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Abstract: Rapid and accurate identification of moving load is crucial for bridge operation manage-
ment and early warning of overload events. However, it is hard to obtain them rapidly via traditional
machine learning methods, due to their massive model parameters and complex network structure.
To this end, this paper proposes a novel method to perform moving loads identification using Mo-
bileNetV2 and transfer learning. Specifically, the dynamic responses of a vehicle–bridge interaction
system are firstly transformed into a two-dimensional time-frequency image by continuous wavelet
transform to construct the database. Secondly, a pre-trained MobileNetV2 model based on ImageNet
is transferred to the moving load identification task by transfer learning strategy for describing the
mapping relationship between structural response and these specified moving loads. Then, load
identification can be performed through inputting bridge responses into the established relationship.
Finally, the effectiveness of the method is verified by numerical simulation. The results show that it
can accurately identify the vehicle weight, vehicle speed information, and presents excellent strong
robustness. In addition, MobileNetV2 has faster identification speed and requires less computa-
tional resources than several traditional deep convolutional neural network models in moving load
identification, which can provide a novel idea for the rapid identification of moving loads.

Keywords: bridge engineering; moving loads identification; MobileNetV2; transfer learning

1. Introduction

Moving load is the main external load acting on the bridge [1,2]. Due to the ineffi-
cient supervision of overweight vehicles, bridge collapse accidents caused by overweight
vehicles have occurred occasionally in recent years [3–5]. Therefore, the accurate and
rapid recognition of moving loads is beneficial to the early warning and control of the
overweight vehicle, thereby ensuring the safe operation of the bridge [6,7]. Traditional
moving loads identification method primarily rely on a bridge weigh-in-motion (WIM)
system. However, WIM may harm the road surface, and the sensor is prone to be damaged
under long-term moving load, which increases the operation and maintenance costs [8].
Therefore, it is urgent to indirectly identify the moving load using the dynamic response by
a more efficient and economic method, i.e., moving load identification (MLI) methods.

MLI methods can roughly be classified into two categories, i.e., intelligent optimization
methods and machine learning methods. Among them, intelligent optimization methods
compute the optimal solution of the loss function to obtain the load parameters with the
smallest loss function [9]. For example, Wang et al. [10] applied simulated annealing
algorithm to identify multi-axis moving train loads, and the experimental results demon-
strated that the proposed method exhibits excellent robustness and accuracy. Pan et al. [11]
proposed a moving loads identification method based on the firefly algorithm, in which,
vehicle load information can be accurately identified with only a small number of sensors.
Liu et al. [12] recognized the constant component of the moving load with the help of
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particle swarm algorithm and used the hybrid measurement response to further improve
the identification accuracy. Ali R. Vosoughi et al. [13] applied a genetic algorithm for
moving load identification by defining a root mean square error function between the
measured and calculated responses, and the results showed that the accuracy and efficiency
of this method higher than the Newmark’s method. Although the intelligent optimization
methods can effectively obtain the moving load information from the bridge response,
the optimization process often requires searching a huge solution space, which leads to
computational inefficiency and is not conducive to the rapid identification of moving
loads [14].

With the rapid development of artificial intelligence, machine learning (especially
deep learning) has shown great advantages in feature extraction, target detection, and
recognition [15], etc., and is also widely applied in moving load identification. For instance,
Yang et al. [16] applied a neural network to acquire the information of moving load through
structural dynamic strain and discussed the influence of activation function on identifica-
tion accuracy. Zhou et al. [17] developed a moving load identification algorithm, which
converted the bridge acceleration response into a two-dimensional map as the network
input. Chen et al. [18] reconstructed and located impact load based on deep convolu-
tion recurrent neural network and feature learning, which avoided the infeasibility and
ill-posedness of nonlinear structure when identifying random impact loads. Zhang [19]
applied a long short-term memory neural network to obtain the information of moving
loads through the dynamic responses of the bridge, and the results revealed that the in-
formation of the moving load can be recognized synchronously with great accuracy. The
above literature confirms the great potential of machine learning methods in the accurate
and efficient identification of moving loads. However, these machine learning methods
often encounter a heavy computational burden, due to the large model parameters and
complex network structure, which leads to an inefficient identification process.

