution of the soft action-value
function Q(st, at), shown as Equation (6), i.e.,

Jπ = DKL(π(at|st)||
exp(Q(st, at))

Z(st)
) (6)

DKL is the Kullback–Leibler divergence used to evaluate the difference between two proba-
bility distributions. The partition function Z(st) is used to normalize the distribution.

After an operation, the target function of a policy update can be equivalent, which
determines the importance of entropy relative to the reward, then controls the randomness
of the policy. Since the policy is a distribution that is based on sampling, the above formula
cannot be derived, so a reparameterization trick is used to sample the action: at = f (εt; st),
where εt is a Gaussian distribution. In this way, the integration of action in the policy
objective can be converted into integrals, shown as Equation (7).

Jπ = Eεt∼N [α log(π( f (εt; st)|st))−Q(st, f (εt; st))] (7)

α is the temperature parameter to control the stochasticity of the optimal policy.
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2.3. Online Learning

Online learning refers to the usage of real-time data (or data block) by a model
for training or optimization so that the model has better predictive performance with
future data [25,26]. There are more restrictions on online learning than offline learning
methods [27,28]. Due to the lack of data at the beginning of online learning, memory
allocation and the structure of a model cannot be completed in advance. Meanwhile, the
processing time in online learning is limited. The processing needs to be completed before
new data arrive. Data during different periods are non-stable. There may be conceptual
drifts that require real-time maintenance of the model.

With the success of deep learning applications, more and more online learning sce-
narios are using deep learning to solve related problems. Due to the limitations of online
learning, deep learning applications in the field of online learning require the ability to
self-adjust. It means the parameters and structure of the network can be modulated based
on new coming data [29]. Therefore, the problem can be divided into three aspects: timing
of starting the adjustment, the way of network parameter adjustment, and the way of
model structure adjustment.

There are more in-depth studies for the latter two aspects already. The network
parameter adjustment mainly includes three methods: sample selection [30,31], sample
weight [31,32], and model structure [33,34]. The model structure adjustment mainly in-
cludes constructive algorithms [35], pruning algorithms [36], hybrid algorithms [37], and
regularization techniques [38]. In the past ten years, studies of online deep learning have
been deepened, but the proposed methods were more generalized, not considering the
data characteristics of HVAC systems.

3. Framework of Proposed Algorithm
3.1. Problem Definition

The optimal control problem of an HVAC system can be summarized as finding a
corresponding control policy to make the accumulated system energy consumption in a
period of time as small as possible while satisfying the indoor temperature demand, as:

min
π*(a|s)

T
∑

t=0
power(t)

s.t. ci(t) ≤ 0

ci(t) =

{
Ti(t)− λi(t), cooling

λi(t)− Ti(t), heating
i = 1, 2, . . . . . . N

(8)

π∗(a|s) is the optimal policy; power(t) is the total energy consumption of HVAC
system at time t; Ti(t) and λi(t) are the actual temperature and set temperature of the i-th
zone in the building at time t, respectively; N is the total number of zones.

According to our exploration of the HVAC system control, under different energy supply
modes and system working mechanisms, the corresponding relationships between consumed
power and indoor demand satisfaction of the same control policy are shown as Figure 2.

It is generally believed that the greater the system power consumed, the more it can meet
the indoor demand, and vice versa. Generally, it is mainly divided into three policy forms.

As show in policy 1 in Figure 2, when the system is controlled at low power, it cannot
meet the minimum indoor demand; with the gradual increase in power, the indoor demand
is met; when the system is under high power, it may far exceed the indoor demand,
resulting in a waste of energy. In some cases, as show in policy 2, low power consumption
can meet the indoor demand, so the energy-saving space is large. However, as shown in
policy 3, sometimes it is necessary to consume high power to meet the indoor demand, so
it will be difficult to save energy consumption.
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Therefore, the optimal control policy of the HVAC system is to minimize the power
consumption in the long term and on the premise of meeting the indoor demand. It is
consistent with the learning goal of safe RL, which is to maximize the long-term return
under safety constraints.

