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Abstract: Design for manufacture and assembly (DfMA) in the architectural, engineering, and
construction (AEC) industry is attracting the attention of designers, practitioners, and construction
project stakeholders. Digital fabrication (Dfab) and design for additive manufacturing (DfAM)
practices are found in current need of further research and development. The DfMA’s conceptual
function is to maximize the process efficiency of Dfab and AM building projects. This work reviewed
171 relevant research articles over the past few decades. The concepts and the fundamentals of DfMA
in building and construction were explored. In addition, DfMA procedures for Dfab, DfAM, and
AM assembly processes were discussed. Lastly, the current machine learning research on DfMA in
construction was also highlighted. As Dfab and DFAM are innovated, practical DFMA techniques
begin to develop to a great extent. Large research gaps in the DfMA for Dfab and DfAM can be
filled in terms of integrating them with product structural performance, management, studied cases,
building information modeling (BIM), and machine learning to increase operational efficiency and
sustainable practices.

Keywords: design for manufacture and assembly; digital fabrication; additive manufacturing; 3D
printing; construction; review

1. Introduction

In response to architectural and engineering needs for flexibility, complexity, high
performance, intricacy, and customization of material/technology [1–4], the construction
industry has to create novel technologies such as digital fabrication (Dfab) and additive
manufacturing (AM). Although the construction industry has been identified as not only a
large consumer of natural resources but also a big producer of environmental impacts, it is
considered one of the inefficient manufacturing practices [5]. Automation in construction
and architecture [6–8] was proposed as an alternative to costly and inefficient manufactur-
ing practices. This digital architectural paradigm is anticipated to have favorable impacts
on the built environments. As a result, the architectural profession is required to develop
completely automated production forms and procedures that promote sustainability. De-
signers are an inevitable essential stakeholder in contributing to a greener construction due
to their ability to design building activities such as material selection, site selection, trans-
portation, construction method, building form, building envelope and facade, maintenance,
and renovation of existing structures.

Understanding the influence of sophisticated technology on the field of architecture
may direct future studies, inspire innovative design and construction techniques, and
improve teaching strategies. AM technology is preferred above other Dfab technologies
due to its operational potential in the architectural, engineering, and construction (AEC)
sector. This approach might enable the sustainable construction of complicated building
designs with less material and without the requirement for conventional formwork. AM
technology may be utilized in all phases of the design process, from form-finding prototypes
to the production of full-scale constructions.
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AM is the process of printing multiple layers of materials on top of each other [9,10].
Frequently, the words “additive manufacturing”, “rapid prototyping”, and “3D printing”
are used interchangeably to refer to the process of constructing an element through the
progressive addition of material layers. ISO/ASTM 52900 [11] terms the AM as “a process
of joining materials to make parts from 3D model data, usually layer upon layer, as
opposed to subtractive and formative manufacturing methodologies.” Since the mid-1980s,
as Charles Hull invented the first commercial AM printer [12,13], this AM or 3D printing
technology has been gradually evolving. Pegna [14] created the first large-scale concrete
printer in the late 1990s, enabling the construction sector to adopt 3D printing. Although
the creation of this technology began more than 30 years ago, its fast development began
considerably later. The framework of new development showed that the number of articles
on the use of 3D printing technology in the construction sector has risen over the past
decade [15]. There is a rising interest in implementing and expanding this technology within
the construction industry and, subsequently, throughout architecture. Recent architectural
construction projects are worldwide built by a large-scale AM machine, and the AM
instances of architectural buildings were displayed in Figure 1. The images were real
construction projects gathered from open-access internet sources. The projects were built
within the last five years in Dubai (UAE), Europe, the US, China, and Southeast Asia
regions. It should be noted here that the AM construction can be built in several climate
zones such as desert, tropical region, cold, and moderate temperature areas. This requires
adjustment of concrete material to have proper characteristics for each climate.
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Figure 1. Recent instances of architectural AM projects.

Two methodologies of 3D printing for construction have been widely developed which
are extrusion and powder-bed 3D printing cement. The concepts of both processes are
exhibited in Figure 2. Numerous researchers have analyzed these technologies’ influences
and uses in the building industry [7,8,16–22]. The AM structures were mainly printed
as concrete wall components. The AM wall can be designed as a load-bearing wall or a
non-load-bearing wall depending on the concrete mix design. The concrete mixtures were
adjusted to have good flowability, printability, and sufficient strength. In construction, the
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size of AM wall panels is dependent on the printer’s size. Several AM wall panels may
be required for manufacturing and then fabricated into a larger building. Even though
these studies are vast, they tend to concentrate on particular elements of technology and
its application. However, while there are studies addressing various elements of AM
technology, current research lacks the systematization required to offer a comprehensive
overview of all the DfMA processes. It is found that AM construction can be well adopted
by using current prefabrication techniques.
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Prefabrication, sometimes known as offsite manufacturing, has been the subject of a
large number of studies that have investigated many different practical aspects, including
its business models [23–25], advantages and opportunities [26–28], and obstacles and
restraints [29,30]. The DfMA technique is a set of methods for analyzing and enhancing
product design for both economical production and assembly.

As the Dfab and AM technology is currently new and much effort has been directed
towards research and development, the first emphasis for technologies’ development is
highly on material performance, effective construction, improved automation and machine
friendliness to users, and implementation in a legitimate approach. Hence, very few
studies sought to throw light on the best practices of design engineers, the manufacturing
equivalents of architectural designers, in the design stage, such as the DfMA approach to
the building [31]. The research gap can be apparently seen in this design area. This design
procedure ultimately determines the overall building expenditure [32]. Undoubtedly, the
question that DfMA will direct early in the process of product design efforts toward cost
reduction. This will make DfMA feasible to reach the full lean production potential of
the product since any potential manufacturing challenges and assembly concerns will
already have been addressed in the design. This will make it possible to realize the entire
lean production potential of the product. This reviewed study identifies 171 pertinent
publications in the AEC sector that are related to DfMA, Dfab, and design for additive
manufacturing (DfAM) practices. The PICO (population, intervention, comparison, and
outcome) process was adapted as given in Table 1. It is noted that AM process involves
design, printing, fabrication, transportation, and construction, while DfAM emphasizes the
design stage for such AM technology. The article search is based on Scopus and Google
Scholar databases. The structure of this reviewed paper begins with an introduction part,
followed by the concept of DfMA, fundamental DfMA aspects in construction, DfMA for
Dfab and DfAM, joints design for AM structure, and machine learning. Finally, implications,
as well as conclusions and suggested future works, are addressed.
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Table 1. PICO method of the review study.

