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Abstract: The use of Fiber Reinforced Polymer (FRP) materials for the external confinement of ex-
isting concrete or masonry members is now an established technical solution. Several studies in the 
scientific literature show how FRP wrapping can improve the mechanical properties of members. 
Though there are numerous methods for determining the compressive strength of FRP confined 
concrete, no generalized formulae are available because of the greater complexity and heterogeneity 
of FRP-confined masonry. There are two main objectives in this analytical study: (a) proposing an 
entirely new mathematical expression to estimate the compressive strength of FRP confined ma-
sonry columns using symbolic regression model approach which can outperform traditional regres-
sion models, and (b) evaluating existing formulas. Over 198 tests of FRP wrapped masonry were 
compiled in a database and used to train the model. Several formulations from the published liter-
ature and international guidelines have been compared against experimental data. It is observed 
that the proposed symbolic regression model shows excellent performance compared to the existing 
models. The model is easier, has no restriction and thereby it can be feasibly employed to foresee 
the behavior of FRP confined masonry elements. The coefficient of determination for the proposed 
symbolic regression model is determined as 0.91. 

Keywords: fiber reinforced polymer; strength; confinement; symbolic regression model; masonry; 
genetic programming 
 

1. Introduction 
Unconfined masonry has been used worldwide for hundreds of years and is still 

used today. This type of construction is susceptible to earthquakes, environmental degra-
dation, and occupancy changes. Poor construction practices, inferior materials, and struc-
tural detailing defects reduce the strength. These factors seek an effective strengthening 
approach to improve masonry column capacity. Strengthening or upgrading existing 
structures is treated as more cost-effective than demolishing or rebuilding. For future gen-
erations to enjoy historic structures, they must be strengthened and retrofitted. Strength-
ening compression elements is crucial to preventing catastrophic damage to historic ver-
tical load-bearing structures [1,2]. 

Fiber-reinforced polymer (FRP) materials might be used to reinforce and strengthen 
concrete columns due to their light weight and high strength [3]. FRP composites reduce 
dead weight and simplify application in restricted areas. Several studies have explored 
the possibility of confining concrete columns externally with FRP by associating the fibers 
perpendicular to the columns’ vertical axis in the direction of hoop stresses. Bashiri and 
Toufigh [4] tested and analyzed a CFRP strips to confine concrete panels to reduce the 
weight of Buckling-restrained braces. Rodríguez et al. [5] introduced strengthening heav-
ily damaged beam-column assemblies confined by CFRP wrapping and SFRM casing. 
Some researchers studied FRP-wrapped concrete columns [6–8]. Thamboo et al. [9] 
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strengthened masonry wallets with CFRP and tested under concentric and eccentric loads. 
Thamboo [3] compared experimental and analytical approaches to evaluate the perfor-
mance of axially loaded masonry columns confined with composites. Wan et al. [10] tested 
the mechanical behavior of basalt-reinforced masonry columns under eccentric loading. 
Li et al. [11] studied axially loaded masonry columns confined textile reinforced concrete 
with short fiber. FRP confinement on masonry columns has been studied. [12,13] to eval-
uate masonry wrapped with FRP jackets. Faella et al. [14] proposed calibrated confine-
ment models. Internally confined masonry with FRP bars injected in column holes with 
or without FRP wraps and discontinuous confinement by FRP strips have been introduced 
by Micelli et al. [15]. Discontinuous confinement by FRP strips were studied in [16–18]. 
Experimental results of FRP confinement were compared to analytical models to validate 
their accuracy [3,14,19–22]. 

The Artificial Neural Networks (ANN) is one of the most popular Artificial Intelli-
gence (AI) techniques that are used a lot in civil and structural engineering to predict how 
structural elements such as beams and columns will behave based on experimental results 
considered as training, testing, and verification data [23,24]. The ANN-based model is a 
very effective approach to predict the properties of concrete [25,26]. Hasançebi and 
Dumlupınar [27] developed linear and nonlinear model upgrading of RC T-beam bridges 
using ANN networks. The Support Vector Regression (SVR), another popular technique 
of AI, has also been used in predicting the properties of materials [28]. Sun et al. [29] 
demonstrated the chemical, mechanical, and hydrothermal stimulation for waste glass-
reinforced cement. However, very limited work has been conducted in the area of pre-
dicting behavior of confined masonry column under axial load using AI techniques such 
as ANN and SVR. A symbolic regression (SR) approach is a very recent concept of artifi-
cial intelligence that could be used to model the behavior of structural element. Such a 
machine learning system has been employed in several studies [30,31]. Rezaei et al. [32] 
studied seismic fragility assessment of RC box-girder bridges employing the SR approach. 
Symbolic regression in materials science was presented by Wang et al. [33] via dimension-
synchronous-computation. Mansourdehghan et al. [34] conducted data-driven evaluation 
of RC shear walls utilizing visual damage. However, due to the material’s complexity and 
heterogeneity in comparison to concrete, there are a number of analytical expressions for 
determining the compressive strength of FRP-confined masonry. 

Therefore, the current study deals with the analysis of FRP confinement of masonry 
columns in order to propose a new model for estimating compressive strength of FRP 
confined masonry using symbolic regression approach by adopting genetic programming 
which is an artificial intelligence technique to solve symbolic regression and produce a 
closed-form mathematical expression which is much simpler to inspect and implement, 
particularly for hand calculations. The artificial intelligence model was trained by largest 
database ever built in the literature with varying parameters and the performance of the 
proposed model was compared with the performance of twelve most important theoreti-
cal models available in the scientific literature. Furthermore, the comparisons of the mod-
els have been clearly shown that the proposed model has an excellent agreement with R2 
equals to 0.91 which is superior compared to the existing models. 

The manuscript is structured in a simple outline. The available analytical FRP con-
fined masonry models and experimental database collected from scientific literature are 
presented in Section 2 and 3, respectively. Brief description about symbolic regression 
model is given in Section 4. The results and the findings, and comparison of proposed 
symbolic regression model with existing formulas in literature are explained in the fol-
lowing sections. In Section 7, reached conclusions are summarized. 

2. Analytical FRP Confined Masonry Models 
Few analytical models are currently available to compute the compressive strength 

of FRP-confined masonry. Such existing models rely on both the unconfined masonry 
strength, 𝑓௠; and the effective lateral confining pressure 𝑓௟,௘௙௙. Some of them are linear, 
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while others are nonlinear. However, regardless of the complexity, they were mostly de-
rived from a small number of experimental data. The Italian National Research Council 
(CNR) [35] reported common relationship considering the nominal density of the ma-
sonry element 𝑔௠, stated in kg/m3, in the estimation of 𝑓௠௖. In particular, the parameter 
approximately estimates the effect of porosity and voids of both the constituent materials 
as well as texture of masonry on the axial compressive strength. 