Fortunately, lightweight convolutional neural network has a faster identification speed.
Compared with traditional deep convolutional neural network models, separable convo-
lution is used in lightweight convolutional neural network model, which greatly reduces
the model parameters without sacrificing the accuracy of the model. As a lightweight
convolutional neural network model with superior performance [20], the MobileNetV2
model has not yet been used in moving load identification. Therefore, this paper pro-
poses a moving load identification method based on MobileNetV2 and transfer learning,
which has faster identification speed and requires less computing resource. Concretely,
the continuous wavelet transform (CWT) is first applied to convert the dynamic responses
of vehicle-bridge interaction (VBI) system into images to construct the data set for the
moving load identification task. Secondly, a pre-trained MobileNetV2 model is applied
to the load identification task through transfer learning strategy to enhance the efficiency
of the model. Then, the information of moving loads can be acquired through inputting
responses of bridge into the completely trained model. Finally, the feasibility of the method
is demonstrated in the numerical modeling case.

The major contributions of this paper in comparison with the published literature are
summarized in the following.

(1) MobileNetV2 has been introduced into moving load identification to improve the iden-
tification efficiency. Case study shows that the MobileNetV2 has faster identification
speed and requires less computational resources than traditional deep convolutional
neural network models in moving load identification.

(2) The influence of several types of dynamic response on moving loads identification is
discussed. The results demonstrate that the displacement response may be the most
suitable input for vehicle load identification, while acceleration response may be more
suitable for vehicle speed identification, which provides a guideline for the accurate
identification of moving loads.

This paper is organized as follows. In Section 2, the theoretical background involved
in this paper is introduced. In Section 3, the process of this method is described. The case
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study of identification task is conducted in Section 4. In Section 5, the performance of this
method is discussed and analyzed. In Section 6, several conclusions are described.

2. Theoretical Background

In this section, firstly, the VBI dynamic model is described. Then, the popular deep con-
volutional neural network (DCNN) models and lightweight convolutional neural network
models are introduced. Finally, the basic concept of transfer learning is introduced.

2.1. The VBI Dynamic Model

The VBI dynamic model is a complex dynamic system, composed of moving vehicles
and bridges. In this subsection, the Newmark-β method is used to solve the dynamic
equation of the VBI model, thereby obtaining the dynamic response of the model.

2.1.1. Road Surface Roughness

PSD function is used to transformed road surface roughness from spatial frequency
domain to the circular frequency domain [21], as follows:{

Srr(Ω) = Srr(Ω0)(Ω/Ω0)
−2 (Ω ≤ Ω0)

Srr(Ω) = Srr(Ω0)(Ω/Ω0)
−1.5 (Ω > Ω0)

(1)

Road surface roughness can be calculated by the inverse Fourier transform of the road
surface roughness spectrum, as follows [22]:

r(x) =
N

∑
i=1

√
∆n·2k·10−3·

( n0

i·∆n

)
cos(2πi·∆nx + φi) (2)

where r(x) is a variable about bridge length L, ∆n = 1/L; N is the number of data points,
and k is a constant integer increasing from 3 to 9. φi is the random phase angle distributed
uniformly between 0 and 2π.

2.1.2. The Vehicle Model

In this section, a vehicle model is established, which involves mass, spring, and
damper [23]. The influence of road roughness on vehicle-bridge interaction vibration are
considered, as shown in Figure 1. These assumptions are used in the VBI dynamic model:
(i) the vehicle is traveling on the bridge with a constant speed v; (ii) the wheel is always in
contact with the beam by point contact; (iii) the displacement of the wheel and the beam at
the contact point is consistent.

Figure 1. The VBI system.

According to the Newton’s second law, the vibration equation of the vehicle can be
written as:

mv
..
yv = Fvb − FG (3)
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where mv and yv are the vehicle weight and vehicle displacement, respectively; FG and Fvb
are the vehicle gravity and the interaction force, respectively. Fvb can be calculated by:

Fvb = −kv(yv − ybc − r)− cv(
.
yv −

.
ybc −

.
r) (4)

where kv, cv and ybc are spring stiffness, the damping, the bridge deflection, respectively.
ybc can be calculated by:

ybc = Nb·yb (5)

where yb denotes the global displacement vector of the bridge, Nb denotes the bridge
shape function.

Combining the Equations (3)–(5), we can obtain:

mv
..
yv − Cvb·

.
yb + cv

.
yv −Kvb·yb + kvyv = Fvr − FG (6)

where Cvb = cv·Nb, Kvb = cv·
.

Nb + kv·Nb, Fvr = cv
.
r + kvr are the vehicle additional

damping, stiffness, and load terms, respectively.