PICO Component Explanation

Problem Review current knowledge of DfMA for Dfab and AM process.

Intervention Examine the effective methods and applications of DfMA for Dfab and AM process.

Comparison Compare DfMA of prefabrication and precast construction.

Outcome
DfMA knowledge for Dfab and AM is currently under development and seemingly adopted similarly to

prefabrication construction, and can be filled in terms of integrating them with product structural
performance, management, studies case, BIM, and machine learning.

As our current conventional methods are considered to be ineffective, Dfab and AM
gain high attention to make the construction better. This review study primarily delivers
effectiveness in Dfab and AM through design, such that innovative approaches (namely,
design for effective uses and lean production) can be implemented throughout the design
process and give efficiency gains and sustainable building and construction. This is a
crucial step toward achieving AM’s full potential.

2. Concept of DfMA

DfMA indicates an overall transition from a sequential, conventional approach to a
non-linear, iterative design technique. Numerous DfMA processes and guidelines have
been developed to assist designers in implementing this design philosophy to improve
design, productivity, and profitability since its inception during World War II and growth
extensively during the 1960s–1970s [33–38].

DfMA consists of two elements: (1) design for assembly (DfA) and (2) design for
manufacture (DfM) [39]. DfA focuses on assembly, whereas DfM focuses mostly on
the production of individual components [40]. During the 1980s, Boothroyd [41] and
Swift et al. [42] developed the main principles of DfA and undertook a series of studies
addressing assembly restrictions throughout the design phases. This aids in avoiding
manufacturing and assembly problems in later phases of product development [43]. Based
on the idea that the lowest assembly cost may be attained by creating a product that can be
constructed economically using the best suitable assembly system. Stoll [44] mentioned that
the important concept is to create a simplified design with fewer assemblages. The fewer
components there are, the greater the likelihood that they will be correctly assembled. To
accomplish this, Boothroyd [41] manually offered a variety of ratings for each component
in the assembly process depending on the component’s ease of handling and insertion. The
well-established DfA principles are given in Table 2 (adapted from [45]).

The usage of DfA for AM with an emphasis on component decomposition, assembly-
based re-design for AM, the decrease in assembly reorientation, and the number of parts
through the development of an automatic DfA approach [46]. Robinson et al. [47] pa-
rameterized a DfA/DfM-based model. Using DfA and other design methodologies,
El-Nounu et al. [39] redesigned a mechanical assembly using DfA. Furthermore, Man-
lig and Urban [48] analyzed the link between product development, material flow, and
design life cycles for a specific product. In addition, a preliminary cost estimate of a hand
pressure mop product was performed using both DfA and DfM [49]. Anyfantis et al. [50]
designed multi-material mechanical components using both computer-aided DfA and DfM.
Similarly, a strategy for cost-effective design was developed by Favi et al. [51].

DfM, on the other hand, evaluates the use of specified materials and manufacturing
techniques for the assembly components, determines the cost impact of these materials and
processes, and identifies the most effective design use [52]. DfM attempts to create parts that
are simpler, less expensive, and more efficient to produce [43]. O’Driscoll [53] mentioned
that DfM as the process of designing goods with manufacturing in mind had the objective
of reducing manufacturing costs. Furthermore, the author asserted that the premise of
DfM was at least 200 years old which was in the field of the handcrafted musket industry.
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RIBA [54] advocated that DfM in construction was the process of planning such that
specialized subcontractors could produce important design elements in the manufacturing
framework. Panelized systems, such as claddings, have been created this way for years,
and now the growing hybrid systems (i.e., unit pods), modular structures (i.e., completely
factory-built homes), and 3D concrete printing also apply to the DfM principles.

Table 2. DfA principles (adapted from [45]).

Stage Explanation

1 Functional analysis Any material not qualifying for characteristics such as relative movement need and adjustment is
excluded from the system.

2 Manufacturing process Selection of materials, quantities, complexity, process, and cost for improved manufacturing.

3 Handling/feeding A part’s ease of manual or automatic assembly is evaluated (termed as feeding).

4 Assembly/jointing Identifies and scores insertion, fastening, and gripping portions. This examination examines the
ease of inserting and connecting pieces. Avoid fasteners.

5 Product group A product’s similar parts, assembly procedure, and routine feedings differentiate it from others.

6 Product structure
Structured information on manufacturing process description, materials selection, process

variation for production, economics, design elements, size configurations, and process
capabilities for tolerance and surface polish.

7 Component design The designer is given information on insertion and fastening assembly processes, process
capability data, component models, and assembly cost.

8 DfA heuristics These are usually offered in pairs of “good practice” and “poor practice” examples. Graphically
presented heuristic examples are simple to understand.

9 Evaluation assemblies
Two approaches to lower the overall number of components are presented, followed by a full

investigation of fitting, handling/feeding, and fixing. Each component, part, and assembly
procedure are scored to demonstrate complexity.