The generalized expression to obtain the confined masonry’s compressive strength is 
shown in Equation (1). 𝑓௠௖ = 𝑓௠ · ൭1 + 𝑘′ · ቆ𝑓௟,௘௙௙𝑓௠ ቇ൱ (1)

The 𝑓௠ is compressive strength of masonry and 𝑓௠௖ is compressive strength of FRP 
confined masonry, 𝑓௟,௘௙௙ denotes effective confining pressure, where 𝑘′ is a non-dimen-
sional coefficient unless a more detailed analysis is accomplished, 𝑘′ may be derived as 
follows: 𝑘′ = 𝛼ଶ ቀ 𝑔௠1000ቁఈయ (2)𝛼ଶ and 𝛼ଷ are coefficients equal to 1.0 if no additional experimental data is obtaina-
ble. 𝑔௠ is the masonry mass-density and equivalent to the symbol (𝛾௠). 

Equation (3) is a general formulation for calculating the effective confinement stress, 
where 𝑓௟,௘௙௙  is the equivalent confinement stress produced by FRP composite on 
wrapped column. The effective confining pressure, 𝑓௟,௘௙௙ is determined considering the 
cross-section shape and the FRP strengthen system. 𝑓௟,௘௙௙ =  𝑘௘௙௙  ·  𝑓௟  =  𝑘ு ·  𝑘௏  · 𝑓௟  (3)

The 𝑘௘௙௙ is the efficiency coefficient derived as a product of the horizontal and ver-
tical efficiency coefficients, 𝑘ு and 𝑘௏, respectively, and 𝑘௘௙௙ denotes the coefficient in-
corporating composite topology and material. The lateral confining pressure can be cal-
culated according to the rigid body equilibrium between pressure and force in the external 
wrap. The lateral pressure produced by FRP jackets on rectangular or square cross-sec-
tions can be estimated using Equation (4) for columns with continuous FRP wrapping. 
Using Equation (5) the lateral pressure can be calculated for columns with discontinuous 
FRP wrapping: 𝑓௟ = 2 · 𝑇௙.𝐸௙maxሼ𝐵,𝐻ሽ · 𝜀௙ௗ,௥௜ௗ  (4)

𝑓௟ = 2 · 𝑇௙ · 𝑏௙ · 𝐸௙maxሼ𝐵,𝐻ሽ ∗ 𝜌௙ · 𝜀௙ௗ,௥௜ௗ (5)

The 𝐸௙  and 𝑇௙  denote the tensile modulus of elasticity and thickness of the FRP 
jacket, respectively. The theoretical prediction is calculated using the nominal thickness 
of cured laminate. The cross-section dimensions are defined by the width 𝐵  and the 
thickness 𝐻. 𝑏௙ is the width of FRP reinforcement, where 𝜌௙ is the center-to-center dis-
tance in the middle of two consecutive FRP U-wraps. The physical meaning of 𝑏௙, 𝜌௙, 
and 𝜌′௙ are explained in Figure 1. 

Because of a lacking sufficient information about the strain, the efficient factor is used 
to calculate the FRP strain’s reduced design value, 𝜀௙ௗ,௥௜ௗ and relate it with ultimate strain 
of FRP coupon testes. All discussed equations were reported by setting the strain effi-
ciency factor to 1. This is needed in the expressions to calculate the lateral confining pres-
sure 𝑓௟. 
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Figure 1. Front view of prismatic masonry member confined with discontinuous FRP strips. 

The FRP strain’s reduced design value, 𝜀௙ௗ,௥௜ௗ, can be calculated by Equation (6). 𝜀௙ௗ,௥௜ௗ = min ൜𝑛௔ · 𝜀௙௞𝛾௦ ; 0.004ൠ (6)

where 𝑛௔ denotes the environmental conversion factor, 𝜀௙௞ and 𝛾௦ denote the ultimate 
characteristic strain and partial factors of FRP composite confinement system, respec-
tively. The maximum permissible strain is 0.004 according to CNR-DT 200 R1 [35]. The 
environmental and safety coefficients 𝑛௔  and 𝛾௦  were assumed as 1.0. The maximum 
permissible strain was not imposed when calculating the value of 𝜀௙ௗ,௥௜ௗ to estimate the 
confining pressure in all theoretical prediction models. 

The effectiveness of any composite’s confinement is determined by the shape of the 
column’s cross-section. Generally, the circular shape is the most effective cross-section for 
confining material. For rectangular cross sections, the confinement is partially effective 
along a portion of the section’s total periphery. As a result, the sharp edges of the section 
are rounded to a specified radius to increase the confinement’s effectiveness. The horizon-
tal coefficient of efficiency, 𝑘ு, is calculated by dividing the area of effectively confined 
masonry by the total area. 

For rectangular sections reinforced continuously with FRP, due to the arch effect, the 
confined section of the masonry column comprises merely a segment of its total surface 
area. The extent of the confined area is dependent on the rounding radius used. 

The efficiency coefficient of rectangular cross-section columns wrapped with external 
FRP materials is calculated as follows: 𝑘ு = ቆ1 − 𝐵ᇱଶ + 𝐻ᇱଶ3𝐴௠ ቇ (7)

Here, 𝐵ᇱ = 𝐵 − 2𝑟௖ and 𝐻ᇱ = 𝐻 − 2𝑟௖, 𝑟௖ is corner radius of the cross-section and 𝐴௠ 
denotes the area of masonry prism. 

If the FRP strengthening system is non-continuous, the vertical coefficient of effi-
ciency is calculated by Equation (6) and 𝑘௩ is equal to 1 for a continuous confinement. 𝑘௩ = ൬1 − 𝜌௙2 · minሺ𝐵,𝐻ሻ൰ଶ (8)

It is worth mentioning that FRP-confined masonry columns failure is commonly 
caused by rupture of the outer jacket. Stress concentration at the cross-section corners is 
what causes prismatic columns to fail. Due to the arch effect, only a small portion of the 
masonry column’s surface area is well confined. The confined area’s size is determined by 
the rounding radius. To calculate confinement efficiency, it is commonly assumed that the 
column cross-section has parabolic branches. If the column is confined by a discontinuous 
confinement, achieved by wrapping spaced FRP sheets, then the column could fail before 

𝑏௙
𝜌௙𝜌′௙

Unconfined masonryFRP
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the rupture of FRP. The failure is the outcome of the crushing of a considerable quantity 
of masonry from the unwrapped areas. Establishing an appropriate spacing between the 
FRP strips is essential to ensure that the confinement efficiency. 

