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Abstract: This study presents a two-step FE model updating approach for health monitoring and
damage identification of prestressed concrete girder bridges. To reduce the effects of modeling error in
the model updating process, in the first step, modal-based model updating is used to estimate linear
model parameters mainly related to the stiffness of boundary conditions and material properties.
In the second step, a time-domain model updating is carried out using acceleration data to refine
parameters accounting for the nonlinear response behavior of the bridge. In this step, boundary
conditions are fixed at their final estimates using modal-based model updating. To prevent the
convergence of updating algorithm to local solutions, the initial estimates for nonlinear material
properties are selected based on the first-step model updating results. To validate the applicability
of the two-step FE model updating approach, a series of forced-vibration experiments are designed
and carried out on a pair of full-scale decommissioned and deteriorated prestressed bridge I-girders.
In the first step, parameters related to boundary conditions, including stiffness of supports and
coupling beams, as well as material properties, including initial stiffness of concrete material, are
estimated. In the second step, concrete compressive strength and damping properties are updated.
The final estimates of the concrete compressive strength are used to infer the extent of damage in the
girders. The obtained results agree with the literature regarding the extent of reduction in concrete
compressive strength in deteriorated concrete structures.

Keywords: modal-based model updating; Bayesian model updating; system identification; damage
identification; operational health monitoring; I-girder; bridge; aging

1. Introduction

Bridges are vital components of the transportation infrastructure. The average age
of in-service bridges in the United States is increasing, which necessitates methods and
tools to inform decision making related to the maintenance and/or replacement of these
structures [1,2]. Finite Element (FE) model updating methods have emerged as a venerable
procedure for operational health monitoring and post-event structural damage identifica-
tion [3–17]. In these methods, the initial/baseline FE model—developed using available
as-built drawings—is updated using measured dynamic responses. During this process,
uncertain model parameters—including material properties, damping parameters, bound-
ary conditions, etc.—are calibrated/estimated. The deviation of final estimates of model
parameters from their initial/baseline values reveals information regarding the location
and extent of damage in the structure.

FE model updating approaches are mainly divided into two groups. The first group is
modal-based model updating, wherein the initial FE model is updated to match the identified
modal properties of the structure. In this method, the modal properties are first identified
using modal identification methods (e.g., [18–22]). Then, the parameters characterizing the
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linear response behavior of the FE model are estimated to reduce the discrepancies between
the identified and FE-predicted modal properties [3]. The accuracy of the identified modal
signatures is controlled by the level of nonlinearity in the response behavior of structure,
measurement noise, excitation frequency range, and sensor sparsity. The uncertainty in the
identified modal properties propagates into the model updating process and is reflected in
the final estimates of model parameters [23]. In addition, modal properties cannot be used
to infer parameters characterizing the nonlinear material behavior. Consequently, the up-
dated FE model may not be able to predict the dynamic response behavior of the structure
correctly, especially when the structure is subjected to material nonlinearity. Although the
estimated linear model parameters can be used for structural monitoring and damage iden-
tification [24], the application of modal-based model updating for damage identification
of reinforced concrete bridges has been shown to be limited [25,26]. The second group of
model updating approaches is referred to as time-domain model updating [17,27,28]. In this
approach, the unknown model parameters characterizing linear and/or nonlinear response
behavior of structure are updated to reduce the discrepancies between the measured and
FE-predicted responses in time domain. In contrast to the modal-based model updating
method, the measured dynamic responses of the structure are used directly for model
updating in this approach. The direct application of dynamic responses in time-domain
model updating eliminates the propagation of modal identification uncertainties into the
model updating process.

Several studies in the literature (e.g., [10,23,29–35]) have focused on the system and
damage identification of bridges subjected to ambient or traffic excitation (i.e., operational
conditions) using modal-based model updating. The performance of these methods is
mostly evaluated by comparing the identified and posterior FE-predicted modal signa-
tures of the bridge. Studies in [36,37] showed that the accuracy of the updated model is
highly sensitive to the selection of unknown model parameters. Moreover, [38] indicates
that damage detection of bridges would depend on the proper simulation of boundary
conditions. A two-step FE model updating process is suggested in this study to resolve
modeling errors due to boundary conditions.