3.2. Framwork Overview

RL with dual safety policies for energy savings in an HVAC system consists of three main
modules. They are data pre-processing, RL model and explicit safety policy. The schematic
diagram of the proposed algorithm is shown as Figure 3.

The data pre-processing module processes the data collected by the HVAC system and
extracts valid information. At the same time, the feature data uploaded at different times
are organized into a regular data form for the algorithm to store and use.

Pre-processed data will be generated and added to the experience reply buffer, for
parameter updating of the RL and explicit safety policy. Among them, the temperature
labels Lt ∈ {0 , 1} indicate whether the indoor temperature exceeds the safety boundary.
The safety boundary is generally composed of the temperature value set by the user and
the safety range. The purpose of the safety range is to avoid the abnormal situation that
the temperature value set by the user cannot be satisfied due to the property limitation of
the system.

Implicit safety policy is a part of the RL model, which integrates safety into the
optimization goal of RL. It adds penalties for actions that exceed the safety constraints
(reward shaping) to improve the reward into two sub-tasks, power-related and safety-
related. By training, it makes the RL model learn not only the optimal but also the
safer policy.

The explicit safety policy module determines the action outputted by RL in real time
to ensure the safety. The RL model outputs the basic action according to the current state.
If the action meets the demands of the indoor temperature, the HVAC system will be
controlled based on the action. Otherwise, it needs to traverse the action space to select all
legal actions and generate a set of alternative actions. The best action is then selected from
the set of alternative actions by some rules. When the set of alternative actions is empty,
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a default action with the maximum system power is given based on prior knowledge. In
this paper, the basic RL algorithm uses the SAC algorithm.
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3.3. Data Pre-Processing
3.3.1. Data Pre-Processing Introduction

The data pre-processing module processes the data collected by an HVAC system.
Due to the different data sampling frequencies in the system, the data cannot be uploaded
at the same time. Therefore, the data need to be aligned in the time dimension first.
The module fills or aggregates data according to different sampling rules, identifies and
processes outliers according to data characteristics and the upper and lower limits set by
prior knowledge, uses relevant data for mutual verification to deal with data conflicts, and
generates new features. Finally, the useful information in the sampling period is integrated
into regular data for use in subsequent steps.

3.3.2. Settings of Reinforcement Learning

The energy-saving control problem of HVAC fits the basic theory of the reinforcement
learning algorithm, so the SAC algorithm can be used to solve this problem. Based on SAC
basic principles, State (s), Action (a), and Reward (r) are three fundamental elements, which
need to be defined.

State: State consists of three typical categories: indoor and outdoor air temperatures
and relative humidity, status of devices, and key operating parameters of equipment. The
status of devices is represented by {0, 1} as Boolean parameter. When the performance
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and power of devices are similar, the amounts of devices turned on are used to reduce
the dimension of the state, which can speed up the exploration efficiency of the algorithm.
Even some devices cannot be controlled by the algorithm; their parameters have a critical
impact on the indoor temperature and energy consumption. Therefore, these parameters
should be used in the algorithm as a key state.

Action: Action space is selected based on an actual scene. Theoretically, the action
space should be larger than the optimal space to ensure that RL can explore the optimal
policy. However, for the sake of device safety, the range of action will be limited, so the
optimal action space is smaller.

Reward: The reward is shown as Equation (9).