Very few analytical models exist in literature to estimate the compressive strength of 
the FRP confined masonry. Twelve distinct approaches are considered to calculate the 
compressive strength: Krevaikas and Triantafillou [21], Corradi et al. [19], Di Ludovico et 
al. [20] for clay and tuff, Faella et al. [14] the simplest and accurate, CNR-DT 200 R1 [35], 
Rao and Pavan [36], Ramaglia et al. [22] for clay and tuff, and Napoli and Realfonzo [37] 
the simplest and accurate. Table 1 summarizes the analytical models described in the lit-
erature. 

Table 1. Analytical models of gaining strength of FRP confined concrete prisms. 

References Formulations 

Krevaikas and Triantafillou [21] 𝑓௠௖ = 𝑓௠ · ൭0.6 + 1.65ቆ𝑓௟,௘௙௙𝑓௠ ቇ൱  𝑖𝑓 𝑓௟,௘௙௙𝑓௠ௗ ≥ 0.24 

Corradi et al. [19] 𝑓௠௖ = 𝑓௠ + 𝑓௟,௘௙௙ × 2.4 × ቆ𝑓௟,௘௙௙𝑓௠ ቇି଴.ଵ଻
 

Di Ludovico et al. [20] for Clay 𝑓௠௖ = 𝑓௠ + 𝑓௟,௘௙௙ × 1.53 × ቆ𝑓௟,௘௙௙𝑓௠ ቇି଴.ଵ଴
 

Di Ludovico et al. [20] for Tuff 𝑓௠௖ = 𝑓௠ + 𝑓௟,௘௙௙ × 1.09 × ቆ𝑓௟,௘௙௙𝑓௠ ቇି଴.ଶସ
 

Faella et al. [14] (Simplest) 𝑓௠௖ = 𝑓௠ · ൭1 + ቀ 𝑔௠1000ቁ · ቆ𝑓௟,௘௙௙𝑓௠ ቇ଴.଺଺ଶ൱ 

Faella et al. [14] (More accurate) 𝑓௠௖ = 𝑓௠ · ൭1 + 0.416 ቀ 𝑔௠1000ቁଶ.଴଺ସ · ቆ𝑓௟,௘௙௙𝑓௠ ቇ଴.ହ଴଻൱ 

CNR-DT 200 R1 [35] 
𝑓௠௖ = 𝑓௠ · ൭1 + ቀ 𝑔௠1000ቁ · ቆ𝑓௟,௘௙௙𝑓௠ ቇ଴.ହ൱ 

𝜀௙ௗ,௥௜ௗ = min ቊ𝑛௔ · 𝜀௙௞𝛾௙ ; 0.004ቋ 

Rao and Pavan [36] 𝑓௠௖ = 𝑓௠ · ൭1 + 1.53 × ቆ𝑓௟,௘௙௙𝑓௠ ቇ଴.ଽଶ൱ 

Ramaglia et al. [22] for Clay 𝑓௠௖ = 𝑓௠ · ൮−0.57 + 1.57ඨ1 + 10.3 × ቆ𝑓௟,௘௙௙𝑓௠ ቇ − 2 × ቆ𝑓௟,௘௙௙𝑓௠ ቇ൲ 

Ramaglia et al. [22] for Tuff 𝑓௠௖ = 𝑓௠ · ൮−15.25 + 16.25ඨ1 + 0.46 × ቆ𝑓௟,௘௙௙𝑓௠ ቇ − 2 × ቆ𝑓௟,௘௙௙𝑓௠ ቇ൲ 

Napoli and Realfonzo [37] (Simplest) 𝑓௠௖ = 𝑓௠ · ൭1 + 1.10 × ቆ𝑓௟,௘௙௙𝑓௠ ቇ଴.ସ൱ 

Napoli and Realfonzo [37] (More accurate) 𝑓௠௖ = 𝑓௠ · ൭1 + ቀ 𝑔௠1000ቁ଴.ଵହ · ቆ𝑓௟,௘௙௙𝑓௠ ቇ଴.ହ൱ 

Models developed by Di Ludovico et al. [20] and Ramaglia et al. [22] are further dif-
ferentiated in two model. The first one is calibrated for confined clay masonry and the 
second for confined tuff masonry. The models proposed by Faella et al. [14] and Napoli 
and Realfonzo [37] also stated two analytical models, one is defined as more accurate, 
while the second is defined as more straightforward. As mentioned, all models considered 
same framework except Krevaikas and Triantafillou [21] model which adopts a nonlinear 
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relationship between the lateral confining pressure 𝑓௟,௘௙௙  and the axial strength 𝑓௠௖ . 
However, Krevaikas and Triantafillou [21], Corradi et al. [19], Di Ludovico et al. [20] for 
clay Rao and Pavan [36], and Ramaglia et al. [22] for clay models have applicability for 
artificial masonry because models were mainly calibrated using a substantial number of 
experimental data pertaining to FRP-confined clay brick masonry columns. In contrast, Di 
Ludovico et al. [20] and Ramaglia et al. [22] for tuff is appropriate for natural stone ma-
sonry columns because it considered a few experimental results of FRP-confined tuff ma-
sonry. Lastly, the only analytical models of gaining strength applicable to both natural 
and artificial masonry are the models presented by Faella et al. [14] and Napoli and Real-
fonzo [37]. Additionally, merely these models estimate the effect of the mass density of 
masonry on the compressive strength. 

3. Experimental Database 
To ensure that the machine learning model has the best possible performance, a com-

prehensive database was used. This section includes a detailed description of the data-
base, as well as an analysis of its input parameters. 

3.1. Collected Database from Literature 
Recently, Napoli and Realfonzo [37] reported a comprehensive database of axial com-

pressive tests conducted on unconfined and FRP-confined square/rectangular masonry 
prisms. The experimental database contains 286 specimens, of which 88 were unconfined 
and 198 were variable confined with basalt, carbon, glass, or steel FRP layers. 

Approximately 76% of columns in the database were prismatic and made of artificial 
clay brick, of which 54% were variably confined with FRP systems and 22% were uncon-
fined. Twenty-four percent of the remaining prismatic masonry consisted of natural 
blocks, of which 15 percent were FRP confined, and 9 percent were unconfined. The ma-
jority of natural blocks consisted of tuff masonry, after that a considerable quantity of 
calcareous stone and a few sandstones. 

The majority of masonry specimens were constructed with a uniform arrangement 
of bricks. Nine percent of columns were constructed as hollow columns or cavity-filled 
hollow columns with a mixture of mortar and stone wastes. 