From the aforementioned explanations of DfM and DfA, it is determined that these two
disciplines should be viewed collectively as DfMA [55]. This is due to the fact that modern
goods are complicated and the capacity to assemble them efficiently is equally essential.
DfMA is a management and software solution that enables designers to address a prod-
uct’s material selection, design, and manufacturability at the outset [56]. Boothroyd [33]
advocated the initial DfMA analysis technique, which established methodical processes for
analyzing and enhancing product design for both cost-effective production and assembly.
Ashley [52] stated that DfMA was strongly introduced in other high-tech industries such as
aviation, it was labeled as a design review approach that determined the ideal part design,
materials selection, assembly, and fabrication activities to generate a cost-effective product.
The objective is to give manufacturing input in a logical and structured manner at the
design conception phase.

3. Fundamental DfMA Aspects in Construction

Boothroyd (1994) advocated that DfA should be the primary concern for product
design, resulting in a simplified product structure. Next comes the economical selection
of materials and procedures, and then preliminary cost estimation. To reach a trade-off
choice, cost estimates for the original design and the new (or improved) design will be
compared thereafter. Once the materials and methods have been finalized, a more complete
DfM study will be conducted. DfM is provided with standards, component design, and
component assembly for lowering the total cost of production. The general series of DfMA
procedures are illustrated in Figure 3 (adapted from [33]).
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Boothroyd et al. [57] enlisted the three major criteria for the application of DfMA to
resultant products as shown below:

(1) The design team reduced the product’s structure to save manufacturing and assembly
expenses and to enhance product quality.

(2) A tool for quantities issues in their manufacture and assembly was developed.
(3) A tool for reducing costs and negotiating contracts with suppliers was also created.

Bogue [58] stated that there were three means to implement a DfMA procedure. One
step was to adhere to a general set of qualitative and non-specific principles or standards
and need stakeholders (usually designers and engineers) to interpret and apply them in
specific cases. The objective was to include a variety of goods, techniques, and materials.
The second technique quantifies the design. Each part’s “assemblability” was scored. The
last was a process automation technique where the design process might be quantified
using computerization software. Similarly, Stoll [59] outlined ten DfMA principles and
rules including (1) minimizing the total number of parts; (2) developing a modular design;
(3) utilizing standard components; (4) designing parts to be multifunctional; (5) designing
parts for multiple uses; (6) designing parts for ease of fabrication; (7) avoiding separate
fasteners; (8) minimizing assembly directions; (9) maximizing compliance; and (10) mini-
mizing handling. Kim et al. [60] also standardized 13 bridge constructions in the United
Kingdom based on DfMA criteria. Jung and Yu [61] recently developed a DfMA checklist
to evaluate the optima of design plans for offsite construction projects by outlining optimal
design goals, the process, and DfMA principles. The documentation process of DfMA is
still in the early stage.

Researchers and building owners are developing an interest in modular and prefabri-
cated construction projects based on the DfMA. In these projects, building components are
built in a factory and then sent to the construction sites, where they are assembled. Conse-
quently, many research articles concentrating on the essential technologies for implementing
DfMA in sustainable building, renovation, and interior projects were published [20,62–64].
For example, Serra [65] developed Australia’s high-rise construction bathrooms with
DfMA-based flat-pack walls saving almost one-third of operating energy usage owing to
its efficient design. Furthermore, Wasim et al. [66] utilized DfA to quantify the efficiency of
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prefabricated non-structural timber construction components for residentials. Their case
study revealed that the DfA of the timber frame and drainage manufacturing system will be
9.8% and 10.244%, respectively. The DfMA can be performed for mechanical, electrical, and
plumbing (MEP) systems for improving producibility and product quality throughout the
product development process [37]. It is found that DfMA for modular and prefabrication
techniques can be well applied to the Dfab and DFAM methods. The differences can be
detailed such as differences in production and machine techniques, textures and patterns,
structural performance, structural loading calculation, design softwares (i.e., G-code and
slicing), and jointing techniques.

Exploration of industrial innovation, particularly offsite building, has presented DfMA
with a distinct opportunity. DfMA is at the forefront of the industry’s cross-sectoral learning
and innovation agenda due to the parallels between offsite construction/prefabrication
and manufacturing. In addition, rising technical innovations such as building informa-
tion modeling (BIM) [67–69], 3D printing [4,70,71], the Internet of Things (IoTs) [72,73],
and DfMA in particular, new entry opportunities of design and construction aspects for
manufacturing expertise and efficiency improvement.

4. DfMA for Digital Fabrication (Dfab) and AM (DfAM)

In this section, two DfMA processes related to Dfab and DfAM were discussed. The
number of technical publications that represent DfMA for Dfab and DfAM in construction
is quite minimal. The authors reviewed existing articles from Scopus and Google Scholar
databases relating to DfMA for Dfab and DfAM. Table 3 summarizes the existing 35
publications regarding DfMA for Dfab and DfAM. Based on these 35 publications, it is
revealed much is emphasized on DfMA for DfAM (74%) in construction as illustrated
in Figure 4a). The research publication analysis also found that current publications are
published after 2018–2023 as shown in Figure 4b). Meaningly, the studies on the DfMA for
DfAM topic are fairly novel and have been tremendously growing within the five recent
years (about 70%).

Table 3. The summary of 35 existing publications on DfMA for Dfab and DfAM in construction.

Year Author Process Discussion Reference

2011 Williams et al. DfAM

Design system focuses on three aspects: identifying
essential use cases, defining formwork systems, and

defining software element communication to facilitate
expert user cooperation.

[74]

2014 Wang et al. DfAM
Integration of 3D printing, BIM, and augmented reality

is needed to improve architectural visualization in
building life cycle.

[75]

2015 Bock and Linner Dfab Product structures and information aspects required
manufacturing technology for full capability [36]

2015 Yang and Zhao DfAM

General Design Theory and Methodology (DTM)
cannot take use of the enhanced design freedom and

process options. Modifying standard DTM and DfAM
can help designers effectively use AM in designs.

[76]

2016 Wu et al. DfAM

BIM and 3D printing synergize to provide new DfMA
possibilities in the building business. BIM can create an
accurate 3D integrated information model for building

design and 3D printing.

