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Abstract: The use of Fiber Reinforced Polymer (FRP) materials for the external confinement of
existing concrete or masonry members is now an established technical solution. Several studies in
the scientific literature show how FRP wrapping can improve the mechanical properties of members.
Though there are numerous methods for determining the compressive strength of FRP confined
concrete, no generalized formulae are available because of the greater complexity and heterogeneity
of FRP-confined masonry. There are two main objectives in this analytical study: (a) proposing an
entirely new mathematical expression to estimate the compressive strength of FRP confined masonry
columns using symbolic regression model approach which can outperform traditional regression
models, and (b) evaluating existing formulas. Over 198 tests of FRP wrapped masonry were compiled
in a database and used to train the model. Several formulations from the published literature and
international guidelines have been compared against experimental data. It is observed that the
proposed symbolic regression model shows excellent performance compared to the existing models.
The model is easier, has no restriction and thereby it can be feasibly employed to foresee the behavior
of FRP confined masonry elements. The coefficient of determination for the proposed symbolic
regression model is determined as 0.91.

Keywords: fiber reinforced polymer; strength; confinement; symbolic regression model; masonry;
genetic programming

1. Introduction

Unconfined masonry has been used worldwide for hundreds of years and is still used
today. This type of construction is susceptible to earthquakes, environmental degradation,
and occupancy changes. Poor construction practices, inferior materials, and structural
detailing defects reduce the strength. These factors seek an effective strengthening approach
to improve masonry column capacity. Strengthening or upgrading existing structures is
treated as more cost-effective than demolishing or rebuilding. For future generations
to enjoy historic structures, they must be strengthened and retrofitted. Strengthening
compression elements is crucial to preventing catastrophic damage to historic vertical
load-bearing structures [1,2].

Fiber-reinforced polymer (FRP) materials might be used to reinforce and strengthen
concrete columns due to their light weight and high strength [3]. FRP composites reduce
dead weight and simplify application in restricted areas. Several studies have explored
the possibility of confining concrete columns externally with FRP by associating the fibers
perpendicular to the columns’ vertical axis in the direction of hoop stresses. Bashiri and
Toufigh [4] tested and analyzed a CFRP strips to confine concrete panels to reduce the
weight of Buckling-restrained braces. Rodríguez et al. [5] introduced strengthening heavily
damaged beam-column assemblies confined by CFRP wrapping and SFRM casing. Some
researchers studied FRP-wrapped concrete columns [6–8]. Thamboo et al. [9] strengthened
masonry wallets with CFRP and tested under concentric and eccentric loads. Thamboo [3]
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compared experimental and analytical approaches to evaluate the performance of axially
loaded masonry columns confined with composites. Wan et al. [10] tested the mechani-
cal behavior of basalt-reinforced masonry columns under eccentric loading. Li et al. [11]
studied axially loaded masonry columns confined textile reinforced concrete with short
fiber. FRP confinement on masonry columns has been studied. [12,13] to evaluate masonry
wrapped with FRP jackets. Faella et al. [14] proposed calibrated confinement models.
Internally confined masonry with FRP bars injected in column holes with or without FRP
wraps and discontinuous confinement by FRP strips have been introduced by Micelli
et al. [15]. Discontinuous confinement by FRP strips were studied in [16–18]. Experi-
mental results of FRP confinement were compared to analytical models to validate their
accuracy [3,14,19–22].

The Artificial Neural Networks (ANN) is one of the most popular Artificial Intel-
ligence (AI) techniques that are used a lot in civil and structural engineering to predict
how structural elements such as beams and columns will behave based on experimen-
tal results considered as training, testing, and verification data [23,24]. The ANN-based
model is a very effective approach to predict the properties of concrete [25,26]. Hasançebi
and Dumlupınar [27] developed linear and nonlinear model upgrading of RC T-beam
bridges using ANN networks. The Support Vector Regression (SVR), another popular
technique of AI, has also been used in predicting the properties of materials [28]. Sun
et al. [29] demonstrated the chemical, mechanical, and hydrothermal stimulation for waste
glass-reinforced cement. However, very limited work has been conducted in the area of
predicting behavior of confined masonry column under axial load using AI techniques
such as ANN and SVR. A symbolic regression (SR) approach is a very recent concept of
artificial intelligence that could be used to model the behavior of structural element. Such a
machine learning system has been employed in several studies [30,31]. Rezaei et al. [32]
studied seismic fragility assessment of RC box-girder bridges employing the SR approach.
Symbolic regression in materials science was presented by Wang et al. [33] via dimension-
synchronous-computation. Mansourdehghan et al. [34] conducted data-driven evaluation
of RC shear walls utilizing visual damage. However, due to the material’s complexity and
heterogeneity in comparison to concrete, there are a number of analytical expressions for
determining the compressive strength of FRP-confined masonry.

Therefore, the current study deals with the analysis of FRP confinement of masonry
columns in order to propose a new model for estimating compressive strength of FRP
confined masonry using symbolic regression approach by adopting genetic programming
which is an artificial intelligence technique to solve symbolic regression and produce a
closed-form mathematical expression which is much simpler to inspect and implement,
particularly for hand calculations. The artificial intelligence model was trained by largest
database ever built in the literature with varying parameters and the performance of the
proposed model was compared with the performance of twelve most important theoretical
models available in the scientific literature. Furthermore, the comparisons of the models
have been clearly shown that the proposed model has an excellent agreement with R2

equals to 0.91 which is superior compared to the existing models.
The manuscript is structured in a simple outline. The available analytical FRP confined

masonry models and experimental database collected from scientific literature are presented
in Sections 2 and 3, respectively. Brief description about symbolic regression model is given
in Section 4. The results and the findings, and comparison of proposed symbolic regression
model with existing formulas in literature are explained in the following sections. In
Section 7, reached conclusions are summarized.