Napoli and Realfonzo [37] provided the essential data on 198 specimens subjected to 
axial compression tests and FRP confined. Details include the type and composition of the 
masonry, as well as arrangement of the masonry units and the mass density. When mass 
density is not specified in scientific literature, the typical range of 𝛾௠ is reported. 

The information comprise 𝐵 and 𝐻 as width and depth of the cross section, respec-
tively, 𝐿 is the column height; 𝑟௖ is the prismatic column corner radius; 𝛾௙ is the per cu-
bic meter weight of the FRP sheet; 𝐸௙, 𝑓௙௨ and 𝜀௙,௨ are the mechanical properties of FRP 
wraps, elastic modulus, ultimate tensile strength, and ultimate strain, respectively. 𝑡௙ is 
the single layer thickness of the FRP sheet; 𝑛௙ is the number of FRP layers; 𝑏௙, 𝑝’௙ and 𝑝௙ are the width of the FRP strip, the clear spacing between two consecutive strips and 
the center-to-center distance, respectively, used for FRP discontinuous confinement; 𝐿௕ 
is the length of overlapping for the FRP strips; 𝑓௠ is the unconfined masonry compressive 
strength; 𝑘௛ and 𝑘௩ are corresponding coefficient of horizontal and vertical efficiency as 
per the guideline CNR-DT 200 R1 [35]; 

௙೗;೐೑೑௙೘  is the effective ultimate lateral confining 
pressure of FRP wrap normalized by 𝑓௠ unconfined masonry compressive strength; 𝑓௠௖ 
is the compressive strength of the FRP confined masonry; 𝑘ఌ is FRP strain efficiency fac-
tor which is basically the ratio between the experimental ultimate hoop strain in the FRP 
wraps (𝜀௝,௨) and the ultimate strain from fiber coupon tensile tests (𝜀௙,௨). The values of 𝑓௟;௘௙௙ were calculated according to CNR-DT 200 R1 [35]. The 𝑘௘௙௙ ≤ 1 is the parameter 
relying on the shape of the section and the type of FRP wrapping (continuous or discon-
tinuous), estimated through the coefficients 𝑘௛ and 𝑘௩. These parameters as well as the 
effective lateral confining pressure 𝑓௟;௘௙௙ are characterized by the correlations discussed 
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in Section 2 for square/rectangular columns. More details about specimen preparation, 
conditioning of the tests and strength measurements can be found in Napoli and Real-
fonzo [37] and relative references. 

3.2. Processed Database 
Due to the importance of experimental uniaxial compression tests carried out on un-

confined and FRP-confined square/rectangular masonry elements reported in the litera-
ture, this study uses existing studies to establish input parameters. 

For successful a machine learning model, the database is reorganized, by removing 
and adding parameters and calculated values. In particular, the ratio of highest side over 
the shortest of cross-section (𝐻/𝐵) was introduced to consider the shape of confined cross-
section. To consider the effect of the slenderness of columns, the ratio between cross-sec-
tion thickness and height of the column (𝐵/𝐿) was calculated, where 𝐻 is always the long-
est side of the cross section. The layer thickness of the fiber sheet 𝑇௙ is recalculated by 
considering the number of FRP layers. 

Researchers selected the following inputs based on literature and their judgment: 
masonry mass (𝛾௠), specimen size (𝐵, 𝐻, 𝐿, 𝑟௖), mechanical properties of the strengthen-
ing wraps (𝐸௙, 𝑓௙,௨, 𝜀௙,௨), compressive strength of the unconfined masonry (𝑓௠), parame-
ters related to the effective ultimate lateral confining pressure (𝑓௟;௘௙௙, 𝑘௛, 𝑘௩). The output 
parameter is the axial compressive strength of the masonry confined by FRP (𝑓௠௖). 

Some data points have been removed or changed in the database. Eleven samples 
tested by Rao and Pavan [36] were removed because of missing essential data about me-
chanical properties of the FRP wraps. Four sample from Corradi et al. [19] were missing 
the value of 𝑟௖. Zero corner radius is assumed. When the mass density of masonry is not 
reported in the literature papers, an average typical range of 𝛾௠ values is assumed. The 
final table of database contains 16 columns and 117 rows. Table 2 summarizes all the 
ranges of variation of the main parameters in the reorganized database. 

Table 2. Variation and statistical characteristics of main parameters. 

Parameters Min Max Median Average Std. 25th  
Percentile 

75th  
Percentile 

Common 
Value 

Num. Diff. 
Values 𝛾௠ሺkg/mଷሻ 1250 2000 1750 1656.50 172.43 1565 1750 1750 10 𝐵 (mm) 115 550 250 274.52 87.68 240 290 250 38 𝐻 (mm) 115 560 250 264.79 91.31 240 288 250 36 𝐻/𝐵 1 2 1 1.06 0.21 1 1.01 1 7 𝐿 (mm) 300 1760 500 559.07 251.32 485 511 500 29 𝐵/𝐿 0.28 0.83 0.49 0.49 0.15 0.34 0.5 0.5 24 𝑟௖  (mm) 0 85 20 20.77 13.03 10 25 20 10 𝑓௙,௨ (MPa) 1371 4830 2560 2717.68 1019.51 1605 3500 1600 16 𝐸௙ (GPa) 65 673 143 163.08 106.96 70 230 230 13 𝜀௙,௨(%) 0.29 3.2 1.99 1.96 0.60 1.5 2.5 1.5 14 𝑇௙(mm) 0.117 0.96 0.379 0.41 0.20 0.24 0.48 0.48 22 𝑓௠ (MPa) 2 14.33 7.04 7.79 3.69 5.36 11.91 7.85 33 𝐾௛ 0.32 51 0.51 0.95 4.67 0.46 0.57 0.49 23 𝐾௩ 0.23 1 1 0.91 0.17 0.89 1 1 13 𝑓௟;௘௙௙/𝑓௠ 0.04 1.57 0.45 0.54 0.38 0.23 0.76 0.23 55 𝑓௠௖ (MPa) 2.79 44.87 12.03 13.87 8.15 8.5 18.42 5.1 107 

According to Table 2, the side ratio of the cross-section, for all FRP systems varies 
between 1 (square columns) and 2 for prismatic specimens. The size of the columns as the 
ratio 𝐵/𝐿 was never greater than 0.85. The sheets of fiber used to wrap columns were 
unidirectional. The mechanical properties of the fiber sheets differed within the expected 
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range. The number of FRP layers varied between 1 and 5 at all times. The investigated 
compressive strength values of unconfined columns, 𝑓௠ were distributed over 2–14.33 
MPa range. The compressive strength values of the confined columns, 𝑓௠௖  were dis-
persed maintaining the range as approximately 2.79 to 44.87 MPa. 