3.4. Implicit Safety Policy

The RL agent is designed to generate the lowest energy consumption but safe actions.
Therefore, the optimization goal of RL should not only include the consumed power of the
HVAC system but also the safety constraints. It is a feasible way to design the composition
of reward by penalizing unsafe actions. So far, the reward function has two forms. The
first function is to reduce the total system power consumption as much as possible within
a certain period. The second function punishes unsafe actions by adding a penalty value.
The reward function is shown as follows:

Rt =


−

T
∑

t=1
P(t), ∆Tmax(t) ≤ 0

−
T
∑

t=1
P(t)− α∆Tmax(t), ∆Tmax(t) > 0

(9)

Among them, P(t) represents the total power consumption of the HVAC system at
timestep t; ∆Tmax(t) represents the maximum value at which the room exceeds the set
temperature in the control period t. α is the weight of ∆Tmax(t) to balance the values
of ∆Tmax(t) and P(t). The calculation method is slightly different in the heating mode
compared to that used in the cooling mode of the HVAC system.

3.5. Explicit Safety Policy

The implicit safety policy learns safety policy by adding penalties in reward for unsafe
actions. However, this method requires the algorithm to explore and learn for a long time,
and cannot guarantee real-time safety. Therefore, we propose an explicit safety policy
algorithm based on online residual learning, which can construct a safety classifier to filter
out unsafe actions and select the optimal safe action.

Explicit safety policy algorithm mainly consists of two components, an online safety
classifier, alternative action collection and optimal action selection. The online safety clas-
sifier is built to predict whether the action taken by RL will result in indoor temperature
dissatisfaction, and it is trained with the data sampled from experience reply buffer. If
the action outputted by RL is classified as unsafe action, the mechanisms of alternative
action collection generation and optimal action selection will be triggered. All actions iden-
tified by online safety classifier as meeting the indoor temperature constraints constitute
an alternative action collection. The best action that maximizes the benefit in all alternative
actions could be selected by some rules.

3.5.1. Online Safety Classifier

The online safety classifier solves a binary classification problem. The goal is to
learn the corresponding mathematical relationship F : X → Y , from streaming data (xt, yt).
xt ∈ Rd is a sample for d dimension features. yt ∈ {0, 1} is a classification label. ‘0′ indicates
that all indoor air temperatures are meet demand, and ‘1′ indicates that there is indoor air
temperature not meet demand. The binary classifier is constructed with neural network. In
an HVAC system, the current state is largely dependent on the previous state. So, indoor
air temperature dissatisfaction is selected as a start signal to adjust the classifier network.
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When the classifier prediction result is correct, the network is believed to be reasonable.
When the prediction result is incorrect, it is highly likely that future predictions will be
incorrect, so the network needs to be adjusted.

Based on the idea of dynamic adjustment of network structure, the network based on
residual learning is proposed. The network structure of model is shown in Figure 4.
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Figure 4. The network of the online safety classifier based on residual learning.

The online safety classifier’s network structure is similar to LSTM (long short-term
memory) and an output layer is added to each hidden layer, then the results of all output
layers are added. LSTM has been successfully applied to power consumption forecast-
ing [39] and energy saving [40]. The main structure of LSTM is shown in Figure 5.
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In Figure 5, x0, x1, x2, . . . . . ., xt are the inputs at time 0, 1, 2, . . . . . . t; A is an LSTM unit,
which is constructed by different components with one memory cell and four gates (input,
forget, cell, and output) [41]. h0, h1, h2, . . . . . . ht are outputted by A, which represent the
hidden state of time 0, 1, 2, . . . . . . t.
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Supposing the network includes N hidden layers, the prediction process of a new
sample xt is shown by the blue arrows in the network structure in Figure 4. The details are
shown as Equation (10):

F(xt) = argmax(
N
∑

n=0
f (n))

f (n) = σ1(Θ(n)h(n))

h(n) =

 xt, n = 0

σ2(W(n)h(n−1)), n > 0

(10)

σ1 and σ2 are activation functions. They can be different activation functions. W(n) is
the weight of the hidden layers. Θ(n) is the weight of the output layers.