2. Analytical FRP Confined Masonry Models

Few analytical models are currently available to compute the compressive strength of
FRP-confined masonry. Such existing models rely on both the unconfined masonry strength,
fm; and the effective lateral confining pressure fl,e f f . Some of them are linear, while others
are nonlinear. However, regardless of the complexity, they were mostly derived from a
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small number of experimental data. The Italian National Research Council (CNR) [35]
reported common relationship considering the nominal density of the masonry element
gm, stated in kg/m3, in the estimation of fmc. In particular, the parameter approximately
estimates the effect of porosity and voids of both the constituent materials as well as texture
of masonry on the axial compressive strength.

The generalized expression to obtain the confined masonry’s compressive strength is
shown in Equation (1).

fmc = fm·
(

1 + k′·
( fl,e f f

fm

))
(1)

The fm is compressive strength of masonry and fmc is compressive strength of FRP
confined masonry, fl,e f f denotes effective confining pressure, where k′ is a non-dimensional
coefficient unless a more detailed analysis is accomplished, k′ may be derived as follows:

k′ = α2

( gm

1000

)α3
(2)

α2 and α3 are coefficients equal to 1.0 if no additional experimental data is obtainable.
gm is the masonry mass-density and equivalent to the symbol (γm).

Equation (3) is a general formulation for calculating the effective confinement stress,
where fl,e f f is the equivalent confinement stress produced by FRP composite on wrapped
column. The effective confining pressure, fl,e f f is determined considering the cross-section
shape and the FRP strengthen system.

fl,e f f = ke f f · fl = kH · kV · fl (3)

The ke f f is the efficiency coefficient derived as a product of the horizontal and vertical
efficiency coefficients, kH and kV , respectively, and ke f f denotes the coefficient incorporating
composite topology and material. The lateral confining pressure can be calculated according
to the rigid body equilibrium between pressure and force in the external wrap. The lateral
pressure produced by FRP jackets on rectangular or square cross-sections can be estimated
using Equation (4) for columns with continuous FRP wrapping. Using Equation (5) the
lateral pressure can be calculated for columns with discontinuous FRP wrapping:

fl = 2·
Tf .E f

max{B, H} ·ε f d,rid (4)

fl = 2·
Tf ·b f ·E f

max{B, H} ∗ ρ f
·ε f d,rid (5)

The E f and Tf denote the tensile modulus of elasticity and thickness of the FRP jacket,
respectively. The theoretical prediction is calculated using the nominal thickness of cured
laminate. The cross-section dimensions are defined by the width B and the thickness H. b f is
the width of FRP reinforcement, where ρ f is the center-to-center distance in the middle of two
consecutive FRP U-wraps. The physical meaning of b f , ρ f , and ρ′ f are explained in Figure 1.

Figure 1. Front view of prismatic masonry member confined with discontinuous FRP strips.
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Because of a lacking sufficient information about the strain, the efficient factor is used
to calculate the FRP strain’s reduced design value, ε f d,rid and relate it with ultimate strain
of FRP coupon testes. All discussed equations were reported by setting the strain efficiency
factor to 1. This is needed in the expressions to calculate the lateral confining pressure fl .

The FRP strain’s reduced design value, ε f d,rid, can be calculated by Equation (6).

ε f d,rid = min
{

na·
ε f k

γs
; 0.004

}
(6)

where na denotes the environmental conversion factor, ε f k and γs denote the ultimate char-
acteristic strain and partial factors of FRP composite confinement system, respectively. The
maximum permissible strain is 0.004 according to CNR-DT 200 R1 [35]. The environmental
and safety coefficients na and γs were assumed as 1.0. The maximum permissible strain
was not imposed when calculating the value of ε f d,rid to estimate the confining pressure in
all theoretical prediction models.

The effectiveness of any composite’s confinement is determined by the shape of the
column’s cross-section. Generally, the circular shape is the most effective cross-section for
confining material. For rectangular cross sections, the confinement is partially effective
along a portion of the section’s total periphery. As a result, the sharp edges of the section
are rounded to a specified radius to increase the confinement’s effectiveness. The horizontal
coefficient of efficiency, kH , is calculated by dividing the area of effectively confined masonry
by the total area.

For rectangular sections reinforced continuously with FRP, due to the arch effect, the
confined section of the masonry column comprises merely a segment of its total surface
area. The extent of the confined area is dependent on the rounding radius used.

The efficiency coefficient of rectangular cross-section columns wrapped with external
FRP materials is calculated as follows:

kH =

(
1− B′2 + H′2

3Am

)
(7)

Here, B′ = B− 2rc and H′ = H − 2rc, rc is corner radius of the cross-section and Am
denotes the area of masonry prism.

If the FRP strengthening system is non-continuous, the vertical coefficient of efficiency
is calculated by Equation (6) and kv is equal to 1 for a continuous confinement.

kv =

(
1−

ρ f

2·min(B, H)

)2
(8)

It is worth mentioning that FRP-confined masonry columns failure is commonly
caused by rupture of the outer jacket. Stress concentration at the cross-section corners is
what causes prismatic columns to fail. Due to the arch effect, only a small portion of the
masonry column’s surface area is well confined. The confined area’s size is determined by
the rounding radius. To calculate confinement efficiency, it is commonly assumed that the
column cross-section has parabolic branches. If the column is confined by a discontinuous
confinement, achieved by wrapping spaced FRP sheets, then the column could fail before
the rupture of FRP. The failure is the outcome of the crushing of a considerable quantity of
masonry from the unwrapped areas. Establishing an appropriate spacing between the FRP
strips is essential to ensure that the confinement efficiency.