2.1.3. The Bridge Model

Under vehicle load, bridge dynamic equation can be expressed as:

Mb
..
yb + Cb

.
yb + Kbyb = −Fbv (7)

where Mb is bridge mass matrices, Cb is bridge damping matrices, and Kb is bridge stiffness
matrices; Fbv is the equivalent nodal force of Fbv. It has the following relationship:

Fbv = NT
b ·Fbv = NT

b ·Fvb (8)

Substituting Equations (8) and (4) into Equation (7), we can obtain:

Mb
..
yb + (Cb + Cbb)

.
yb − Cbv·

.
yv + (Kb + Kbb + Kbc)yb −Kbv·yv = −KT

b ·Fvr (9)

where Cbb = NT
b ·cv·Nb, Cbv = NT

b ·cv, Kbb = NT
b ·kv·Nb, Kbc = NT

b ·cv·
.

Nb and Kbv = NT
b ·kv

are the bridge additional damping and stiffness, respectively.

2.1.4. The VBI Dynamic Model

The VBI dynamic equation can be obtained by combining Equations (6) and (9) in the
matrix form:[

Mb 0
0 mv

][ ..
yb..
yv

]
+

[
Cb + Cbb −Cbv
−Cvb cv

][ .
yb.
yv

]
+

[
Kb + Kbb + Kbc −Kbv

−Kvb kv

][
yb
yv

]
=

[
−NT

b ·Fvr
Fvr − FG

]
(10)

To improve the computational efficiency, the model synthesis method is used to reduce
the computational degrees of freedom of the bridge, and the vibration equations of the VBI
dynamic model are rewritten as follows:[

I 0
0 mv

][ ..
qb..
yv

]
+

[
Cb + ΦT

b CbbΦb −ΦT
b Cbv

−CvbΦb cv

][ .
qb.
yv

]
+

[
Kb + ΦT

b (Kbb + Kbc)Φb −ΦT
b Kbv

−KvbΦb kv

][
qb
yv

]
= FR + FG (11)

where Φb is the modal shape matrix of the bridge.

FR =

[
−ΦT

b NT
b ·Fvr

Fvr

]
, FG =

[
0

FG

]

Let M =

[
Mb 0
0 mv

]
, C =

[
Cb + Cbb −Cbv
−Cvb Cv

]
, K =

[
Kb + Kbb + Kbv −Kbv

−Kvb kv

]
, Feq =

FG + FR.
According to the Newmark-β method, one can obtain:
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Keqyi = Feq (12)

where

Feq = F + M[ 1
β∆t2 yi +

1
β∆t

.
yi + ( 1

2β − 1)
..
yi] + C[ γ

β∆t yi +
γ
β − 1)

.
yi + ( γ

β − 2)
..
yi]

Keq = K + 1
β∆t2 M + γ

β∆t C

According to the Newmark-β method, when the initial displacement, velocity, and
acceleration at the initial time are given, the response of the system at any time can be
determined based on Equation (12), and the complete time series data for dynamic response
can be obtained.

2.2. Deep Convolutional Neural Network
2.2.1. Popular Models of DCNN

In 1998, Lecun et al. [24] constructed the first convolutional neural network model
(LeNet-5), which has excellent identification performance in handwritten font identification
tasks. In 2012, Krizhevsky and Hinton [25] proposed AlexNet, which won first place in that
year’s ImageNet Visual Recognition Challenge. Since then, various artificial intelligence
applications based on DCNN have been merged, and DCNN has developed rapidly. Some
new models have been proposed, which can be divided into the branchless model, such as
VGG, and modular stacked models, such as GoogleNet, ResNet, and DenseNet.

VGGNet [26] constructs a deeper network structure based on AlexNet network to
improve the learning ability of image features. Meanwhile, VGGNet stacks smaller con-
volution kernels to reduce network parameters and iterations. VGGNets are still widely
used in image feature extraction due to their excellent performance. In the same year,
Google launched GoogleNet [27], which used far less network parameters than VGGNet.
Therefore, it takes up less memory and computing resources in computing. It also used a
modular network structure containing convolution kernel parallel merging. After years of
optimization and improvement, several versions have been derived.

ResNet [28] adopts the same modular stack structure as VGGNet and introduces a
novel residual structure to greatly improve the fitting ability and overcome the degradation
problem of deep neural network. Subsequently, DenseNet [29] introduces a dense block
structure to reuse the features of each layer of feature map, thereby improving the trans-
mission of features in the network, improving the identification efficiency of the network,
and reducing the number of network parameters.

Although the deep convolutional network model has excellent performance, its com-
putational efficiency is low, due to the complex network structure, which makes DCNNs
difficult to widely applied in practical engineering.