A typical process for a binary classification problem for a new sample is to predict the
classification to which the new sample belongs. Then, a loss value, such as cross-entropy, is
calculated. Finally, the network parameters are updated by the backward algorithm. Unlike
this process, the residual learning approach to update network parameters is proposed in
this article. The main differences are as follows:

• If a network consists of N hidden layers, each layer will correspond to an output
layer, and each output layer’s learning objectives are not the same. For the layer n, the

learning objective is f (n) = yt −
n−1
∑

i=0
f (i). In this way, different network structures can

be implemented.

• The parameters of network are not updated simultaneously with backward propa-
gation. The parameters of each hidden and output layer are updated layer by layer.
When the parameter of a layer is updated, a new sample is required to update the
shallow network. The updating formula is listed as follows in Equations (11) and (12).

Θt+1
(n) = Θt

(n) − η∇Θt(n)
L( f (n), yt −

n−1

∑
i=0

f (i)) (11)

Wt+1
(n) = Wt

(n) − η′∇Wt(n)
L( f (n), yt −

n−1

∑
i−0

f (i)) (12)

where η and η′ are learning rate. L is loss function, and the MSE is used in this design.

3.5.2. Alternative Action Collection Generation and Optimal Action Selection

The generation of alternative action collection needs to be realized with the help of
an online safety classifier to verify whether the action will meet the indoor temperature
demand in a given state. When the action is continuous, it needs to be discretized. The
degree of discretization needs to be determined in practical scenarios.

After the collection of alternative actions is generated, in order to select the best actions,
the benefits from corresponding action should be considered. That is the long-term return
of action a in given state s. In RL, action value function can solve this problem. In this
design, in order to take into account the maximum entropy principle of the SAC algorithm
and ensure the exploration ability of the algorithm, the following definitions are adopted.

Aπ(s, a) = Qπ(s, a)− log π(a|s) (13)

where π is the policy, Q(s, a) is an action value function.
Algorithm 1 depicts the main working process of explicit safety policy.
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Algorithm 1. Explicit safety policy

Input: Learning rate parameter η, η′

Initialize: F(x) with N hidden layers and θn, Wn n = 1, 2, . . . . . . N
1. for t = 1, 2, . . . . . . T do
2. Receive instance xt;
3. Predict y′t = F(xt);
4. If y′t == 1 then
5. Obtain alternative action collection;
6. Obtain best action;
7. Obtain true label yt;
8. If y′t 6= yt then
9. for n = 1, 2, . . . . . . N do
10. Predict fold

(n);

11. Calculate Loss L( fold
(n), yt −

n−1
∑

i=0
fnew

(i));

12. Update θ(n), W(n), h(n);
13. Update fold

(n) to fnew
(n) with θ(n), W(n);

14. end

4. Results and Discussion
4.1. Case System
4.1.1. System Structure

To verify the effectiveness of the control algorithm, we conduct experiments in a
real commercial building. This building is a retrofit commercial building including office,
exhibition hall, conference center, and cafeteria area. The building has five floors with a
total floor area of about 9000 m2. The ratio of window and envelop is about 30%. Table 1
shows the properties of this commercial building.

Table 1. Building properties of the test building.

Space Structure Material Type or Schedule

Envelop
Exterior wall Hollow bricks wall

Window Dual-glazed windows
Floor Concrete

Schedule
Occupancy schedule 7:30 am to 5 pm on weekdays

Closed on weekends

HVAC schedule 7 am to 5 pm on weekdays
Closed on weekends

The open schedule of this building is from 7:30 am to 5 pm on weekdays, and the
building is closed during weekends. There are around 200 persons working in this building.
The operation period of the HVAC system of this building is from 7 am to 5 pm on weekdays,
and the building is closed on weekends. The systems are turned on if there are people
working overtime.

The HVAC system of this building includes typical water and air systems. The chilled
water system consists of two heat pumps and three primary chilled water pumps. The air
system consists of 11 AHUs, 118 VAV boxes, 3 PAU units and 6 FCU units. Each AHU
serves several VAV boxes, and each VAV box corresponds to the sensor that measures the
indoor air temperature. The HVAC system schematic diagram of this building is shown
in Figure 6. Under normal operation mode, the status of the water system is stable, and
one heat pump and two primary chilled water pumps are turned on.
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The state space and action space of the implemented RL algorithm in this HVAC
system are shown in Table 2.