Very few analytical models exist in literature to estimate the compressive strength
of the FRP confined masonry. Twelve distinct approaches are considered to calculate the
compressive strength: Krevaikas and Triantafillou [21], Corradi et al. [19], Di Ludovico
et al. [20] for clay and tuff, Faella et al. [14] the simplest and accurate, CNR-DT 200 R1 [35],
Rao and Pavan [36], Ramaglia et al. [22] for clay and tuff, and Napoli and Realfonzo [37] the
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simplest and accurate. Table 1 summarizes the analytical models described in the literature.

Table 1. Analytical models of gaining strength of FRP confined concrete prisms.

References Formulations

Krevaikas and Triantafillou [21] fmc = fm ·
(

0.6 + 1.65
(

fl,e f f
fm

))
i f

fl,e f f
fmd
≥ 0.24

Corradi et al. [19] fmc = fm + fl,e f f × 2.4×
(

fl,e f f
fm

)−0.17

Di Ludovico et al. [20] for Clay fmc = fm + fl,e f f × 1.53×
(

fl,e f f
fm

)−0.10

Di Ludovico et al. [20] for Tuff fmc = fm + fl,e f f × 1.09×
(

fl,e f f
fm

)−0.24

Faella et al. [14] (Simplest) fmc = fm ·
(

1 +
( gm

1000

)
·
(

fl,e f f
fm

)0.662
)

Faella et al. [14] (More accurate) fmc = fm ·
(

1 + 0.416
( gm

1000

)2.064·
(

fl,e f f
fm

)0.507
)

CNR-DT 200 R1 [35]
fmc = fm ·

(
1 +

( gm
1000

)
·
(

fl,e f f
fm

)0.5
)

ε f d,rid = min
{

na ·
ε f k
γ f

; 0.004
}

Rao and Pavan [36] fmc = fm ·
(

1 + 1.53×
(

fl,e f f
fm

)0.92
)

Ramaglia et al. [22] for Clay fmc = fm ·
(
−0.57 + 1.57

√
1 + 10.3×

(
fl,e f f

fm

)
− 2×

(
fl,e f f

fm

))
Ramaglia et al. [22] for Tuff fmc = fm ·

(
−15.25 + 16.25

√
1 + 0.46×

(
fl,e f f

fm

)
− 2×

(
fl,e f f

fm

))
Napoli and Realfonzo [37] (Simplest) fmc = fm ·

(
1 + 1.10×

(
fl,e f f

fm

)0.4
)

Napoli and Realfonzo [37] (More accurate) fmc = fm ·
(

1 +
( gm

1000

)0.15·
(

fl,e f f
fm

)0.5
)

Models developed by Di Ludovico et al. [20] and Ramaglia et al. [22] are further
differentiated in two model. The first one is calibrated for confined clay masonry and
the second for confined tuff masonry. The models proposed by Faella et al. [14] and
Napoli and Realfonzo [37] also stated two analytical models, one is defined as more
accurate, while the second is defined as more straightforward. As mentioned, all models
considered same framework except Krevaikas and Triantafillou [21] model which adopts a
nonlinear relationship between the lateral confining pressure fl,e f f and the axial strength
fmc. However, Krevaikas and Triantafillou [21], Corradi et al. [19], Di Ludovico et al. [20]
for clay Rao and Pavan [36], and Ramaglia et al. [22] for clay models have applicability for
artificial masonry because models were mainly calibrated using a substantial number of
experimental data pertaining to FRP-confined clay brick masonry columns. In contrast,
Di Ludovico et al. [20] and Ramaglia et al. [22] for tuff is appropriate for natural stone
masonry columns because it considered a few experimental results of FRP-confined tuff
masonry. Lastly, the only analytical models of gaining strength applicable to both natural
and artificial masonry are the models presented by Faella et al. [14] and Napoli and
Realfonzo [37]. Additionally, merely these models estimate the effect of the mass density of
masonry on the compressive strength.

3. Experimental Database

To ensure that the machine learning model has the best possible performance, a
comprehensive database was used. This section includes a detailed description of the
database, as well as an analysis of its input parameters.

3.1. Collected Database from Literature

Recently, Napoli and Realfonzo [37] reported a comprehensive database of axial
compressive tests conducted on unconfined and FRP-confined square/rectangular masonry
prisms. The experimental database contains 286 specimens, of which 88 were unconfined
and 198 were variable confined with basalt, carbon, glass, or steel FRP layers.
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Approximately 76% of columns in the database were prismatic and made of artificial
clay brick, of which 54% were variably confined with FRP systems and 22% were uncon-
fined. Twenty-four percent of the remaining prismatic masonry consisted of natural blocks,
of which 15 percent were FRP confined, and 9 percent were unconfined. The majority of
natural blocks consisted of tuff masonry, after that a considerable quantity of calcareous
stone and a few sandstones.

The majority of masonry specimens were constructed with a uniform arrangement
of bricks. Nine percent of columns were constructed as hollow columns or cavity-filled
hollow columns with a mixture of mortar and stone wastes.

Napoli and Realfonzo [37] provided the essential data on 198 specimens subjected to
axial compression tests and FRP confined. Details include the type and composition of the
masonry, as well as arrangement of the masonry units and the mass density. When mass
density is not specified in scientific literature, the typical range of γm is reported.