2.2.2. Lightweight Convolutional Neural Networks

Lightweight convolutional neural networks aim to reduce computational storage and
increase recognition speed. Lightweight convolutional neural networks mainly include
ShuffleNet series and MobileNet series. Howard et al. [30] proposed MobileNetV1, which
uses a straight network structure and replace the deep separable convolution instead
of traditional convolutional layers. By this improvement, the model parameters can be
greatly reduced while ensuring the computational accuracy of the network. Then, Sandler
et al. proposed MobileNetV2, which adopts the deep separable convolution instead of
the traditional standard convolution and adds the inverted residuals block and linear
bottlenecks structure. Therefore, MobileNetV2 reduces the number of model parameters
while ensuring accuracy. The convolution process of MobileNetV2 is shown in Figure 2.
Due to the excellent performance and lightweight size, MobileNet series models are often
used in various recognition fields [31–34]. Because the moving load identification needs to
respond rapidly to the vehicle information in driving, this paper introduces MobileNetv2
into the moving load identification.
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Figure 2. Convolution process of MobileNetV2.

2.3. Transfer Learning

The main concept of transfer learning is to utilize data from similar fields to solve
the problem of data shortage in target fields. Its goal is to utilize the knowledge learned
from an original environment to help learn tasks in a new environment. Depending on
the requirements for transfer into the target domain, it can be classified as the following
forms [35]: (1) instance transfer; (2) feature representation transfer; (3) parameter transfer;
(4) relational knowledge transfer.

The strong transferability of neural network model greatly improves the applicability
of transfer learning in the field of deep learning. Compared with the general transfer
learning method, the transfer learning strategy in DCNNs transfers the shallow feature
extraction ability (i.e., texture, edge feature, etc.) in the source domain to the target domain.
Therefore, fine-tuning is commonly used in DCNNs for transfer learning. Specifically, it is
to freeze the front several layers network of the pre-trained model, retrain the remaining
layers, and replace the task classifier to match the new learning task when the new dataset
has a small amount of data, and it is significantly different from the training dataset used
by the pre-trained model. An example of transfer learning is shown in Figure 3.

Figure 3. Illustration of transfer learning strategy process.

3. The Proposed Method

This paper proposes a moving load identification method based on MobileNetV2 and
transfer learning, which identify the moving load information from responses of bridge,
respectively. The training of DCNNs needs to optimize a large number of parameters and
construct sufficient samples, and it will take a lot of time to train the model from scratch.
Therefore, this paper adopts transfer learning strategy. The implementation process of this
method is shown in Figure 4, including the following steps:
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Figure 4. Overview of the proposed method.

(1) Responses acquisition and pre-processing. By solving the VBI dynamic equation, the
responses of bridge corresponding to different vehicle parameters are obtained. In
order to meet the input requirements of DCNN, the CWT is applied to transform the
response into a time-frequency map. The formula of CWT is as follows:

WT(a, b) =
1√
a

∫ ∞

−∞
x(t)·ψ

(
t− b

a

)
dt (13)

where a is the scaling factor which can control the expansion of wavelet, b denotes the
shifting factor that identifies its location, and ψ denotes the mother wavelet. In this
paper, Complex Morlet wavelet is used as the mother wavelet ψ because it has good
resolution in both time and frequency domains [36]. Both the scaling factor a and the
shifting factor b are set to 3.

(2) Dataset construction. The size of normalized image samples is adjusted to the input
size of the MobileNetV2 model. On this basis, all image samples are labelled with
the corresponding VBI system parameters, thus forming the sample library of dis-
placement, velocity, and acceleration responses for the moving load identification task.
Then, the samples are divided into the training set, validation set and test set with the
ratio as 8:1:1. The network is trained by the training set, the network is verified by the
validation set, and the performance of the network is evaluated by the test set.
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(3) Model training. A pre-trained MobileNetV2 model is used to moving load identifica-
tion tasks. On this basis, the hyperparameters (batch size, learning rate, epoch, etc.) of
model is adjusted to optimize the network performance. Meanwhile, the bottlenecks
of the MobileNetV2 model are retrained, and the original 1000-class target classifiers
are replaced with the 5-class target classifiers required for moving load identification
in this task.

(4) Moving load identification. Test set samples are input to the trained MobileNetV2
model to obtained information of moving loads and to evaluate the identification
performance of the network.

4. Case Study

In order to verify the feasibility of the proposed method, the VBI system with single de-
gree of freedom is taken as the object in this paper. According to the VBI dynamic equation,
a sufficient sample database is constructed to perform moving load identification tasks.