Table 2. State space for the implemented RL algorithm.

Space Parameters

States

Outdoor air temperature
Outdoor relative humidity

Status of heat pumps, AHU, PAU, FCU and VAV box
Frequencies of AHU, PAU and FUC

Actions
Setting temperature of heat pump outlet water

Setting frequency of Primary chilled water pump
Setting opening of AHU water valve

4.1.2. System Characteristics

In order to better analyze the performance of the proposed algorithm, we explored the
characteristics of the HVAC system in advance to obtain the operation logic of the HVAC
system, mainly the influence of action and key state factors on system power and indoor air
temperature. We conducted a two-week test in heating mode, and then conducted partial
correlation analysis on the collected data using Spearman coefficient. The results are shown
in Table 3. The null hypothesis of the correlation analysis is that there is no association
between the two random variables. The result of the black background indicates that the
calculated p-value is greater than 0.05, and the hypothesis is accepted, that is, the primary
chilled water frequency has little significant effect on the system power.

When the number of devices on and the key operating parameters of uncontrollable
equipment are determined, according to Table 3: (1) the power of the heat pump is mainly
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affected by the water outlet temperature of the heat pump, and the higher the water outlet
temperature, the greater the pump power, and vice versa; (2) the power of the primary
chilled water pump is mainly affected by the frequency of the primary chilled water pump,
and the higher the frequency, the greater the power, and vice versa; (3) the power of AHU
is mainly affected by outdoor temperature, but it does not show significant influence;
(4) system power is mainly affected by the outlet water temperature and outdoor temper-
ature, and the frequency of the primary chilled water pump and the AHU water valve
position have little influence on the system power; (5) indoor temperature is mainly affected
by the AHU water valve position and outdoor temperature, which are positively correlated
with both. In addition, in order to be consistent with the actual application, PAU and FCU
were not turned on during this test.

Table 3. Partial correlation coefficient among system factors.

Factors Heat Pump
Power

Primary Chilled
Water Pump Power AHU Power System Power Indoor

Temperature
Heat pump outlet water

temperature 0.52 0.24 0.20 0.44 0.14

Primary chilled water
pump frequency −0.16 0.75 0.05469 −0.0 0.08

AHU water valve position 0.17 0.24 −0.20 0.17 0.46
Outdoor temperature 0.25 −0.07 0.29 0.30 0.52

Outdoor humidity 0.18 0.11 0.13 0.25 0.32

4.2. Effectiveness of Proposed Algorithm
4.2.1. Overview

The proposed control algorithm is deployed in a real commercial building, to verify
the effectiveness. Data during the controlling of building automation system (BAS), which
is the original control system of HVAC, are collected, analyzed and compared as a baseline
case. Based on the data of BAS control, the effectiveness of the proposed control algorithm
could be illustrated from the perspectives of reward, action convergence, and energy saving
by AB testing. The AB test is a common method to evaluate the control performance
of different control algorithms. By applying algorithm A and B, respectively, in similar
system environments, the performance of each algorithm will be tested. In our scenario,
“A” represents AI control, that is, our proposed control algorithm; “B” represents BA
control, that is, original BAS control algorithm.

When the system is operated with the proposed control algorithm, the outdoor temper-
ature ranges from 4.10 to 28.00 ◦C, and the average indoor temperature ranges from 14.90 to
23.91 ◦C. The reward changing trend is shown in Figure 7, and the power consumption and
indoor temperature penalty trends of the proposed RL algorithm are shown in Figure 8.