The information comprise B and H as width and depth of the cross section, respectively,
L is the column height; rc is the prismatic column corner radius; γ f is the per cubic meter
weight of the FRP sheet; E f , f f u and ε f ,u are the mechanical properties of FRP wraps,
elastic modulus, ultimate tensile strength, and ultimate strain, respectively. t f is the single
layer thickness of the FRP sheet; n f is the number of FRP layers; b f , p′ f and p f are the
width of the FRP strip, the clear spacing between two consecutive strips and the center-
to-center distance, respectively, used for FRP discontinuous confinement; Lb is the length
of overlapping for the FRP strips; fm is the unconfined masonry compressive strength;
kh and kv are corresponding coefficient of horizontal and vertical efficiency as per the

guideline CNR-DT 200 R1 [35];
fl;e f f

fm
is the effective ultimate lateral confining pressure

of FRP wrap normalized by fm unconfined masonry compressive strength; fmc is the
compressive strength of the FRP confined masonry; kε is FRP strain efficiency factor which
is basically the ratio between the experimental ultimate hoop strain in the FRP wraps (ε j,u)
and the ultimate strain from fiber coupon tensile tests (ε f ,u). The values of fl;e f f were
calculated according to CNR-DT 200 R1 [35]. The ke f f ≤ 1 is the parameter relying on
the shape of the section and the type of FRP wrapping (continuous or discontinuous),
estimated through the coefficients kh and kv. These parameters as well as the effective
lateral confining pressure fl;e f f are characterized by the correlations discussed in Section 2
for square/rectangular columns. More details about specimen preparation, conditioning
of the tests and strength measurements can be found in Napoli and Realfonzo [37] and
relative references.

3.2. Processed Database

Due to the importance of experimental uniaxial compression tests carried out on un-
confined and FRP-confined square/rectangular masonry elements reported in the literature,
this study uses existing studies to establish input parameters.

For successful a machine learning model, the database is reorganized, by removing
and adding parameters and calculated values. In particular, the ratio of highest side
over the shortest of cross-section (H/B) was introduced to consider the shape of confined
cross-section. To consider the effect of the slenderness of columns, the ratio between cross-
section thickness and height of the column (B/L) was calculated, where H is always the
longest side of the cross section. The layer thickness of the fiber sheet Tf is recalculated by
considering the number of FRP layers.

Researchers selected the following inputs based on literature and their judgment:
masonry mass (γm), specimen size (B, H, L, rc), mechanical properties of the strengthening
wraps (E f , f f ,u, ε f ,u), compressive strength of the unconfined masonry ( fm), parameters re-
lated to the effective ultimate lateral confining pressure ( fl;e f f , kh, kv). The output parameter
is the axial compressive strength of the masonry confined by FRP ( fmc).

Some data points have been removed or changed in the database. Eleven samples
tested by Rao and Pavan [36] were removed because of missing essential data about
mechanical properties of the FRP wraps. Four sample from Corradi et al. [19] were missing
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the value of rc. Zero corner radius is assumed. When the mass density of masonry is not
reported in the literature papers, an average typical range of γm values is assumed. The
final table of database contains 16 columns and 117 rows. Table 2 summarizes all the ranges
of variation of the main parameters in the reorganized database.

Table 2. Variation and statistical characteristics of main parameters.

Parameters Min Max Median Average Std. 25th Percentile 75th Percentile Common Value Num. Diff. Values

γm
(
kg/m3

)
1250 2000 1750 1656.50 172.43 1565 1750 1750 10

B (mm) 115 550 250 274.52 87.68 240 290 250 38
H (mm) 115 560 250 264.79 91.31 240 288 250 36

H/B 1 2 1 1.06 0.21 1 1.01 1 7
L (mm) 300 1760 500 559.07 251.32 485 511 500 29

B/L 0.28 0.83 0.49 0.49 0.15 0.34 0.5 0.5 24
rc (mm) 0 85 20 20.77 13.03 10 25 20 10

f f ,u (MPa) 1371 4830 2560 2717.68 1019.51 1605 3500 1600 16
E f (GPa) 65 673 143 163.08 106.96 70 230 230 13
ε f ,u(%) 0.29 3.2 1.99 1.96 0.60 1.5 2.5 1.5 14
Tf (mm) 0.117 0.96 0.379 0.41 0.20 0.24 0.48 0.48 22
fm (MPa) 2 14.33 7.04 7.79 3.69 5.36 11.91 7.85 33

Kh 0.32 51 0.51 0.95 4.67 0.46 0.57 0.49 23
Kv 0.23 1 1 0.91 0.17 0.89 1 1 13

fl;e f f / fm 0.04 1.57 0.45 0.54 0.38 0.23 0.76 0.23 55
fmc (MPa) 2.79 44.87 12.03 13.87 8.15 8.5 18.42 5.1 107

According to Table 2, the side ratio of the cross-section, for all FRP systems varies
between 1 (square columns) and 2 for prismatic specimens. The size of the columns as
the ratio B/L was never greater than 0.85. The sheets of fiber used to wrap columns were
unidirectional. The mechanical properties of the fiber sheets differed within the expected
range. The number of FRP layers varied between 1 and 5 at all times. The investigated
compressive strength values of unconfined columns, fm were distributed over 2–14.33 MPa
range. The compressive strength values of the confined columns, fmc were dispersed
maintaining the range as approximately 2.79 to 44.87 MPa.

In order to extract more information regarding the mutual relationship between all
input and output features in the dataset, the correlations between features are analyzed.
This statistical measure is useful because it describes the relationship between two or more
characteristics. In practice, the findings of this analysis will ultimately lead to the selection
of the predictive model to be employed in order to maximize the accuracy of predictions.
Among the methods available in the literature, Pearson’s method will be used to calculate
the correlation coefficient:

Pearson′s coe f f icient =
σxy

σx × σx
=

∑n
i (xi − x)× (yi − y)√

∑n
i ((xi − x))2 ×

√
∑n

i ((yi − y))2
(9)

with yi as the experimental values, ŷi the regression values, and y is the average of the
simulation values. Where x and y are two features while overhead bar and subscript i
signify the average value and the ith observation, respectively. The expression in Equation
(9) guarantees that the coefficient is between −1 and 1. The value 0 indicates that there is
no correlation between a specific pair of features, whereas a value of 1 indicates a perfect
positive and −1 indicates negative correlation relationship. This indicates that an increase
in one quantity causes an increase (if 1) or a decrease (if −1) in the other quantity. The
relationship between a quantity and itself, where the correlation coefficient is always 1, is a
clear instance of a perfect positive correlation. In contrast, the correlation becomes weaker
as the value approaches 0. In Pearson correlation, if two characteristics are independent,
the magnitude of the coefficient is close to zero.