4.1. The Numerical Model

In this paper, a 30 m concrete simply supported, single-span bridge is established
to verify the method, as shown in Figure 5. The main beam is simulated by beam188
element [37–39] with concrete specification of C50. The elastic modulus is 3.40 × 104 MPa,
and Poisson ratio is 0.2, mass density is 2600 kg/m3. The single-wheeled vehicle model is
simulated by spring element. The spring stiffness of vehicle is set to kv = 190 kN/m and
the damping of the vehicle is cv = 5 kN·m/s. The information for the vehicle is designed
according to the required load conditions.

Figure 5. Vehicle-bridge system with single degree of freedom.

4.2. Vehicle Weight Identification

Acquisition of vehicle weight information is critical to the safe operation of bridges. In
this section, vehicle weight is classified into 5 categories from light to heavy (i.e., A, B, C, D,
E), and the vehicle weight classification table is shown in Table 1.

Table 1. Classification of vehicle weight.

Class Vehicle Weight (kN) Mean (kN)

A 0~10 5
B 10~20 15
C 20~30 25
D 30~40 35
E 40~50 45

A total of 500 weight samples are randomly generated, including 100 samples per grade.
Then, the bridge responses of each weight sample are calculated when both the speed
and road roughness class are fixed. By the aforementioned preprocessing procedure,
the response of the VBI dynamic system is converted into images, which were divided
into training set, validation set and test set for model training, selection, and evaluation,
respectively. Figures 6 and 7 show the displacement sample and acceleration sample images
corresponding to five randomly selected vehicle weights, respectively. Visible discrepancy
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can be observed from those images, which suggests the possibility of accurate identification
results. Then, those samples are used as the input of the network model for model training
and vehicle weight identification evaluation.

Figure 6. Displacement sample images of five randomly selected vehicle weights.

Figure 7. Acceleration sample images of five randomly selected vehicle weights.

The trained MobileNetV2 model is used to identify vehicle weight information. Be-
cause the data characteristics of the target domain are quite different from those of the
source domain, the MobileNetV2 model is transferred in the form of fine-tuning. The
first 12th Bottlenecks of the MobileNetV2 model are frozen, the rest of the bottlenecks are
retrained, and the original 1000-class target classifier are replaced with the 5-class target
classifier required for moving load identification in this paper.

In this paper, the stochastic gradient descent algorithm is used to train the model. The
learning rate is set to 0.0001. According to the scale of sample data, batch size is set to 64
and epoch is set to 50. Based on Pytorch 2.0, the MobileNetV2 model is trained under the
operating system of Windows 10 and CPU of AMD Ryzen 53550H @ 2.10 GHz.

The accuracy and loss curves of the model training to convergence process are shown
in Figure 8, and the accuracy and loss at the end of training are shown in Table 2. The vehicle
weight is identified by using the test set samples. The identification results and confusion
matrix are shown in Table 3 and Figure 8. After careful analysis of Figures 8 and 9 and
Tables 2 and 3, the following conclusions can be drawn:

(1) The vehicle weight information can be accurately identified from the response samples.
For example, it can be seen from Figure 8 that, when the epoch is within 10, the
accuracy curve and the loss curve of the training set and verification set input by all
the sample change faster. When the epoch is within 10 and 50, the accuracy curve and
the loss curve change slowly and gradually tend to be stable. From Table 2, we can
see that after the model training completed, the training set accuracy of each input is
above 98%, in which the accuracy of the training set of both velocity sample input and
acceleration response sample input reached 99%, the accuracy of the validation set of
both displacement response sample input and velocity response sample input reached
98%, and the acceleration response sample input also reached 98.83%. It shows that
the MobileNetV2 model trained by transfer learning can converge after less iterations.
At the same time, the confusion matrix of the test results shows that the proposed
method misclassifies only a small number of samples.

(2) The displacement response sample has the best identification effect on vehicle weight
identification tasks. From the test results in Table 3, the identification accuracy using
the displacement response is the highest, reaching 100%; the lowest identification
accuracy of acceleration response is 96.08%. As can be seen from the confusion matrix
in Figure 9, the displacement response profile sample input accurately classifies all
test samples, and both acceleration and velocity sample inputs misclassify only a



Buildings 2023, 13, 572 10 of 21

small number of samples. The above analysis shows that the information of vehicle
weight is most efficiently identified from displacement responses.