The RL takes approximately 2400 steps during the whole control process, and the
algorithm operating cycle (each step) of the proposed algorithm is set as 12 min. The
system runs approximately 10 h a day when the system is controlled under the proposed
algorithm. It takes approximately 20 days when the reward of the RL algorithm is stabilized
and converged.

In order to obtain reliable energy-efficient verification data, two phases of AB tests are
token, and the results are shown in Table 4. Here, one phase represents the period from the
beginning of BA control to the end of AI control, with only one control mode switch.
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The first phase (test 1) is in the first week when the algorithm is implemented, and the
second phase (test 2) is in the last week when system runs under the proposed algorithm.
Under BA case, the HVAC system is still controlled with the PID controller, and the PID
parameter is set as the original. Therefore, the chilled water outlet temperature is set
constant at 45 ◦C, and the frequency of primary chilled water pumps is set constant at
45 Hz. The valve position of AHU is controlled by the supply air temperature of AHU
using the PID controller.

It is found that the average outdoor air temperature during phase 1 is 0.43 ◦C lower
than that during the baseline case. During phase 1, the average indoor air temperature is
0.62 ◦C higher and the power consumption is reduced by 6.51%, compared to the baseline
case. During phase 2, the outdoor air temperature is 1.09 ◦C higher and the average
indoor air temperature is 0.41 ◦C higher, and the electricity consumption reduction is
15.02%, compared to the baseline case. In the early stage of the algorithm, the energy
efficiency is relatively low, and the energy efficiency increases along with the learning of the
proposed algorithm.
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Table 4. AB test details.

Phase Date Average Indoor
Temperature

Average Outdoor
Temperature Control Method Energy Saving Rate

test1
3 February 2021 21.71 ◦C 13.54 ◦C BA

6.51%4 February 2021 22.33 ◦C 13.11 ◦C AI

test2
12 March 2021 22.21 ◦C 13.30 ◦C BA

15.02%16 March 2021 22.62 ◦C 14.39 ◦C AI

The indoor temperature, outdoor temperature, system power consumption and action
values during two AB test phases are shown in Figures 9–11. In the figures, left coordinate
axes represent the values of temperature, power and actions. The right coordinate axis
shows the value of AI_status, which indicates the running status of the AI algorithm. When
AI_status is 0, it represents that the HVAC system is under BA control mode (gray shaded
area in figures). When AI_status is 1, it means that the HVAC system is controlled by our
proposed algorithm (the red shaded area in the figure).

As can be seen from figures, the indoor temperature and outdoor temperature during
two AB test phases are almost in the same range. The actions of test 2 are significantly more
stable than that of test 1.
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During test 2, the heat pump outlet water temperature is controlled at the minimum
value, and the water valve position of AHU is controlled at the maximum value, and the
demand is met by modulating the primary chilled water pump frequency. It shows that
the proposed algorithm can learn the system characteristics after a period of learning and
provide reasonable action of the system.

4.2.2. Performance of Online Safety Classifier

To evaluate the performance of the online safety classifier algorithm with the increase
in data amount, all of the data are divided into three phases. The first 300 rounds of learning
is labeled as a mid-phase; the first 1000 rounds of learning is labeled as a late-phase. The
entire process of training is labeled as entire phase. The accuracy and recall rate results are
shown in Table 5. During the entire learning process, the performance of the algorithm
does not fluctuate significantly with the increase in data amount.

Table 5. Performance of increased data amount for online safety classifier.

Metric Mid-Phase Late-Phase Entire Phase

precision 0.91 0.945 0.937
recall 0.75 0.78 0.774

4.2.3. Performance of Safety Policies

To prevent the situation that RL cannot satisfy the thermal comfort requirements, the
RL algorithm with dual safety policies for energy savings in the HVAC system is proposed.
An AB test proves that the algorithm has reduced the proportion of indoor temperature
dissatisfaction from 34.64% to 9.58% and decreased power consumption by 8.97%, as
shown in Table 6. Although it is difficult to compare the saving results across different
HVAC systems with various algorithms due to the different system configurations and
baselines, our future work will compare the results using the feasible algorithms based
on a previous literature study [22]. The studies [42,43] showed two case studies with
computational simulation.