[5]

2016 Tang and Zhao DfAM

Few product-level design approaches exist for both
functionality and assembly, and some current design
methods are challenging to execute due to an unfit

CAD software.

[77]
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Table 3. Cont.

Year Author Process Discussion Reference

2016 Tang et al. DfAM

Establishes the basis for sustainable AM design
through functionality integration and component

consolidation. DfMA offers designs with fewer parts
and less material without sacrificing functionality.

[78]

2016 Kim et al. Dfab

An interview determines the acceptability of precast
bridge components based on DfMA requirements. A

case study on a newly completed highway bridge
identifies the possibility of precast components

selected from suitability analysis.

[60]

2017 Krimi et al. DfAM 3D printing provides design flexibility and cost savings
to build complicated forms, not the time-saving. [79]

2018 Arashpour et al. DfAM

In advanced façade manufacturing, a substantial
portion of the expenditure is for equipment such as

CNC machines and 3D printers which can be
significantly reduced by DfMA.

[80]

2018 Durakovic DfAM
Most 3D printing studies are still in early stages. This

method lacks numerous technologies; therefore,
maturity will take time.

[81]

2019 Ng and Hall Dfab LEAN, DfMA, and Dfab share design to target value
and concurrent engineering. [82]

2019 Dorfler et al. Dfab
Mesh mould is a novel construction technology for

non-standard reinforced concrete buildings employing
a mobile robot on site.

[83]

2019 Hinchy DfAM

3D printing is ideal for low-volume, sophisticated
components, hence it should be selected over

traditional methods. Build orientation and support
structures affect manufacturing cost, time,

post-processing, and final component
mechanical characteristics.

[84]

2019 Medelling-Castillo and
Zaragoza-Siqueiros DfAM

Build orientation affects component stability during
construction by determining the part’s support surface

on the building platform.
[85]

2020 Ng et al. Dfab Dfab manager and Dfab BIM coordinators are needed
early in the design process. [86]

2020 Alfaify et al. DfAM

The suggested DfAM solutions include cellular
structures, component consolidation and assembly,

materials, support structures, build orientation, part
complexity, and product sustainability.

[87]

2022 Nguyen et al. DfAM

DfMA attempts to optimize product design to deal
with complicated production processes while

specifying 3D-printed product advantages throughout
its consumption phases.

[88]

2020 Ghaffar et al. DfAM

Collaboration across materials science,
architecture/design, computer, and robotics is

important to developing and implementing
3D printing.

[89]

2021 Gibson et al. DfAM Modern 3D printing has led to more emphasis on
DfAM training. [90]

2020 Frascio et al. DfAM

This solution tackles the exponential link between
construction volume and printer cost and improves

efficiency by deploying many 3D
printers simultaneously.

[91]
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Table 3. Cont.

Year Author Process Discussion Reference

2021 Ng et al. Dfab
Three design practices were identified:

post-rationalization, mass customization,
and modularization.

[92]

2021 Graser et al. Dfab

Three theoretical factors for using Dfab house projects:
full-scale projects are an effective Dfab strategy in AEC;

large-scale implementation promotes Dfab’s
acceptability in AEC; and projects help develop a new

Dfab paradigm.

[93]

2021 Ghiasian DfAM
Intelligent machine learning-based recommender

system that identifies part candidates and addresses
AM infeasibilities in existing component designs.

[94]

2022 Prasittisopin et al. DfAM Small modules for 3D-printed pavilions can be
attached together using bolt–nut designs. [18]

2021 Morin and Kim DfAM

The optimization scheme’s effectiveness in breaking a
cantilever beam structure into components that fulfill

the AM build plate’s geometric restrictions while
reducing the structural impact of joints.

[95]

2021 Vu et al. DfAM DfMA framework entails three main elements:
structure, property, and process. [96]

2022 Ng et al. Dfab Proposed seven strategy propositions to achieve the
benefits of adopting Dfab system. [97]

2022 Rankohi et al. DfAM
Integration of 3D printing, DfMA, and BIM can boost

automation and productivity even with present
labor difficulties.

[98]

2022 Sadakorn et al. DfAM Similar to the precast method, the jointing can be
executed in dry process. [99]

2022 Nguyen et al. DfAM Parametric model for bridge pier improved
industrial output. [100]

2022 Spuller DfAM Unlike product design application, construction
occasionally uses DfAM. [101]

2022 Song et al. DfAM

New DfAM knowledge must be organized into general
frameworks to assist practitioners throughout the
product design process and to properly leverage

present AM capabilities and developing potentials.

[102]

2022 Qin et al. DfAM Machine learning has contributed significantly to
DfAM and has the potential to revolutionize AM. [103]

2023 Rehman et al. Dfab Two most important liability factors are management
capability and BIM. [73]
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4.1. DfMA for Dfab

Dfab is rising as a systematic breakthrough in the AEC sector to stimulate automation
and enhance efficiency. It is necessary to incorporate manufacturing knowledge in the
early design process. Bao et al. [63] addressed that a block-brick-based wall, hollow-
brick-based wall, and shear wall system used skirting line connection, stitch connection,
and tight connection, respectively. A paperless design and construction process can be
supported by Dfab, which results in cost savings [104]. In addition, it offers a number
of environmental, social, and economic advantages, including the reduction of waste,
the removal of physical inventory, the reduction of labor, the implementation of digital
quality control, and the establishment of an offline part setup [105]. The typical Dfab
techniques consist of two methods computer numerical control (CNC) and laser cutting.
Based on DfMA, Bridgewater [106] suggested DfA for factory-based production and onsite
automation to reduce the number of components for Dfab such as robotics. He also
mentioned rules for redesigning building systems for DfA, as well as a new construction
contract and legal requirements for DfA. Bonwetsch [107] advocated that CNC let design
information be sent directly and automatically to fabrication machines. Robotics focused
on integrating design and construction, which helped to cut down on construction costs
and time and improve the quality of design. Examples of how DfMA works for robotics
and how codes and designs could be combined early in the design process were addressed.