Figure 2 shows color map correlation matrix of the dataset features with correlation
coefficient. It is revealed that the correlation between unconfined masonry strength fm and
unconfined masonry strength fmc is reasonably strong with the coefficient of 0.84. This
behavior is expected.
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Figure 2. Correlation matrix of dataset features.

In the recognized database, Figure 3 illustrates the distribution of the targeted parame-
ter which the confined compressive strength of masonry fmc.

Figure 3. Distribution of the targeted parameter.

Figure 4 illustrates the distribution of the selected design parameters.

Figure 4. Distribution of the selected input parameters.
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4. Symbolic Regression Model

Symbolic regression (SR) is a statistical approach that can detect multivariate, nonlin-
ear relationships between variables in sets of data. It generates a closed-form equation that
represents a functional mapping of correlations that enables the prediction of the value
of a chosen target variable based on the values of other variables. SR is especially inter-
esting since it uses mathematical functions and operations such as addition, subtraction,
multiplication, division, logarithm, and exponential functions to build an equation that
represents the correlation between the input and target variables. Symbolic Regression is
distinguished from conventional regression techniques where in traditional regression, the
structure of the equation should be defined and stay fixed during the regression. However,
SR can detect a suitable equation structure and optimizes numerical constants simultane-
ously. In general, SR does not require prior knowledge of model structure or function [38].
The approach is comparatively simple for use by non-experts in computer-based methods.
Additionally, the identified formula can be merely transferred and implemented in other
software systems. John Koza [39] popularized the genetic programming (GP) which devel-
oped as an evolutionary algorithm that searches for programs that solve a given problem
without explicitly programming as a symbolic regression. Darwin’s Theory of Evolution
inspired the description of GP as an evolutionary method for automatic programming.
Simulating natural selection, a population of individuals, in the case of symbolic regression
as mathematical functions and operations, is selected. By continually picking individuals
with high quality and recombining them to minimize the error in the optimized target. GP
is a simplification of genetic algorithms [40] and, when executed, develops problem-solving
procedures. GP, unlike genetic algorithms, permits variable-length programming such as
symbolic expression trees.

SR, which is a simpler task for GP than full-fledged automatic programming, can
identify only a single expression. Consequently, mathematical operators and functions are
typically permitted for internal nodes in symbolic expression trees. The collection of final
symbols includes some parameters of training dataset as well as constants. Consequently,
when SR is performed using GP, the resulting program is a closed-form mathematical
expression representing a statistical model.

GP uses the iterative process to evolve symbolic regression models. An initial popu-
lation is formed by generating and evaluating a set of random expressions. Expressions
with a greater capacity to accurately predict the target variable are deemed to be more
suitable. Through executing the GP as cycle, new expressions are generated by frequently
selecting and recombined old expressions undergoing random mutations. High ranking
expressions have a superior likelihood of being selected and may be selected several times.
The newly generated expressions are assessed and merged with the existing population to
create a new population of expressions. Poorest fit expressions are eliminated in this step.
The process typically ends when the stopping criterion is met which is usually reaching
the ultimate number of generations. SR employing GP is compatible with sets of data
containing millions of observations and dozens of variables.

In the present work, HeuristicLab [41], an open-source software that provides a module
for SR and is employed in C# on top of the .NET Framework, is utilized in this study.
Multiple advanced features, including tree structure constraints based on grammar rules,
factor variables, and automatic differentiation for memetic gradient-based optimization of
numeric parameters, are supported by the software.

For the experiments presented, the following parameters were set population size =
1000, mutation probability = 15%, maximum tree depth = 10, and maximum tree length =
25. The collection of function symbols is (addition, subtraction, multiplication, division).
As terminal symbols, numeric constants and variables from the dataset were permitted. All
input variables were considered in the reorganized database. As the target variable, the
compressive strength of the FRP confined masonry ( fmc) was chosen. A total of 50% of the
data was utilized for training and the remaining data were utilized for testing. Each trial’s
data was allocated to either the training set or the test set, ensuring that no test-trial data
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points were observed during training. The results were achieved after 5000 generations.
Symbolic regression is a stochastic technique that yields unique results for each run, despite
identical inputs and settings. Thus, multiple repetitions of training were performed with
the same settings to select the optimal model.

5. Results and Discussion

Genetic programming-based symbolic regression typically has no model restrictions.
However, the desired model should be as clear and precise as possible. Therefore, it is
desirable to restrict the size and complexity of the model. The model’s tree length was
limited to a maximum of 25. The functional set of mathematical operations consisted solely
of mathematical basics (addition, subtraction, multiplication, division). In addition, fewer
influencing variables and constants are desirable. The arguments of the function set were
further restricted to only variables and constants.

Using the method outlined in Section 4, the symbolic regression algorithm derived a
complex mathematical expression from the training and test matrix data. The procedure’s
outcome is depicted in Section 5.1. The model is then manually simplified by iteratively
fitting parameters and removing parts from the model that contribute little to the quality of
the prediction using the procedure outlined in Section 5.2 to arrive at the final expression.

The optimization of model was according to the coefficient of determination (R2). The
coefficient of determination is in the range of 0 and 1. The value R2 = 0 indicates that
the regression model does not fit the simulation data at all. In contrast, R2 = 1 means the
regression model is fitting the simulation data perfectly.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (10)

5.1. Complex Symbolic Regression Modelling

This section describes the results of black-box modeling using symbolic regression and
genetic programming. Symbolic regression modeling was achieved by employing freely
evolving trees that incorporate no prior physical knowledge. The only limitations here are
the maximum length and depth of the tree, as previously described.