In order to extract more information regarding the mutual relationship between all 
input and output features in the dataset, the correlations between features are analyzed. 
This statistical measure is useful because it describes the relationship between two or more 
characteristics. In practice, the findings of this analysis will ultimately lead to the selection 
of the predictive model to be employed in order to maximize the accuracy of predictions. 
Among the methods available in the literature, Pearson’s method will be used to calculate 
the correlation coefficient: 𝑃𝑒𝑎𝑟𝑠𝑜𝑛ᇱ𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  𝜎௫௬𝜎௫ × 𝜎௫ = ∑ (𝑥௜ −  𝑥̅) × (𝑦௜ −  𝑦ത)௡௜ට∑ ൫(𝑥௜ −  𝑥̅)൯ଶ௡௜ × ට∑ ൫(𝑦௜ −  𝑦ത)൯ଶ௡௜    (9)

with 𝑦௜ as the experimental values, 𝑦పෝ  the regression values, and 𝑦ത is the average of the 
simulation values. Where 𝑥 and 𝑦 are two features while overhead bar and subscript 𝑖 
signify the average value and the 𝑖th observation, respectively. The expression in Equa-
tion (9) guarantees that the coefficient is between −1 and 1. The value 0 indicates that there 
is no correlation between a specific pair of features, whereas a value of 1 indicates a perfect 
positive and −1 indicates negative correlation relationship. This indicates that an increase 
in one quantity causes an increase (if 1) or a decrease (if −1) in the other quantity. The 
relationship between a quantity and itself, where the correlation coefficient is always 1, is 
a clear instance of a perfect positive correlation. In contrast, the correlation becomes 
weaker as the value approaches 0. In Pearson correlation, if two characteristics are inde-
pendent, the magnitude of the coefficient is close to zero. 

Figure 2 shows color map correlation matrix of the dataset features with correlation 
coefficient. It is revealed that the correlation between unconfined masonry strength 𝑓௠ 
and unconfined masonry strength 𝑓௠௖ is reasonably strong with the coefficient of 0.84. 
This behavior is expected. 

 
Figure 2. Correlation matrix of dataset features. 

In the recognized database, Figure 3 illustrates the distribution of the targeted pa-
rameter which the confined compressive strength of masonry 𝑓௠௖. 
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Figure 3. Distribution of the targeted parameter. 

Figure 4 illustrates the distribution of the selected design parameters. 

 
Figure 4. Distribution of the selected input parameters. 

4. Symbolic Regression Model 
Symbolic regression (SR) is a statistical approach that can detect multivariate, non-

linear relationships between variables in sets of data. It generates a closed-form equation 
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that represents a functional mapping of correlations that enables the prediction of the 
value of a chosen target variable based on the values of other variables. SR is especially 
interesting since it uses mathematical functions and operations such as addition, subtrac-
tion, multiplication, division, logarithm, and exponential functions to build an equation 
that represents the correlation between the input and target variables. Symbolic Regres-
sion is distinguished from conventional regression techniques where in traditional regres-
sion, the structure of the equation should be defined and stay fixed during the regression. 
However, SR can detect a suitable equation structure and optimizes numerical constants 
simultaneously. In general, SR does not require prior knowledge of model structure or 
function [38]. The approach is comparatively simple for use by non-experts in computer-
based methods. Additionally, the identified formula can be merely transferred and imple-
mented in other software systems. John Koza [39] popularized the genetic programming 
(GP) which developed as an evolutionary algorithm that searches for programs that solve 
a given problem without explicitly programming as a symbolic regression. Darwin’s The-
ory of Evolution inspired the description of GP as an evolutionary method for automatic 
programming. Simulating natural selection, a population of individuals, in the case of 
symbolic regression as mathematical functions and operations, is selected. By continually 
picking individuals with high quality and recombining them to minimize the error in the 
optimized target. GP is a simplification of genetic algorithms [40] and, when executed, 
develops problem-solving procedures. GP, unlike genetic algorithms, permits variable-
length programming such as symbolic expression trees. 

SR, which is a simpler task for GP than full-fledged automatic programming, can 
identify only a single expression. Consequently, mathematical operators and functions are 
typically permitted for internal nodes in symbolic expression trees. The collection of final 
symbols includes some parameters of training dataset as well as constants. Consequently, 
when SR is performed using GP, the resulting program is a closed-form mathematical 
expression representing a statistical model. 

GP uses the iterative process to evolve symbolic regression models. An initial popu-
lation is formed by generating and evaluating a set of random expressions. Expressions 
with a greater capacity to accurately predict the target variable are deemed to be more 
suitable. Through executing the GP as cycle, new expressions are generated by frequently 
selecting and recombined old expressions undergoing random mutations. High ranking 
expressions have a superior likelihood of being selected and may be selected several 
times. The newly generated expressions are assessed and merged with the existing popu-
lation to create a new population of expressions. Poorest fit expressions are eliminated in 
this step. The process typically ends when the stopping criterion is met which is usually 
reaching the ultimate number of generations. SR employing GP is compatible with sets of 
data containing millions of observations and dozens of variables. 

In the present work, HeuristicLab [41], an open-source software that provides a mod-
ule for SR and is employed in C# on top of the .NET Framework, is utilized in this study. 
Multiple advanced features, including tree structure constraints based on grammar rules, 
factor variables, and automatic differentiation for memetic gradient-based optimization 
of numeric parameters, are supported by the software. 

For the experiments presented, the following parameters were set population size = 
1000, mutation probability = 15%, maximum tree depth = 10, and maximum tree length = 
25. The collection of function symbols is (addition, subtraction, multiplication, division). 
As terminal symbols, numeric constants and variables from the dataset were permitted. 
All input variables were considered in the reorganized database. As the target variable, 
the compressive strength of the FRP confined masonry (𝑓௠௖) was chosen. A total of 50% 
of the data was utilized for training and the remaining data were utilized for testing. Each 
trial’s data was allocated to either the training set or the test set, ensuring that no test-trial 
data points were observed during training. The results were achieved after 5000 genera-
tions. Symbolic regression is a stochastic technique that yields unique results for each run, 
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despite identical inputs and settings. Thus, multiple repetitions of training were per-
formed with the same settings to select the optimal model. 

5. Results and Discussion 
Genetic programming-based symbolic regression typically has no model restrictions. 

However, the desired model should be as clear and precise as possible. Therefore, it is 
desirable to restrict the size and complexity of the model. The model’s tree length was 
limited to a maximum of 25. The functional set of mathematical operations consisted 
solely of mathematical basics (addition, subtraction, multiplication, division). In addition, 
fewer influencing variables and constants are desirable. The arguments of the function set 
were further restricted to only variables and constants. 