The parameters found by Dfab could affect both design results and process. During
the design process, all physical constraints of fabrication had to be taken into account.
Martinez et al. [108] indicated how the robotized Field Factory System was designed using
DfMA principles and how its production lines were set up. For instance, the factory layout
took into account the size and range of motion of an ABB robot. The Service Core has
been examined to improve the time and quality of assembly holistically. Montali et al. [109]
determined the Knowledge-Based Engineering (KBE) approach using digital tools to sup-
port design through the automation of reusable knowledge on facade design with DfMA
principles. They found that the 2D and 3D digital tools that were currently available
could not close the design-manufacturability gap in the facade construction industry. The
DfMA-based KBE for design automation was proposed to guide design from the beginning
of the design process to improve quality, reduce delivery time and costs, cut down on
rework, and support product development in construction. Furthermore, CNC milling
was conducted to investigate the principles of DfMA [80]. Ng and Hall [92] conducted an
online game with the Target Value Design (TVD) principle for modeling the Dfab construc-
tion. TVD principle implies a strategy that was built on lean principles and incorporates
a design based on thorough cost estimates [110,111]. Concurrent engineering, design-
to-target-values, and the maximization of values to project stakeholders were possibly
conducted by TVD. They found that TVD was offered as a feasible design management
strategy for managing Dfab during the design process and maximizing value for project
stakeholders. However, the application of Dfab in TVD in the construction sector is still
relatively new. The prerequisite for future assessment is required. Parametric model-
ing also supports collaborative work, which makes it easier to put DfMA into practice.
Ng [97] reviewed 59 journal articles about Dfab and discussed how DfMA had several
important enablers. These included Dfab engineers, parametric or computational resources,
visual-programming conditions, bespoke/customized design and modular features, Dfab
optimizing and prefabrication processes, an artifact of Dfab physical mockup, value of
reducing human dependence, along with risks of increasing uncertainty in production and
performance compromise/uncertainty. De Soto et al. [112] determined the productivity,
cost, and time aspects of the onsite robotic fabrication technology. Results found that com-
plex decoration structures could be made with Dfab at no extra cost. This is because Dfab
can build a part in a more integrated way by obtaining feedback early in the design process,
as also discussed in the full-scale Dfab house under the NEST project developed by EMPA,
Switzerland [113]. Regardless of the fact that only a limited number of investigations have
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been presently performed on Dfab technology, these Dfab principles are apparently in
accordance with the DfMA principles and may be adopted without issue.

4.2. DfMA for DfAM

DfMA tools facilitate communication between product designers, production engi-
neers, and any other stakeholders in the finished product. Barbosa [114] asserted that
DfMA was an essential method for boosting the productivity of any product develop-
ment via design in several manufacturing sectors. However, the AEC sector did not give
building designers similar techniques. In an increasingly dispersed work environment,
the integration of construction expertise into the design phases continued to rely on the
experience of individuals [115]. Furthermore, Spuller [101] mentioned that in contrast to
the domain of product design, the building sector made relatively infrequent use of these
DfAM methodologies.

Figure 5 shows the complexity levels of DfAM techniques. Both direct component
replacement and DfAM can be viewed as processes of manufacturing-driven and function-
driven design strategies, respectively. The adaption of AM represents the medium ground
between the two sides. To take advantage of AM, the design of a component can be modi-
fied, but its connections to other components are maintained in their previous states [116].
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First, the direct replacement (leftward) is the basic design process for the manufac-
turing process. From a traditional manufacturing standpoint, the Handbook for Product
Design for Manufacture by Bralia [117] and Product Design for Manufacture and Assembly by
Boothroyd et al. [57] addressed suitable instances of design for manufacturing standards
and practices. The substantial work on design for manufacturing over many years indicated
the complexity and pervasiveness of the design for manufacturing concerns [118]. It is
necessary for designers to have a solid grasp of the limits imposed by accessible fabrication
technologies. Some of these restrictions are alleviated by AM, while others are not. The
applicability challenges for design for manufacturing in AM are shown in the following
areas where traditional design for manufacturing falls short of the benefits offered by AM.
The applicability challenges include:

• Layerwise operational characteristics and direct CAD model production extend part
design creativity.

• Parts could be created as modular 3D puzzles incorporating small modules.
• As AM materials may be treated point-by-point or layer-by-layer, complicated material

compositions and property gradients are possibly adopted.
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• AM allows for the fabrication of hierarchically complicated, long-scale building de-
signs.

AM’s distinctive technique allows for low-cost, fast remanufacturing and repair. AM
capabilities represent the complexity of shapes and surfaces in designs. It is feasible to
create almost any form, allowing for various lot sizes starting from one, rapid customization
of geometries, and shape optimization. Some studies determined using the inner truss
as a surface of the architectural wall structure of the building [99,119]. Results indicated
that several patterned AM wall structures could be created based on a geometric ratio.
This led to a reduction in material consumption and printing time. Nguyen et al. [100]
developed bridge constructions that were prefabricated using AM adoption. Throughout
this work, a unique digital engineering model approach was developed by combining
current knowledge of DfMA with structure-oriented parametric modeling technology.
The geometrically complex elements of bridge piers that were aligned with the aesthetic
surfaces were built using DfMA approaches and parametric modeling. The developed AM
bridge pier is shown in Figure 6.
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Lastly, the DfAM as shown in the rightward of Figure 5 entails two additional steps (fit
and functional use). The “fit” term means the assembly process. To reduce assembly time,
cost, and challenges in conventional assembly, two primary ideas are frequently offered:
reducing the number of pieces and eliminating fasteners. Both factors immediately result
in fewer assembly procedures, which was the main cost driver [57]. Mavroidis [120] stated
that, conventionally, the primary role of the assembly was to link together components,
freeform material, and small elements to create a complex product. In contrast to typical
assembly processes, AM permitted the consolidation of elements in locations where they
were previously manufactured independently owing to manufacturing restrictions, material
differences, and cost. AM reduces manufacturing limits and gives a fundamentally different
viewpoint on jointing than conventional assembly. The issues associated with design
considerations for AM assembly are covered as follows:

• The layer-by-layer or point-by-point nature of AM makes it easier to combine and
embed parts. Most applications can be put into two groups: those that use operational
mechanisms and those that use embedded components. In the case of operational
mechanisms, if two or more parts need to be able to move in relation to each other, AM
can build these parts already put together. For this type of non-assembly mechanism,
one of the most crucial factors was joint clearance [121]. The joint clearance could
reform the way the mechanism works. In addition, in the case of embedded compo-
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nents, it is often essential in building a functional prototype by putting components
into a part. This can improve the performance of the holistic system.

• AM is a good way to fabricate a structure with more than one material. The use of more
than one material in AM can be applied to improve the functionality of the printed el-
ement. The multiple nozzle heads of extrusion AM have been examined [19,122,123].
Classen et al. [124] made fork-shaped, multi-nozzle extrusion heads for layer thick-
nesses of 50–100 mm and filament widths of 180–240 mm, as illustrated in Figure 7.
The goal was to set up a fully automated, high-speed process for making continuously
steel-reinforced concrete walls. Khoshnevis et al. [125] introduced supporting material,
such as wax and sand, along with the concrete nozzle. This can be adopted for better
buildability and can be built as a roof structure. Aside from these, multi-nozzle AM
can produce complicated structures such as concrete extruded nozzles and spraying
nozzles for either smoothing the surface or creating a range of surface textures.
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Another step, shown in Figure 5, is the “functional use” which can be mainly struc-
tural performance as a structural building component. Historically, products with basic
geometries have been favored despite losing functionality or performance. This leads to
material cost savings. To increase structural performance, AM structures are designed
to be multifunctional and adaptable. The capability of DfAM to generate extremely flex-
ible and functionally integrated components encourages the development of intelligent
components that rapidly adapt to and respond to the operating environment [126,127].
Another virtue of AM is freeform printing, allowing for the creation of cellular structures.
Based on topology optimization, it is possible to design a hollow structure that results
in less weight and decreased material consumption. Nauyen and Vignat [128] asserted
that the topology optimization approach permitted the identification of optimal material
distribution and the reduction of material consumption while maintaining the mechanical
qualities of the product. Additionally, in the case study of AM bridge piers, by relating the
DfAM parameters to the estimated moment–curvature curves, the seismic performance
of a bridge pier analyzed by the finite element method was achievable [119]. Vu et al. [96]
advocated that optimized micro-structures could be self-supporting only in particular
instances, such as when the load was equally distributed, and the micro-structures were
anisotropic. Moreover, Morin and Kim [95] assessed the topology optimization for DfAM
when the build area was limited. From their work, a structural cantilever beam case study
was employed. Preliminary findings showed the optimization scheme’s usefulness in
decomposing the cantilever beam structure into components that could fulfill the AM build
plate’s geometric restrictions.

In addition to the structural performance aspect, other functional purposes such as
thermal and acoustic insulation performance, MEP, and Heating Ventilation and Air Condi-
tioning (HVAC) systems can be designed into the AM structure. Prasittisopin et al. [22]
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developed a textured AM wall with a hollow structure that allowed the structure to perform
thermal resistance to sunlight in a tropical climate. The AM wall could end up in electricity
expenditure by almost 50%. Karadeniz and Toksoy [129] also mentioned that the HVAC sys-
tem could be successfully implemented in AM through DfAM, followed by Heat Recovery
Ventilation (HRVU) and Air Handling Unit (AHU) systems. DfAM methods were designed
to aid designers in making decisions at the design stage to fulfill functional requirements
while maintaining manufacturability in AM systems and to aid manufacturers in their
fabrication process [85]. DfAM includes four steps for process, form/surface, assembly, and
functional use, allowing for greater levels of design complexity or customization freedom.

Overall, 52 research papers were reviewed, and topics emphasized related to DfMA
for Dfab and DfMA for DfAM were categorized. The relevant topics determined to entail
product structure/performance, reference case, management (i.e., collaboration, training,
and lean engineering), BIM, machine learning, CAD, modifying standard, and visualization.
Figure 8 exhibits the research number of DfMA for DfAM and Dfab relating to eight different
themes. Existing research is still performed in the areas as followed: product structure/performance
> management on collaboration, training, and lean engineering > adequate reference practices.
Following the DfMA based on BIM, can result in the digitization of building models throughout the
manufacturing and assembly operations. Few DfMA studies for construction have been conducted
involved in machine learning, CAD, learning standard modification, and digital visualization
technique such as virtual reality.
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5. Joints Design for AM Structure

Some investigation programs determined the jointing process for prefabrication and
cantilevered beam structure [18,95]. In the case study of DfAM for the cantilevered beam,
the edges of the partitioning rectangles reflect the partitioning lines that divide the structure
into components and can fit within an AM machine. To represent the structural impact of
building a multicomponent system, joints are modeled at the dividing rectangle’s borders.
For optimization purposes, it is assumed that the joint material qualities are 15% weaker
than the structural material properties. The decomposed design can be impacted by the
joint design. This DfMA of jointing AM wall panels is not yet validated into basic practices.
Some prototypes and idea concepts were dissimilated. The joint component is one of
the most critical elements for buildings and structures because it relates to structural
performance (both static and dynamic), acoustic and thermal insulation performance, and
water/moisture leakages. The given case studies of DfMA for AM wall panels should
be discussed.