After 5000 iterations of symbolic regression modeling, the equations discovered in
each iteration are quite random combinations of process variables and are rarely repeatable.
There were no similarities between the results of each run. The following is a report on the
best quality symbolic regression model discovered in 5000 runs based on the coefficient of
determination value over training date.

In Figure 5, the best prediction symbolic regression model tree is reported. The model is
with 23 lengths and 8 depths. Only 7 input variables out of 15 were considered in best quality
symbolic regression model. The variables and their impacts are reported in Table 3. Addition,
subtraction, and multiplication are the only mathematical operations that were used.

Table 3. Parameters and their impacts in complex symbolic regression model.

Parameters Variable Impacts

fm (MPa) 0.915
fl;e f f / fm 0.272

B/L 0.103
Tf (mm) 0.035

H/B 0.026
ε f ,u(%) 0.010

Kh 0.007

The prediction quality of the symbolic regression-based black-box model for estimating
the compressive strength of FRP-confined masonry is depicted in Figure 6. In the left panel,
the fmc value of the prediction model on training data is plotted. The right panel illustrates
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the prediction value of the model on hidden test data. The high coefficient of determination
for the model on training data is reasonable and the predictive capability of the model is
quite satisfactory on test data.

Figure 5. The best prediction of complex symbolic regression model tree.

Figure 6. Prediction quality of the symbolic regression based black-box model.

Statistical indictors for both training and test data are presented in Table 4. An error
analysis is carried out to evaluate the model quality. The coefficient of determination
Equation (10), average relative error Equation (11), the mean absolute error Equation (12),
mean squared error Equation (13), and root mean squared error Equation (14) are derived
as follows:

Average relative error (ARE) =
1
n
×∑n

i=1
|(yi − ŷi)|

yi
(11)

Mean absolute error (MAE) =
1
n
×∑n

i=1|(yi − ŷi)| (12)

Mean squared error (MSE) =
1
n
×∑n

i=1(yi − ŷi)
2 (13)

Root mean squared error (RMSE) =
1
n
×
√

∑n
i=1(yi − ŷi)

2 (14)
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Table 4. Statistical indictors for both training and test data.

Indictors Training Data Test Data

R2 0.92 0.80
ARE 15.76% 29.14%
MAE 1.51 4.27
MSE 3.48 30.31

RMSE 1.87 5.51

Even though the model prediction quality in unseen data can be considered good,
the training data showed better performance. MAE and MSE for training are 1.51 MPa
and 3.48 MPa. Compared to test data, the error was 4.27 for MAE and 30.31 for MSE,
correspondingly. It is observed that the error in training data is much lower RMSE than
unseen test data.

The coefficient of determination for the whole dataset is determined as 0.83 which
implies that the symbolic regression model was performing well. Figure 7 illustrates the
difference between the predicted results of the complex symbolic regression model and
experimental data. It can be found that the results obtained from the complex symbolic
regression model were well matched with experiments for both training and test data.
Generally, the higher value of R2 indicates a good performance of the model.

Figure 7. Comparison between complex symbolic regression model and experimental data.

5.2. Simplified Model

The algorithm for symbolic regression yields a model with low absolute and mean
square errors, but it is quite complex. The model contains seven parameters which is
summarized in Figure 5. MAE and RMSE for training are 1.51 MPa and 1.87 MPa. Therefore,
additional training and manually simplifying the model resulted in a simplified version of
the complex symbolic regression model reported in Section 5.1 and Figure 5, wherein whole
data was used in training to fit the model’s parameters and manually simplifying the model
by removing model components with a small impact on the estimation quality of the dataset.
This procedure yielded straightforward mathematical expressions. Figure 8 illustrates the
simplified symbolic regression model tree. The model has a length of 15 and a depth of
6. Only four of the fifteen input variables were considered in the simple mathematical
expression. In terms of the number of inputs, it can be considered a reasonably simple
symbolic expression, when compared to the complex symbolic regression model, which is
very large and is primarily influenced by a greater number of inputs. The variables and
their impacts are reported in Table 5.
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Table 5. Parameters and their impact in the simplified symbolic expression model.

Parameters Variable Impacts

fm (MPa) 0.906
Tf (mm) 0.179
fl;e f f / fm 0.17
H (mm) 0.145

Typically, tree-based genetic programming is utilized, and Figure 8 depicts the sim-
plified symbolic regression solution as a symbolic expression tree. Symbolic regression
based on genetic programming is well-suited to regression problems for two reasons: first,
the underlying model structure is unknown, and second, the result is a mathematical
expression that can be easily manipulated and implemented in screw-calculation programs:

As demonstrated by Equation (15), the mathematical expressions are quite straightfor-
ward, and empirical correction factors are always approximated accurately. As expected,
changing some part of the symbolic expression tree would have effects of the performance
of the model and its statistical indictors.

fmc = 725× fm

(
1.2× H − 0.95× H − 350

4× Tf
− 11.3× fl;e f f + 125

)−1

+ 1 (15)

Figure 8. Simplified symbolic expression tree.

The performance of the simplified symbolic regression model, in which the coefficient
of determination for the whole dataset is determined as 0.91 which implies that the symbolic
regression model was performing well. Figure 9 shows the resemblance between the
predicted results of the simplified symbolic regression model and experimental data. It can
be found that the results obtained from the symbolic regression model were well matched
with experiments.
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Figure 9. Comparison between simplified symbolic regression model and experimental data.

Figure 10 depicts four plots for the simplified model’s partial dependence on each
of the four input parameters. The proposed model has a smooth response and nonlinear
relationship with the compressive strength of masonry.

Figure 10. Partial dependence of the simplified model.

The simplified model from Equation (15) has a slightly higher prediction accuracy
compared to the complex model (Figure 5) where the value of R2 is 0.91 against 0.83. In
addition, the simplified model is much simpler to inspect and implement, particularly
for hand calculations. Statistical indictors for the mathematical expression obtained by
simplified symbolic expression are presented in Table 6 for the whole set of data.