Using the method outlined in Section 4, the symbolic regression algorithm derived a 
complex mathematical expression from the training and test matrix data. The procedure’s 
outcome is depicted in Section 5.1. The model is then manually simplified by iteratively 
fitting parameters and removing parts from the model that contribute little to the quality 
of the prediction using the procedure outlined in Section 5.2 to arrive at the final expres-
sion. 

The optimization of model was according to the coefficient of determination (𝑅ଶ). 
The coefficient of determination is in the range of 0 and 1. The value 𝑅ଶ = 0 indicates that 
the regression model does not fit the simulation data at all. In contrast, 𝑅ଶ = 1 means the 
regression model is fitting the simulation data perfectly. 𝑅ଶ = 1 −∑ (𝑦௜ −  𝑦పෝ)ଶ௡௜ୀଵ∑ (𝑦௜ −  𝑦ത)ଶ௡௜ୀଵ  (10)

5.1. Complex Symbolic Regression Modelling 
This section describes the results of black-box modeling using symbolic regression 

and genetic programming. Symbolic regression modeling was achieved by employing 
freely evolving trees that incorporate no prior physical knowledge. The only limitations 
here are the maximum length and depth of the tree, as previously described. 

After 5000 iterations of symbolic regression modeling, the equations discovered in 
each iteration are quite random combinations of process variables and are rarely repeata-
ble. There were no similarities between the results of each run. The following is a report 
on the best quality symbolic regression model discovered in 5000 runs based on the coef-
ficient of determination value over training date. 

In Figure 5, the best prediction symbolic regression model tree is reported. The model 
is with 23 lengths and 8 depths. Only 7 input variables out of 15 were considered in best 
quality symbolic regression model. The variables and their impacts are reported in Table 3. 
Addition, subtraction, and multiplication are the only mathematical operations that were 
used. 

Table 3. Parameters and their impacts in complex symbolic regression model. 

Parameters Variable Impacts 𝑓௠ (MPa) 0.915 𝑓௟;௘௙௙/𝑓௠ 0.272 𝐵/𝐿 0.103 𝑇௙(mm) 0.035 𝐻/𝐵 0.026 𝜀௙,௨(%) 0.010 𝐾௛ 0.007 
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Figure 5. The best prediction of complex symbolic regression model tree. 

The prediction quality of the symbolic regression-based black-box model for estimat-
ing the compressive strength of FRP-confined masonry is depicted in Figure 6. In the left 
panel, the 𝑓௠௖ value of the prediction model on training data is plotted. The right panel 
illustrates the prediction value of the model on hidden test data. The high coefficient of 
determination for the model on training data is reasonable and the predictive capability 
of the model is quite satisfactory on test data. 

 
Figure 6. Prediction quality of the symbolic regression based black-box model. 

Statistical indictors for both training and test data are presented in Table 4. An error 
analysis is carried out to evaluate the model quality. The coefficient of determination 
Equation (10), average relative error Equation (11), the mean absolute error Equation (12), 
mean squared error Equation (13), and root mean squared error Equation (14) are derived 
as follows: 
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Average relative error (ARE) = 1𝑛 × ෍ |(𝑦௜ −  𝑦పෝ)|𝑦௜௡௜ୀଵ  (11)

Mean absolute error (MAE) = 1𝑛 × ෍ |(𝑦௜ −  𝑦పෝ)|௡௜ୀଵ  (12)

Mean squared error (MSE) = 1𝑛 × ෍ (𝑦௜ −  𝑦పෝ)ଶ௡௜ୀଵ  (13)

Root mean squared error (RMSE) = 1𝑛 × ඨ෍ (𝑦௜ −  𝑦పෝ)ଶ௡௜ୀଵ  (14)

Table 4. Statistical indictors for both training and test data. 

Indictors Training Data Test Data 
R2 0.92 0.80 

ARE 15.76% 29.14% 
MAE 1.51 4.27 
MSE 3.48 30.31 

RMSE 1.87 5.51 

Even though the model prediction quality in unseen data can be considered good, 
the training data showed better performance. MAE and MSE for training are 1.51 MPa 
and 3.48 MPa. Compared to test data, the error was 4.27 for MAE and 30.31 for MSE, 
correspondingly. It is observed that the error in training data is much lower RMSE than 
unseen test data. 

The coefficient of determination for the whole dataset is determined as 0.83 which 
implies that the symbolic regression model was performing well. Figure 7 illustrates the 
difference between the predicted results of the complex symbolic regression model and 
experimental data. It can be found that the results obtained from the complex symbolic 
regression model were well matched with experiments for both training and test data. 
Generally, the higher value of 𝑅ଶ indicates a good performance of the model. 

 
Figure 7. Comparison between complex symbolic regression model and experimental data. 
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5.2. Simplified Model 
The algorithm for symbolic regression yields a model with low absolute and mean 

square errors, but it is quite complex. The model contains seven parameters which is sum-
marized in Figure 5. MAE and RMSE for training are 1.51 MPa and 1.87 MPa. Therefore, 
additional training and manually simplifying the model resulted in a simplified version 
of the complex symbolic regression model reported in Section 5.1 and Figure 5, wherein 
whole data was used in training to fit the model’s parameters and manually simplifying 
the model by removing model components with a small impact on the estimation quality 
of the dataset. This procedure yielded straightforward mathematical expressions. Figure 
8 illustrates the simplified symbolic regression model tree. The model has a length of 15 
and a depth of 6. Only four of the fifteen input variables were considered in the simple 
mathematical expression. In terms of the number of inputs, it can be considered a reason-
ably simple symbolic expression, when compared to the complex symbolic regression 
model, which is very large and is primarily influenced by a greater number of inputs. The 
variables and their impacts are reported in Table 5. 

 
Figure 8. Simplified symbolic expression tree. 

Table 5. Parameters and their impact in the simplified symbolic expression model. 

Parameters Variable Impacts 𝑓௠ (MPa) 0.906 𝑇௙ (mm) 0.179 𝑓௟;௘௙௙/𝑓௠ 0.17 𝐻  (mm) 0.145 

Typically, tree-based genetic programming is utilized, and Figure 8 depicts the sim-
plified symbolic regression solution as a symbolic expression tree. Symbolic regression 
based on genetic programming is well-suited to regression problems for two reasons: first, 
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the underlying model structure is unknown, and second, the result is a mathematical ex-
pression that can be easily manipulated and implemented in screw-calculation programs: 

As demonstrated by Equation (15), the mathematical expressions are quite straight-
forward, and empirical correction factors are always approximated accurately. As ex-
pected, changing some part of the symbolic expression tree would have effects of the per-
formance of the model and its statistical indictors. 