For AM concrete pavilion, small modules were printed and then fabricated. Each
module’s joint assembly procedure consisted of two steps: (1) finding the connection
location and (2) joining the small modules. The location for installing an anchor bolt at
a joint is defined. Figure 9 depicts the locations of the joint regions and joint assembly
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processes. First, the flat surfaces of each module were closely joined, and each module’s
height was split into five portions. Each part’s height was dependent on the module’s
height, and two-thirds of each section was positioned in the joint area. It was proposed
that the junction location be positioned roughly 150 mm within the outer shell to guarantee
a secure connection between the two portions. It was proposed that the junction be secured
using a 680 mm long (2.7 in long) anchor bolt. The angle of the anchor bolts was parallel to
the shell’s flat surface. Then, the joint system was built to connect each module with high
precision and accuracy. Anchor bolts and studs were used to install each module. To build
the assembly as planned, the piercing operation must be performed with precision. After
the studs were inserted, knots were used to connect each module. All anchor bolts, studs,
and knots were adapted from a stainless material, such as zinc-coated galvanized steel.
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Another joint design of AM load-bearing wall structure incorporating concrete mate-
rial by Sadakorn et al. [99] was mentioned. They proposed employing steel plates in dry
production similar to precast wall parts. Figure 10 shows the precast wall element’s steel
plate and two bolts joint connection. Middle wall panels are where the bolts enter. The
planned DfMA solution of AM wall panels is readily accessible. The suggested wall panel
junction dimensions were also displayed. The AM load-bearing walls were jointed at both
ends with projecting fins. The lift-up component must have an open hole that may be filled
with cement and inserted in the lifting point. The horizontal wall joints were steel plates,
6.5 × 12.5 cm and 4 mm thick, with holes for tightening nuts to save installation time on
site. The joint area was concave inward. The joints could be covered with cement plaster
after installation to protect from leakages.

Frascio et al. [91] reviewed the jointing methods with adherents and adhesives. They
discussed a variety of tailoring techniques for additively made adhesives, with the goal of
optimizing the performance of bonded joints. Customizing AM adhesives according to the
DfMA strategy has shown to be a very effective, although mostly unexploited, method for
enhancing the performance of adhesively bonded joints.
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6. Machine Learning for DfAM

Machine learning is defined as “allowing computers to solve problems without being
specifically programmed to do so” [130]. Due to the availability of vast amounts of data,
the advancement of computer technology, and the improvement in the efficacy of accessible
machine learning techniques, it is becoming a fast-emerging topic nowadays.

Several machine learning techniques in DfAM have been successfully developed in
wide ranges of applications [131–134]. The main applications highly adopted by machine
learning were those such as aerospace, automobile, and defense. These include multi-stage
Bayesian surrogate models [135–137], artificial neuron network (ANN) [138–140], inductive
design exploration method [141–143], support vector machine [69,144,145], graph convo-
lutional networks [146], surfel convolutional neural network [147], multi-task Gaussian
process learning algorithm [148], computational fluid dynamics model [149,150], back
propagation neural network [151], and particle swarm optimization method [152,153].

Regarding the AEC industry, machine learning can be implemented effectively in
any activity including a conceptual design phase, design optimization, cost prediction,
transportation, and fabrication time. As et al. [154] proposed a graph-based machine
learning system for 3D space, which was more organized and combinatorial than photos,
text, or audio. They employed function-driven deep learning to develop conceptual de-
sign and then trained deep neural networks to evaluate existing graph-encoded designs,
extract subgraphs, and integrate them. Yigit [155] and Huang et al. [156] used the machine
learning method to optimize residential buildings for minimizing building energy con-
sumption. This machine learning could train for passive design optimization of the green
roof conducted by Lin et al. [157]. For predicting the construction cost, fabrication cost,
total construction time, monitoring, and maintenance activities during the design phase,
several works were evaluated both onsite and offsite manufacturing [158–162].

In terms of geometric flexibility and highly interconnected structures, AM had enabled
novel product designs and performance improvements [163]. A digital database from
AM can be adopted using machine learning techniques. The benefits of using machine
learning can be implemented in several DfAM aspects. Machine learning can be beneficial
in the following areas: (1) conceptual design phase, (2) design optimization, (3) geometry
deviation prediction from build orientations and thermal deviations, (4) material analytics
(such as material properties, material chemistry, material multi-structure, and resultant
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performance), (5) prediction of defect in quality assurance process by image analysis, sen-
sor signal methods, and (6) prediction of final product performance, total costs, energy
consumption, and carbon emissions. Due to the unique production paradigm of AM, batch
sizes, production schedules, and cost drivers may differ from those of conventional tech-
niques. It also necessitates distinct methods of metrology and quality control. Therefore,
DfAM has been presented as a means to provide AM design experts with a comprehensive
set of design and analysis tools for complicated component structures and AM processes.
Typically, DfAM consisted of two primary study topics: component design and design
optimization [60]. AM offers free shapes and bespoke geometries for component design, en-
abling the production of intricate internal elements to boost functionality and improve the
performance of target parts, providing designers with creative flexibility. AM component
designers must define production route methods, part placements, build orientations, and
support structures to improve the quality of final printed items for design optimization. Ma-
chine learning technologies have been increasingly utilized by DfAM in recent years [136]
because of advancements in artificial intelligence, IoT, and data availability [101].

Very little machine learning research on the issue of DfAM for construction has been
undertaken. Qin et al. [103] reviewed 222 latest research publications regarding machine
learning for AM in several industries. However, only one paper was published based on
using machine learning for DfAM with concrete material conducted by Lao et al. [164]. The
researchers used an ANN model to establish a correlation between the nozzle and extrudate
geometries. Upon completion of model development, a nozzle-extrudate database was
created so that the ideal nozzle shape for a given extrude shape could be analyzed. Table 4
illustrates a summary of the process flow. During the pre-testing phase, the training data
for the ANN model are compiled. After topology optimization, the predictive ANN model
is then trained. By linking randomly produced nozzle geometries to their anticipated extru-
date cross-sectional shapes, a database is created using the ANN model. Finally, nozzles
for various target extrudate cross-sectional shapes may be retrieved from the database and
employed in the printing process. The findings demonstrate that the suggested method
enhances the surface quality of different structures with distinct contours.