Table 6. Statistical indictors of simplified symbolic expression.

Indictors Value over Dataset

R2 0.91
ARE 16.82%
MAE 1.86
MSE 5.93

RMSE 2.44

The algorithm’s ability to select only the most influential input variables and ignore
other input data is viewed as a positive trait. while keeping in mind that the input fl;e f f / fm
covers majority of column properties. Regarding the symbolic regression approach and
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the other computational methods which are capable of dealing with a wider range of
application in different fields, the physical interpretation of the underlying process should
be attainable. However, the expression usually possesses black-box model characteristics
and should be interpolated carefully when applied to engineering problems where the
physical meaning is exceptionally important. The quality of machine learning algorithms is
connected to the amount of data to discover the connections within the dataset parameters.
Furthermore, a high quality dataset should be representative and holds the required insights
to make the truthful predictions. Inconsistency in collecting the dataset or defining the
parameters will drastically affect the ability of artificial intelligent model to generalize the
prediction and given honest scientific finding.

The relative frequency histogram of residual error is an additional crucial graph derived
from the evaluation of the simplified symbolic expression. The relative frequency is the
number of occurrences of a value within a data set. Further, Figure 11 depicts the relative
frequency histogram of model error residuals. From the bar chart, the error concentration and
minimum and maximum residuals error values can be visualized in advance.

Figure 11. Relative frequency histogram of residuals error of simple symbolic expression.

6. Comparison of Proposed Symbolic Regression Model with Existing Formulas

The accuracy of some strength expressions discussed in Section 2 has been compared
and illustrated in Figure 12. Major theoretical models available to predict strength gaining
for prismatic masonry columns confined by FRP in compression are considered. twelve
distinct approaches to defining the compressive constitutive law are: Krevaikas and Tri-
antafillou [21], Corradi et al. [19], Di Ludovico et al. [20] for clay and tuff, Faella et al. [14]
simplest and accurate, CNR-DT 200 R1 [35], Rao and Pavan [36], Ramaglia et al. [22] for
clay and tuff as well as Napoli and Realfonzo [37] simplest and accurate. R2 value, ARR,
MAE, MSE and RMSE for each model along with the proposed model are calculated for
obtaining the approach’s reliability (Table 7).
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Table 7. Statistical values of gaining strength of FRP confined concrete prisms.

References R2 Average Relative Error
(ARR)

Mean Absolute Error
(MAE)

Mean Squared Error
(MSE)

Root Mean Squared Error
(RMSE)

Proposed formula 0.91 0.16 1.86 5.94 2.44
Krevaikas and Triantafillou [21] 0.69 0.31 4.22 31.30 5.60

Corradi et al. [19] 0.75 0.40 4.09 29.35 5.42
Di Ludovico et al. [20] for Clay 0.79 0.23 2.75 13.46 3.67
Di Ludovico et al. [20] for Tuff 0.82 0.20 2.71 15.86 3.98

Faella et al. [14] (Simplest) 0.81 0.25 2.77 13.81 3.72
Faella et al. [14] (accurate) 0.82 0.20 2.47 12.30 3.51

CNR-DT 200 R1 [35] 0.82 0.28 3.08 16.42 4.05
Rao and Pavan [36] 0.79 0.23 2.77 13.64 3.69

Ramaglia et al. [22] for Clay 0.79 0.32 3.42 19.29 4.39
Ramaglia et al. [22] for Tuff 0.80 0.22 2.73 13.83 3.72
Napoli and Realfonzo [37]

(Simplest) 0.81 0.18 2.29 12.67 3.56

Napoli and Realfonzo [37]
(accurate) 0.82 0.18 2.33 13.19 3.63

Figure 12. Cont.
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Figure 12. Theoretical and experimental behavior of existing models [14,19–22,35–37].

From Figures 12 and 13, it can clearly be observed that the proposed model has
an excellent agreement of regression value, 0.91 compared to the existing models. Di
Ludovico et al. [20] for tuff, Faella et al. [14] accurate, CNR-DT 200 R1 [35], and Napoli
and Realfonzo [37] shows immediate lower regression value as 0.82 which is also well
below than the proposed model. Other models followed slightly lower regression. This
finding has also been supported by the ARR, MAE, MSE and RMSE outputs. It can be
concluded that the Napoli and Realfonzo [37] simplest model might offer good correlation
with the experimental data although the proposed model is more accurate than this model
as well. The experimental data for the proposed model shows ARR, MAE, MSE and RMSE
as 0.16, 1.86, 5.94 and 2.44 whereas the Napoli and Realfonzo [37] simplest illustrates 0.18,
2.29, 12.67 and 3.56, respectively. The very less RMSE proves the superior accuracy of the
proposed model. The Faella et al. [14] simplest model the trend with slightly lower value
immediately after the Napoli and Realfonzo [37] simplest model though it has more MSE
value. Figure 13 also reflects the data very close to the regression line without any major
deviation. Whereas a few widely deviated values of other model made the differences
proving the suitability of the proposed formulation.

During the comparison of the experimental results with the analytical predictions, the
average ratio equal to the values of theoretical prediction over experimental values divided
by number of samples was reported. Two of the major statistical metrics to evaluate the
confinement model’s performance are namely average ratio and coefficient of variation
(COV) according to the Equations (16) and (17), respectively.

Average Ratio =
∑n

i=1

∣∣∣ theoi
expi

∣∣∣
n

(16)

COV =

(
Standard Deviation

Mean

)
× 100 (17)
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Figure 13. Theoretical and experimental behavior of the proposed model.