Table 6. Experimental Results of AB test for safety policies.

Model Date Average Outdoor
Temperature

Average Indoor
Temperature

Room Temperature
Dissatisfaction Rate

Power
Consumption

SAC with safety policy 17 March 2021 11.58 ◦C 21.06 ◦C 9.58% 1671.4 kWh
SAC only 18 March 2021 11.73 ◦C 21.37 ◦C 34.64% 1533.7 kWh
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The majority of indoor temperature dissatisfaction during the algorithm occurs when
the system is just turned on. As can be seen from Figure 12, the heat pump outlet water
temperature, primary chilled water pump frequency, and AHU water valve position are
controlled to ensure the indoor temperature rises as quickly as possible when the system is
just turned on. Subsequently, there will be no indoor temperature dissatisfaction. When
the system is not operated under safety policies, the action is in a larger range. The
indoor temperature dissatisfaction lasted for a long time after the system was turned on.
Therefore, the safety policies can better safely control, thus reducing indoor temperature
dissatisfaction occurrence.
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On the premise that the outdoor temperature and the precision of the online safety
classifier are stable, as shown in Figure 13, we counted the proportion of explicit safety
policy operation of each day under the same operation hours, decreasing from 14% at
the beginning to about 9.5%, which means the unsafe actions outputted by implicit safety
policy decreased by 32.14%. Additionally, the proportion of outputted safe implicit safety
policy increases from 85% to 90%. This indicates that the implicit safety policy could obtain
a safer policy after a period of learning. However, when the device is just turned on, it is
still unavoidable that the indoor temperature cannot meet the demand.
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5. Conclusions

In this article, RL with dual safety policies for energy savings in an HVAC system is
proposed. RL is used to solve the typical data drift issue in HVAC control systems and
improve the adaptability of the control algorithm. To solve the potential unsafe risk caused
by the “trial and error” attribute of RL, the dual safety policies of implicit safety policy
and explicit safety policy are proposed to restrict the exploration boundary of RL. Implicit
safety policy takes the safety as one of the learning objectives to improve the optimization
criterion of RL. Explicit safety policy uses the data generated from the RL algorithm to
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learn an online safety classifier by means of online learning. For a given state, alternative
action collection that meets the temperature demand is used, and a best action is selected.

To verify the effectiveness of the proposed algorithm, it is implemented in the real
HVAC system of a commercial building. The result shows that the energy consumption
of the building has been reduced by 15.02%, compared to traditional rule control and
PID control. The proportion of room temperature dissatisfaction decreased by 25.06%
compared to RL only. With the increase in the amount of data, the accuracy of the online
safety classifier has not changed significantly, and remains above 90%. After a period
of learning, the implicit safety policy reduces the proportion of unsafe actions by about
32.14%. Moreover, the proposed algorithm has a certain generalization ability. This proves
that this control algorithm has good practicability, and can effectively reduce the energy
consumption and ensure safe exploration encountered in the real HVAC system.

The future work will mainly focus on three aspects. The first aspect is to improve
the convergence speed of RL. The current convergence in practical applications still takes
a relatively long time, which greatly limits the algorithm verification and improvement.
In future, our work will not limit the state selection, reward design, network parameter
settings of RL, but also involve the combination of the prior knowledge and RL. The
second is to verify the generalization capability of our algorithm in more scenarios. Due
to the discrepancies of different HVAC systems, the boundaries of the generalization
capability of this proposed algorithm still need to be further explored. Third, the method
of simultaneous optimization of discrete and continuous actions should be introduced
into the proposed control algorithm, and the method can expand the application scope of
the control algorithm. In an actual scenario, both operating parameters of the system and
status of equipment need to be optimized simultaneously.
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