Table 4. Summary of the workflow to identify nozzle shape using ANN model.

Workflow Discussion

Pre-testing Set up nozzle experiments and perform experiments.

ANN model Optimize topology, train, and validate.

Establish database Generate sufficient volume randomly and predict extrudate shape.

Target extrudate cross-sectional shapes Analyze target shape, find nozzle shape, and perform printing.

A further recent publication on machine learning of DfAM in the object construction
field conducted by Ko et al. [62] was present, even though it is not for the building. They
employed a machine learning algorithm of Classification and Regression Tree on measure-
ment data from the National Institute of Standards and Technology for the construction of
a Laser Powder Bed design rule. Several construction members could be obtained using a
machine learning algorithm including overhang, hole, beam, wall, cylinder, sphere, thin
wall, and support structure. The material property could also be parameterized such as
material distribution, material type, and thermal property. Many research programs can be
extensively carried out on the machine learning of DfAM for the AEC industry such that
the DfAM can be easily and effectively implemented.

7. Implications

The implementation of the DfMA of Dfab and DfAM technology can have positive
effects on construction technology in three areas: economic, social, and environmental
aspects. As previously noted, Dfab and AM technologies reduce labor expenses, which is
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advantageous for the economy given that labor scarcity is one of the most significant global
concerns. The labor scarcity causes increased labor expenses, which can be mitigated by
automation technology during the preconstruction phase (i.e., design and manufacturing).
Next, for the social aspect, it is found that construction can be risky for fatality compared
to other businesses [158]. Hence, automation technology can also provide a more viable
solution. Lastly, for environmental impacts, the positive implications can be delivered by
both adopting low-carbon material selection and effective technology processes [165–170].
Adopting by-product waste into the AM material can be the key to lower carbon emissions
to the industry as well as adopting such an effective process can decrease the wastes and
formworks during fabrication. Last, the use of machine learning in DfMA can deliver
a frontier innovation to design, train, and optimize with computerization. The frontier
improves design prediction in many areas for designers including structure optimization,
construction technology, 3D space, built environment and comfort, lighting, and energy
efficiency of buildings.

DfMA of Dfab and DfAM is not only designed to cut production costs, but it may
also construct buildings in remote and harsh temperature areas where it is challenging to
transport construction materials, such as the North Pole and the desert. The objective is
to construct utilizing resources that are native to the area. Typically, these are futuristic
concepts for populating extraterrestrial worlds, such as constructing buildings from the
lunar or Mars surfaces. Moreover, these structures must be self-sufficient and sustainable.
For instance, the design study called the Mars habitat (MARSHA) of the multi-planetary
architecture and technology design organization was awarded by NASA and this project
was created by AI SpaceFactory [171]. The MARSHA habitat provides a view into the future
of human existence on Mars, with a 15-foot-tall prototype 3D-printed building and three
robotically placed windows. The MARSHA project was recognized for its innovative use
of materials, which consisted of a biodegradable and recyclable basalt composite produced
from Mars’ native components. This composite material was stronger and more durable
than its normal concrete-based materials.

Although without a doubt, Dfab and DfAM appear to be promising solutions for
automated construction methods, developments in any domain are still ongoing. As of
yet, none can validate the best practices for implementing them in actual construction
projects. As seen today, a number of in-house prototypes have been publicized worldwide.
A thorough understanding is not defined, leaving the question of whether the technologies
can shift our current construction paradigms or merely fit with some sectors such as
decorations and constructions in uncommon conditions.

8. Conclusions, Implications, and Suggested Future Works

A state-of-art review of the DfMA for Dfab and DfAM was performed to discuss
the adoption in the AEC industry on various aspects, entailing the DfMA concept, DfMA
implementation in construction, DfMA for Dfab and DfAM, joints design for AM assembly,
and machine learning for DfAM. The key annotations from publications from the 1980s to
recent developments were discussed as follows:

(1) AM using concrete materials also applies to the DfM and DfA principles suitably.
(2) Increasingly advanced technical developments in construction, such as AM and

DfMA in particular, new entrances for manufacturing technology, and improvements
in production efficiency.

(3) The majority of research (70%) has been investigated within this five-year period.
(4) DfAM allows for a greater degree of design complexity as well as a larger range of

freedoms in terms of customization. It consists of four stages: process, form/surface,
assembly, and functional usage.

(5) Existing knowledge is still applied to the product structure/performance, manage-
ment, and BIM integration domains.

(6) Anchor bolt and stud fabrication is a viable option for achieving joint design in an
AM wall structure. Additionally, the DfMA of AM wall structure can be designed in
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a like manner to the precast wall system. More practices are required for validating
these techniques.

(7) Although many machine learning methods for DfAM have been studied in a variety of
applications, only one or two research programs have been conducted in the building
industry.

DfMA has lately been adopted in modern construction technologies such as prefabrica-
tion and offsite construction, and several future studies may be conducted in various facets
including formal documentation, general case practices, and design process management.
Regarding this review, it was apparently revealed that the DfMA for Dfab and DfAM is
deficient since the new reference cases are still confined. It is possible to obtain the current
DfMA for integration within design and construction, repair, renovation, and rehabilitation,
leaving a large gap for researchers to fill so that the DfMA can provide significant advan-
tages to the AEC sector. This is a crucial step towards realizing AM’s full potential. Current
trends of DfMA in Dfab and DfAM now also emphasize hybrid AM; several approaches,
such as the mixing of different materials during a deposition under varying temperature
conditions and applying reinforcement during printing can be employed to circumvent a
number of restrictions. The hybrid process may be characterized as a method that combines
many production operations from various manufacturing technologies. The merging of
Dfab and AM technologies, for instance, can offer a novel method resulting in time and
cost benefits.
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