𝑓௠௖ = 725 × 𝑓௠ ቆ1.2 × 𝐻 − 0.95 × 𝐻 − 3504 × 𝑇௙ − 11.3 × 𝑓௟;௘௙௙ + 125ቇିଵ + 1 (15)

The performance of the simplified symbolic regression model, in which the coeffi-
cient of determination for the whole dataset is determined as 0.91 which implies that the 
symbolic regression model was performing well. Figure 9 shows the resemblance between 
the predicted results of the simplified symbolic regression model and experimental data. 
It can be found that the results obtained from the symbolic regression model were well 
matched with experiments. 

 
Figure 9. Comparison between simplified symbolic regression model and experimental data. 

Figure 10 depicts four plots for the simplified model’s partial dependence on each of 
the four input parameters. The proposed model has a smooth response and nonlinear re-
lationship with the compressive strength of masonry. 

The simplified model from Equation (15) has a slightly higher prediction accuracy 
compared to the complex model (Figure 5) where the value of R2 is 0.91 against 0.83. In 
addition, the simplified model is much simpler to inspect and implement, particularly for 
hand calculations. Statistical indictors for the mathematical expression obtained by sim-
plified symbolic expression are presented in Table 6 for the whole set of data. 

Table 6. Statistical indictors of simplified symbolic expression. 
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Figure 10. Partial dependence of the simplified model. 

The algorithm’s ability to select only the most influential input variables and ignore 
other input data is viewed as a positive trait. while keeping in mind that the input 𝑓௟;௘௙௙/𝑓௠  covers majority of column properties. Regarding the symbolic regression ap-
proach and the other computational methods which are capable of dealing with a wider 
range of application in different fields, the physical interpretation of the underlying pro-
cess should be attainable. However, the expression usually possesses black-box model 
characteristics and should be interpolated carefully when applied to engineering prob-
lems where the physical meaning is exceptionally important. The quality of machine 
learning algorithms is connected to the amount of data to discover the connections within 
the dataset parameters. Furthermore, a high quality dataset should be representative and 
holds the required insights to make the truthful predictions. Inconsistency in collecting 
the dataset or defining the parameters will drastically affect the ability of artificial intelli-
gent model to generalize the prediction and given honest scientific finding. 

The relative frequency histogram of residual error is an additional crucial graph de-
rived from the evaluation of the simplified symbolic expression. The relative frequency is 
the number of occurrences of a value within a data set. Further, Figure 11 depicts the rel-
ative frequency histogram of model error residuals. From the bar chart, the error concen-
tration and minimum and maximum residuals error values can be visualized in advance. 
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Figure 11. Relative frequency histogram of residuals error of simple symbolic expression. 

6. Comparison of Proposed Symbolic Regression Model with Existing Formulas 
The accuracy of some strength expressions discussed in Section 2 has been compared 

and illustrated in Figure 12. Major theoretical models available to predict strength gaining 
for prismatic masonry columns confined by FRP in compression are considered. twelve 
distinct approaches to defining the compressive constitutive law are: Krevaikas and Tri-
antafillou [21], Corradi et al. [19], Di Ludovico et al. [20] for clay and tuff, Faella et al. [14] 
simplest and accurate, CNR-DT 200 R1 [35], Rao and Pavan [36], Ramaglia et al. [22] for 
clay and tuff as well as Napoli and Realfonzo [37] simplest and accurate. R2 value, ARR, 
MAE, MSE and RMSE for each model along with the proposed model are calculated for 
obtaining the approach’s reliability (Table 7). 

From Figures 12 and 13, it can clearly be observed that the proposed model has an 
excellent agreement of regression value, 0.91 compared to the existing models. Di Lu-
dovico et al. [20] for tuff, Faella et al. [14] accurate, CNR-DT 200 R1 [35], and Napoli and 
Realfonzo [37] shows immediate lower regression value as 0.82 which is also well below 
than the proposed model. Other models followed slightly lower regression. This finding 
has also been supported by the ARR, MAE, MSE and RMSE outputs. It can be concluded 
that the Napoli and Realfonzo [37] simplest model might offer good correlation with the 
experimental data although the proposed model is more accurate than this model as well. 
The experimental data for the proposed model shows ARR, MAE, MSE and RMSE as 0.16, 
1.86, 5.94 and 2.44 whereas the Napoli and Realfonzo [37] simplest illustrates 0.18, 2.29, 
12.67 and 3.56, respectively. The very less RMSE proves the superior accuracy of the pro-
posed model. The Faella et al. [14] simplest model the trend with slightly lower value 
immediately after the Napoli and Realfonzo [37] simplest model though it has more MSE 
value. Figure 13 also reflects the data very close to the regression line without any major 
deviation. Whereas a few widely deviated values of other model made the differences 
proving the suitability of the proposed formulation. 
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Figure 12. Theoretical and experimental behavior of existing models [14,19–22,35–37]. 

 
Figure 13. Theoretical and experimental behavior of the proposed model. 
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Table 7. Statistical values of gaining strength of FRP confined concrete prisms. 

References R2 
Average Relative 

Error  
(ARR) 

Mean Absolute 
Error 

(MAE) 

Mean Squared 
Error 

(MSE) 

Root Mean 
Squared Error 

(RMSE) 
Proposed formula 0.91 0.16 1.86 5.94 2.44 

Krevaikas and Triantafillou [21] 0.69 0.31 4.22 31.30 5.60 
Corradi et al. [19] 0.75 0.40 4.09 29.35 5.42 

Di Ludovico et al. [20] for Clay 0.79 0.23 2.75 13.46 3.67 
Di Ludovico et al. [20] for Tuff 0.82 0.20 2.71 15.86 3.98 

Faella et al. [14] (Simplest) 0.81 0.25 2.77 13.81 3.72 
Faella et al. [14] (accurate) 0.82 0.20 2.47 12.30 3.51 

CNR-DT 200 R1 [35] 0.82 0.28 3.08 16.42 4.05 
Rao and Pavan [36] 0.79 0.23 2.77 13.64 3.69 

Ramaglia et al. [22] for Clay 0.79 0.32 3.42 19.29 4.39 
Ramaglia et al. [22] for Tuff 0.80 0.22 2.73 13.83 3.72 

Napoli and Realfonzo [37] (Simplest) 0.81 0.18 2.29 12.67 3.56 
Napoli and Realfonzo [37] (accurate) 0.82 0.18 2.33 13.19 3.63 

During the comparison of the experimental results with the analytical predictions, 
the average ratio equal to the values of theoretical prediction over experimental values 
divided by number of samples was reported. Two of the major statistical metrics to eval-
uate the confinement model’s performance are namely average ratio and coefficient of 
variation (COV) according to the Equations (16) and (17), respectively. 