Figure 8. Results of vehicle weights identification: (a) Training accuracy curves of response samples;
(b) Training loss curves of the response samples; (c) Validation accuracy curves of the response
samples; (d) Validation loss curves of response samples.

Table 2. Train results of vehicle weights identification after 50 epochs.

Input
Accuracy (%) Loss

Training Set Validation Set Training Set Validation Set

Displacement 98.83 98.00 0.0239 0.0714
Velocity 99.62 100.00 0.0105 0.0104

Acceleration 99.43 96.08 0.0275 0.2069

Table 3. Identification results of vehicle weights.

Input Identification Accuracy (%)

Displacement 100.00
Velocity 98.00

Acceleration 96.08
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Figure 9. Confusion matrix for vehicle weight identification results: (a) Test results of acceleration
samples; (b) Test results of speed sample; (c) Test results of displacement sample.

4.3. Vehicle Speed Identification

Acquisition of vehicle speed information is vital for control of vehicle overspeed.
Therefore, this paper carries out a vehicle speed identification task to verify the perfor-
mance of the proposed method in vehicle speed identification. Similar to vehicle weight
identification, speed is divided into five grades from slow to fast (A, B, C, D, E). The speed
classification table is shown in Table 4.

Table 4. Classification of vehicle speed.

Class Vehicle Speed (m/s) Mean (m/s)

A 0~5 2.5
B 5~10 7.5
C 10~15 12.5
D 15~20 17.5
E 20~25 22.5

Similarly, 500 speed samples are randomly generated, including 100 samples per grade.
Then, based on the VBI dynamic equations, the responses of each speed sample are obtained
in turn under the condition that the vehicle weight is class B, and the unevenness of the road
surface is class B. Thus, the sample images are constructed according to the aforementioned
strategy to generate a sample library for the vehicle speed identification task. Then, the
samples are used as input to the network model for model training and evaluation of
vehicle speed identification, respectively.
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The accuracy and loss curves of the type training to convergence process are shown in
Figure 10. Accuracy and loss at the end of training are shown in Table 5. The identification
results and the confusion matrix are shown in Table 6 and Figure 11. After a detailed
analysis of Figures 10 and 11 and Tables 5 and 6, the following conclusions can be drawn:

Figure 10. Results of vehicle speed identification: (a) Training accuracy curves of response samples;
(b) Training loss curves of the response samples; (c) Validation accuracy curves of the response
samples; (d) Validation loss curves of response samples.

Table 5. Train results of vehicle speed identification after 50 epochs.

Input
Accuracy (%) Loss

Training Set Validation Set Training Set Validation Set

Displacement 99.43 96.00 0.0298 0.0236
Velocity 99.61 98.00 0.0662 0.0163

Acceleration 100.00 100.00 0.0148 0.0078

Table 6. Identification results for the vehicle weight.

Input Identification Accuracy (%)

Displacement 96.00
Velocity 98.00

Acceleration 100.00
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Figure 11. Confusion matrix for vehicle speed identification results: (a) Test results of acceleration
samples; (b) Test results of speed sample; (c) Test results of displacement sample.

(1) The vehicle speed information can be accurately identified from response samples.
For example, as can be seen in Figure 10 and Table 5 that the accuracy and loss of
the training set, validation set of the proposed method are gradually stabilized after
10 epochs. The accuracy of each input training set reaches 99% after training, the loss
of both the training and validation sets are within 0.03. At the same time, it can be
seen from the test results and confusion matrix that this method misclassifies only a
small number of samples. Those analysis demonstrate that the method has excellent
performance in vehicle weight identification tasks.

(2) The acceleration response sample has the best identification effect on vehicle speed
identification tasks. From the test results in Table 6, the highest identification accuracy
of 100% was achieved using acceleration response as input. It can be seen from the
confusion matrix of Figure 11 that all test samples are accurately classified by using
acceleration response as input, and the information of vehicle speed is most efficiently
identified from acceleration responses.

5. Discussion and Analysis
5.1. Comparison of Popular Network Models

To further validate the efficiency of the proposed method, the test results of Mo-
bileNetV2 model are compared with those of AlexNet, VGG16, and ResNet. Specifically,
the above network models are transferred to identification tasks in the same fine-tuning
form as the MobileNetV2 model. The acceleration samples are used as input on vehicle
speed identification task, and the displacement samples are used as input on vehicle weight
identification task. To compare the computational efficiency of the models, the training time



Buildings 2023, 13, 572 14 of 21

complete 50 epochs, the weight file of model generated after identification of 50 samples in
the test set, and the identification time for each model are compared.