The average ratio (Prediction/Experiment), coefficient of variance (COV), number
of predictions less than 10% error, highest predictions and lowest predictions are also
computed to validate the accuracy of the current model to the existing ones. The average
ratio for the proposed model is 1.03 which is very good as only 3% variation is there for
prediction compared to the experimental date. Faella et al. [14] accurate model offers the
average ratio as 1.0; whereas Ramaglia et al. [22] for tuff and Napoli and Realfonzo [37]
accurate shows it as 1.01 which are very close to the proposed model. The model better
fits with results for both the average ratio and COV. The proposed model makes accurate
predictions with an average ratio of approximately 1.03 and COV as 22.4%. Other models
have elevated COV values. Nevertheless, overestimated predictions for strength of confined
columns were observed by Corradi et al. [19] model by 33% greater average value than
experimental output.

The models of Di Ludovico et al. [20] for clay, Faella et al. [14] simplest, CNR-DT 200
R1 [35], Ramaglia et al. [22] for clay gives non-conservative predictions of the specimens
by 5%, 16%, 23% and 2% of the practical values though the COVs are little higher. Among
all the models, the Corradi et al. [19] seems to be most non-conservative to overestimate
the axial strength. The primary discrepancy between experimental data and theoretical
predictions is that models overestimate the effective strain in the FRP jacket, resulting in an
overestimate of the effective confining pressure. Reducing the maximum allowable strain
would improve the model’s accuracy.

Table 8 also displays experimental and theoretically predicted values of compressive
strength of FRP-confined prisms subjected to axial loading in terms of number of predic-
tions with less than 10% error. It is evident from this output that the proposed model
performs significantly better than the other models. Comparison is made between the
performance of existing analytical models and the analytical expression proposed here.
The number of predictions less than 10% error is 53 for the proposed model which is well
above the immediate lower value of Di Ludovico et al. [20] as 24 followed by Ramaglia
et al. [22] for Tuff, Krevaikas and Triantafillou [21], Faella et al. [14] accurate and Napoli
and Realfonzo [37] accurate showing around 16 in number. This behavior is supported
by the highest prediction value of 1.74 and lowest prediction value of 0.46 as well, which
are much better than the other models. It means that the percentage variation of the peak
highest and lowest values is more sensible for the proposed model. The proposed analytical
model predicts the compressive strength of FRP-confined masonry prisms subjected to
axial loading better than all existing analytical models.



Buildings 2023, 13, 509 19 of 21

Table 8. Statistical analysis of FRP confined concrete prisms models.

References Average
(Prediction/Experimental)

COV
(%)

Number of
Predictions Less
than 10% Error

Highest
Prediction

Lowest
Predictions

Proposed formula 1.03 22.4 53 1.74 0.46
Krevaikas and

Triantafillou [21] 0.82 37.2 16 3.12 0.23

Corradi et al. [19] 1.33 32.3 10 4.56 0.4
Di Ludovico et al.

[20] for Clay 1.05 28.2 14 3.36 0.32

Di Ludovico et al.
[20] for Tuff 0.95 24.5 24 2.69 0.3

Faella et al. [14]
(Simplest) 1.16 26.2 12 3.55 0.34

Faella et al. [14]
(accurate) 1.00 24.6 16 2.95 0.29

CNR-DT 200 R1 [35] 1.23 24.6 9 3.46 0.37
Rao and Pavan [36] 1.04 28.4 16 3.37 0.32
Ramaglia et al. [22]

for Clay 1.26 27.1 10 3.33 0.42

Ramaglia et al. [22]
for Tuff 1.01 27.1 17 3.1 0.31

Napoli and
Realfonzo [37]

(Simplest)
1.05 23.3 12 2.59 0.35

Napoli and
Realfonzo [37]

(accurate)
1.01 23.4 16 2.6 0.33

7. Conclusions

This study deals with the analysis of the FRP confinement of masonry columns, propos-
ing a new model to estimate the compressive strength and evaluate existing formulas. The
objective is to identify mathematical expressions that outperform conventional regression
models. To derive the constitutive equations from compression testing data with varying
input parameters, symbolic regression is chosen. Literature was used to compile a large
database containing the results of compression tests on over 198 FRP confined masonry
members. Using symbolic regression, the experimental data were used for developing new
relationships to foresee the compressive strength of FRP-confined masonry. Comparisons
are made with the existing formulations and international guidelines. The subsequent
conclusions are reached:

1. The complex symbolic regression-based black-box model can be considered good
with MAE and MSE for training data are 1.51 MPa and 3.48 MPa.

2. The simplified proposed model has an excellent agreement of R2 value, 0.91 compared
to the existing models. Di Ludovico et al. [20] for tuff, Faella et al. [14] accurate,
CNR-DT 200 R1 [35], and Napoli and Realfonzo [37] accurate shows immediate lower
R2 value as 0.82.

3. The average ratio for the proposed model is 1.03 which is very good as only 3%
variation is there for prediction compared to the experimental date.

4. For the number of predictions less than 10% error output, it is evident that the
proposed model is showing very excellent results compared to the other models. The
number of predictions less than 10% error is 53 for the proposed model which is well
above the immediate lower value of Di Ludovico et al. [20] for tuff as 24.

5. The proposed simplified analytical model can predict the compressive strength of
FRP-confined masonry prisms subjected to axial loading for any type of masonry
better than available analytical models in the literature.

Recently, artificial intelligence techniques have emerged as powerful and versatile
computational tools for producing new knowledge by classifying or connecting parameters.
Moreover, artificial intelligence has shown better performance than traditional regression
for correlating nonlinear data. Considering that the present study gave an accurate equation
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which could be adopted in the practical design process of retrofitting or strengthening
masonry columns, more future research is required to increase the accuracy of the models
or expand available database. Different artificial intelligence techniques could be tried to
improve the correlations between input and outputs of the dataset or coming up with new
findings. In addition, graphical user interface platforms could be useful for simplifying the
design process for masonry columns confined by FRP when complex artificial intelligence
systems based on the black-box model are adopted.
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