Average Ratio = ∑ ฬ𝑡ℎ𝑒𝑜௜𝑒𝑥𝑝௜ ฬ௡௜ୀଵ 𝑛  (16)

COV = ൬Standard Deviation Mean ൰ × 100 (17)

The average ratio (Prediction/Experiment), coefficient of variance (COV), number of 
predictions less than 10% error, highest predictions and lowest predictions are also com-
puted to validate the accuracy of the current model to the existing ones. The average ratio 
for the proposed model is 1.03 which is very good as only 3% variation is there for predic-
tion compared to the experimental date. Faella et al. [14] accurate model offers the average 
ratio as 1.0; whereas Ramaglia et al. [22] for tuff and Napoli and Realfonzo [37] accurate 
shows it as 1.01 which are very close to the proposed model. The model better fits with 
results for both the average ratio and COV. The proposed model makes accurate predic-
tions with an average ratio of approximately 1.03 and COV as 22.4%. Other models have 
elevated COV values. Nevertheless, overestimated predictions for strength of confined 
columns were observed by Corradi et al. [19] model by 33% greater average value than 
experimental output. 

The models of Di Ludovico et al. [20] for clay, Faella et al. [14] simplest, CNR-DT 200 
R1 [35], Ramaglia et al. [22] for clay gives non-conservative predictions of the specimens 
by 5%, 16%, 23% and 2% of the practical values though the COVs are little higher. Among 
all the models, the Corradi et al. [19] seems to be most non-conservative to overestimate 
the axial strength. The primary discrepancy between experimental data and theoretical 
predictions is that models overestimate the effective strain in the FRP jacket, resulting in 
an overestimate of the effective confining pressure. Reducing the maximum allowable 
strain would improve the model’s accuracy. 

Table 8 also displays experimental and theoretically predicted values of compressive 
strength of FRP-confined prisms subjected to axial loading in terms of number of predic-
tions with less than 10% error. It is evident from this output that the proposed model 
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performs significantly better than the other models. Comparison is made between the per-
formance of existing analytical models and the analytical expression proposed here. The 
number of predictions less than 10% error is 53 for the proposed model which is well 
above the immediate lower value of Di Ludovico et al. [20] as 24 followed by Ramaglia et 
al. [22] for Tuff, Krevaikas and Triantafillou [21], Faella et al. [14] accurate and Napoli and 
Realfonzo [37] accurate showing around 16 in number. This behavior is supported by the 
highest prediction value of 1.74 and lowest prediction value of 0.46 as well, which are 
much better than the other models. It means that the percentage variation of the peak 
highest and lowest values is more sensible for the proposed model. The proposed analyt-
ical model predicts the compressive strength of FRP-confined masonry prisms subjected 
to axial loading better than all existing analytical models. 

Table 8. Statistical analysis of FRP confined concrete prisms models. 

References 
Average 

(Prediction/Experimental) 
COV
(%) 

Number of Predic-
tions Less than 10% 

Error 

Highest  
Prediction 

Lowest  
Predictions 

Proposed formula 1.03 22.4 53 1.74 0.46 
Krevaikas and Triantafillou [21] 0.82 37.2 16 3.12 0.23 

Corradi et al. [19] 1.33 32.3 10 4.56 0.4 
Di Ludovico et al. [20] for Clay 1.05 28.2 14 3.36 0.32 
Di Ludovico et al. [20] for Tuff 0.95 24.5 24 2.69 0.3 

Faella et al. [14] (Simplest) 1.16 26.2 12 3.55 0.34 
Faella et al. [14] (accurate) 1.00 24.6 16 2.95 0.29 

CNR-DT 200 R1 [35] 1.23 24.6 9 3.46 0.37 
Rao and Pavan [36] 1.04 28.4 16 3.37 0.32 

Ramaglia et al. [22] for Clay 1.26 27.1 10 3.33 0.42 
Ramaglia et al. [22] for Tuff 1.01 27.1 17 3.1 0.31 

Napoli and Realfonzo [37] (Simplest) 1.05 23.3 12 2.59 0.35 
Napoli and Realfonzo [37] (accurate) 1.01 23.4 16 2.6 0.33 

7. Conclusions 
This study deals with the analysis of the FRP confinement of masonry columns, pro-

posing a new model to estimate the compressive strength and evaluate existing formulas. 
The objective is to identify mathematical expressions that outperform conventional re-
gression models. To derive the constitutive equations from compression testing data with 
varying input parameters, symbolic regression is chosen. Literature was used to compile 
a large database containing the results of compression tests on over 198 FRP confined ma-
sonry members. Using symbolic regression, the experimental data were used for develop-
ing new relationships to foresee the compressive strength of FRP-confined masonry. Com-
parisons are made with the existing formulations and international guidelines. The sub-
sequent conclusions are reached: 
1. The complex symbolic regression-based black-box model can be considered good 

with MAE and MSE for training data are 1.51 MPa and 3.48 MPa. 
2. The simplified proposed model has an excellent agreement of R2 value, 0.91 com-

pared to the existing models. Di Ludovico et al. [20] for tuff, Faella et al. [14] accurate, 
CNR-DT 200 R1 [35], and Napoli and Realfonzo [37] accurate shows immediate lower 
R2 value as 0.82. 

3. The average ratio for the proposed model is 1.03 which is very good as only 3% var-
iation is there for prediction compared to the experimental date. 

4. For the number of predictions less than 10% error output, it is evident that the pro-
posed model is showing very excellent results compared to the other models. The 
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number of predictions less than 10% error is 53 for the proposed model which is well 
above the immediate lower value of Di Ludovico et al. [20] for tuff as 24. 

5. The proposed simplified analytical model can predict the compressive strength of 
FRP-confined masonry prisms subjected to axial loading for any type of masonry 
better than available analytical models in the literature. 
Recently, artificial intelligence techniques have emerged as powerful and versatile 

computational tools for producing new knowledge by classifying or connecting parame-
ters. Moreover, artificial intelligence has shown better performance than traditional re-
gression for correlating nonlinear data. Considering that the present study gave an accu-
rate equation which could be adopted in the practical design process of retrofitting or 
strengthening masonry columns, more future research is required to increase the accuracy 
of the models or expand available database. Different artificial intelligence techniques 
could be tried to improve the correlations between input and outputs of the dataset or 
coming up with new findings. In addition, graphical user interface platforms could be 
useful for simplifying the design process for masonry columns confined by FRP when 
complex artificial intelligence systems based on the black-box model are adopted. 
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