The training results for vehicle weights identification task are shown in Figure 12,
After 50 epochs, the results of the identification of the test set are shown in Tables 7 and 8.
As can be seen from Figure 12, the MobileNetV2 model and each of the other models have
converged after 50 epochs. As can be seen from Table 7, the final accuracy of the training set
is above 98% for MobileNetV2 and other models. For the final accuracy of the validation
set, VGG16 model has the highest accuracy of 100%, AlexNet has the lowest accuracy of
94%, and MobileNetV2 and ResNet both reach 98%. For training time, MobileNetV2 takes
53 min to train, which is only 10% of VGG16 and 55% of AlexNet and ResNet. In terms of
identification speed, MobileNetV2 took 11.04 s to identify 50 test samples, which was only
27.8% of VGG16, 44.3% of AlexNet, and 58.8% of ResNet.

Figure 12. Results of vehicle weights identification of different models: (a) Training accuracy curves
of response samples; (b) Training loss curves of the response samples; (c) Validation accuracy curves
of the response samples; (d) Validation loss curves of response samples.

Table 7. Train results of vehicle weight identification of different models after 50 epochs.

Model
Accuracy (%) Loss Total Training

Time (Min)Training Set Validation Set Training Set Validation Set

AlexNet 98.63 94.00 0.0580 0.0837 98
ResNet 99.80 98.00 0.0143 0.0437 95
VGG16 99.80 100.00 0.0137 0.0142 508

MobileNetv2 98.83 98.00 0.0275 0.0714 53
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Table 8. Identification results of vehicle weight for different models.

Model Accuracy (%) Weight File (MB) Identification Time (s)

AlexNet 98.00 684.31 24.91
ResNet 98.00 134.26 18.78
VGG16 98.00 1573.64 39.76

MobileNetv2 100.00 27.12 11.04

Training results of vehicle speed identification task are shown in Figure 13. The
identification results of the test set after 50 epochs are shown in Tables 9 and 10. From
Figure 13, it can be seen that the MobileNetV2 model and each of the other models have
converged after 50 epochs, On the accuracy curves of the training and validation sets,
ResNet and MobileNetV2 rise faster and fluctuate less, while AlexNet and VGG16 rise
slower and fluctuate more. The accuracy of both the training and validation sets after
training is 100% for MobileNetV2 and 98% for all the other three models. Based on the
identification results in Table 10, MobileNetV2 and VGG16 have the highest accuracy of
100%, while AlexNet has the lowest accuracy of 94%. The weight file size of MobileNetV2 is
only 1.7% of VGG16, 3.9% of AlexNet, and 20% of ResNet, which has obvious advantages.
In terms of identification speed, MobileNetV2 takes 9.58S to identify 50 test samples, which
is only 24.8% of VGG16, 49.7% of AlexNet, and 50% of ResNet.

Figure 13. Results of vehicle speed identification of different models: (a) Training accuracy curves of
response samples; (b) Training loss curves of the response samples; (c) Validation accuracy curves of
the response samples; (d) Validation loss curves of response samples.
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Table 9. Train results for vehicle speed identification of different models after 50 epochs.

Model
Accuracy (%) Loss Total Time

(Min)Training Set Validation Set Training Set Validation Set

AlexNet 99.23 98.00 0.0251 0.0711 99
ResNet 98.43 98.00 0.0219 0.0751 95
VGG16 98.43 98.00 0.0241 0.0680 508

MobileNetv2 100.00 100.00 0.0148 0.0078 53

Table 10. Identification results of vehicle speed for different models.

Model Accuracy Weight File (MB) Identification Time (S)

AlexNet 94.00 684.31 20.40
ResNet 98.00 134.26 19.15
VGG16 100.00 1573.64 38.59

MobileNetv2 100.00 27.12 9.58

In summary, MobileNetV2 outperforms the other three models in both vehicle weight
identification and vehicle speed identification tasks, in terms of identification accuracy.
At the same time, MobileNetV2 is superior to other models in terms of training time
and memory resource occupancy on the premise of ensuring accuracy. Additionally,
MobileNetV2 has a major advantage in the speed of identification from the test set. It
can be seen that this method has the best performance in terms of identification speed
and accuracy, and the short training time and identification time make this method more
suitable for practical applications.

5.2. Robustness Analysis

Anti-noise ability is a key basis for judging the practicability of the method. Therefore,
this section evaluates its robustness by considering the measurement noise. In this paper,
to simulate the actual test environment, the following noise levels of white noise were
added to the sample data. In accordance with the implementation steps of the proposed
method, the training and testing of the models for the two identification tasks were carried
out under different noise levels, with the same transfer process and parameter settings as
in the absence of noise; acceleration is used to identify vehicle speed, and displacement is
used to identify vehicle weight.

The training results of the vehicle weight identification task are shown in Figure 14. As
can be seen from Figure 14, the accuracy and loss curves of the training set do not fluctuate
much under different noise levels and the accuracy and loss curves of the validation set
fluctuate in the first 20 epochs under 10 dB noise condition, but become smooth at 30 to
50 epochs. The models have converged after 50 epochs for different noise conditions.

The training results for the vehicle speed identification task are shown in Figure 15. It
can be seen that the training set and validation set curves of vehicle speed identification and
vehicle weight identification at different noise levels have the same pattern. The accuracy
and loss curves of the training set do not fluctuate much. The accuracy and loss curves of
the validation set have small fluctuations in the first 20 epochs under 10 dB noise conditions,
but become smooth in 30 to 50 epochs.
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Figure 14. Results of vehicle weights identification under different noise levels: (a) Training accuracy
curves of response samples; (b) Validation accuracy curves of the response samples; (c) Training loss
curves of the response samples; (d) Validation loss curves of response samples.

From the test results in Table 11, the identification accuracy of the test set of the vehicle
weight identification task decreases and stabilizes at 98%. With the noise level increases,
identification accuracy of test set in vehicle speed identification decreased slightly. The
accuracy at 30 dB and 10 dB was 98%, and the accuracy of 20 dB was still 100%. It shows
that there is no obvious downward trend in the accuracy of model test, and there is only
a slight fluctuation. It can be concluded that the proposed method presents excellent,
strong robustness.

Table 11. Model Identification results under different noise levels.

Identification Task No Noise 30 dB 20 dB 10 dB

vehicle weight 100% 98% 98% 98%
vehicle speed 100% 98% 100% 98%
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Figure 15. Results of vehicle speed identification under different noise levels: (a) Training accuracy
curves of response samples; (b) Validation accuracy curves of the response samples; (c) Training loss
curves of the response samples; (d) Validation loss curves of response samples.

6. Conclusions

This paper presents a moving load identification method based on MobileNetV2 and
transfer learning. The performance of the proposed method is verified by the numerical
simulation and parameter analysis. The main conclusions were obtained as follows:

(1) Vehicle load information can be accurately separated from the responses of the estab-
lished VBI dynamic model by the proposed method. The displacement response is the
most effective model input on vehicle weight identification task, with an identification
accuracy of 100%. The acceleration response is the most effective input of model for
vehicle speed identification task, with 100% identification accuracy.

(2) The proposed method has higher identification efficiency. Lightweight convolutional
neural networks and transfer learning strategies can improve identification efficiency.
Compared to VGG16, AlexNet, and ResNet, the training time of MobileNetV2 is
reduced by more than 50%, and the identification speed of MobileNetV2 is increased
by more than 42.2% on vehicle weight identification and more than 50% on vehicle
speed identification. In addition, the storage occupancy of MobileNetV2 is only 1.7%
of VGG16, 3.9% of AlexNet, and 20% of ResNet.

(3) The proposed method has excellent robustness. The robustness analysis shows that
the method can still maintain excellent identification ability when encountering a
higher noise level. At 10 dB noise level, the identification accuracy of vehicle speed
and vehicle weight still reached 98%.

Although this method has achieved satisfactory identification results on the established
numerical scenarios, it cannot directly address cases where vehicles are distributed in
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multiple lanes and drive in opposite direction. In addition, for vehicles with multiple axles,
it is difficult to identify the axle weight of each wheel. Therefore, the future work will focus
on further improving the practicality of the proposed method.
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Nomenclature

L Bridge length
N Number of data points
φi Random phase angle
FG Vehicle gravity
Fvb Interaction force
kv Spring stiffness
cv Damping
mv Vehicle weight
yv Vehicle displacement
ybc Bridge deflection
yb Bridge global displacement vector
Nb Bridge shape function
Mb Bridge mass matrices
Cb Bridge damping matrices
Kb bridge stiffness matrices
Fbv Quivalent nodal force
Cvb Vehicle additional damping
Kvb Vehicle additional stiffness
Fvr Load term of the vehicle
Cbb Bridge additional damping
Cbv Bridge additional damping
Kbb Bridge additional stiffness
Kbc Bridge additional stiffness
Kbv Bridge additional stiffness
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