Using measurements other than modal properties for model updating and damage
identification of bridges has attracted research interest recently. While static/pseudo-static
responses (e.g., displacement measurements) have been used in previous studies for model
updating [5,11,17,39–42], acceleration measurements have not been used directly for the
purpose of model updating of bridges under operational conditions. It is worth noting
that static/pseudo-static responses contain limited information regarding the dynamic
behavior of the bridge compared to acceleration measurements. Therefore, acceleration
measurements can be more informative about the uncertain model parameters compared to
static/pseudo-static responses. The target in this study is to use both the modal properties
and acceleration responses for model updating and damage diagnosis through a two-step
FE model updating process.

Moreover, previous studies have shown that weak identifiability and mutual depen-
dency between model parameters, modeling errors, as well as convergence of parameters
to local solution may challenge the model updating process [4,43,44]. These challenges
are exacerbated in a real-world application, especially in cases with large number of un-
certain model parameters and/or improper selection of initial values for the uncertain
model parameters.

To resolve the above-mentioned issues, this study presents a sequential combination
of modal-based and time-domain model updating for operational health monitoring and
damage identification of aged bridges using acceleration responses. In this procedure, first,
a deterministic modal-based model updating is carried out to estimate the linear model
parameters of a bridge. These model parameters are related to boundary conditions and
material properties. Then, in order to refine the parameter estimation and account for the
nonlinear response behavior of the bridge, a time-domain model updating is carried out. In
this step, nonlinear material properties, as well as the damping energy-dissipation-related
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model parameters, are estimated while the linear-elastic model parameters are fixed at
their final estimates obtained from the modal-based model updating. The final estimates of
material properties are used to infer/quantify damage in the bridge.

In summary, the reasoning behind introducing the sequential combination of modal-
based and time-domain model updating, which constitute the novelties of this work, can
be summarized as follows.

• Unknown boundary conditions often challenge the application of time-domain model
updating for bridges since the model parameters are often dependent on the boundary
conditions. Here, the modal-based model updating is used to identify the boundary
conditions first.

• The application of modal-based model updating for damage identification of bridges
is limited. This is likely due to the uncertainties in the identified modal signatures that
propagate through the parameter estimation process. Therefore, here, the estimation
of model parameters for damage identification will be refined through a subsequent
time-domain model updating.

• The dynamic measurements can provide more information about the uncertain ma-
terial parameters compared to the static/pseudo-static responses. Hence, here, the
acceleration measurements are used directly in the time-domain model updating.

• To improve the numerical stability and convergence of the model parameters the linear
and nonlinear response behavior of the bridge are assimilated through the two-step
model updating process.

To show the two-step FE model updating method and validate its applicability for
damage identification in a real-world setting, a pair of full-scale precast prestressed bridge
I-girders were used as testbed structures. These girders were in service from 1971 until 2009
before they were decommissioned and repurposed for research experiments [45]. A series
of forced-vibration experiments were designed specifically for this study. The girders were
subjected to sinusoidal force excitations, and their acceleration responses were measured
at different locations. First, the collected acceleration responses are used to identify the
modal signatures of the testbed structure. Then, the two-step FE model updating is carried
out. In the first step, the initial FE model of girders is updated in the modal domain,
and boundary conditions, including stiffness of supports and coupling beams, as well
as material properties, including initial stiffness of concrete material, are estimated. The
updated model is used as the prior model in the Bayesian model updating process to
estimate concrete compressive strength and damping properties. Comparison between
the posterior FE-predicted responses and field measurements shows a good agreement
in the time domain. Moreover, the final estimates of concrete compressive strength result
in a realistic damage identification/quantification for the girders. This process validates
the applicability of the introduced two-step FE model updating approach for damage
identification of bridge structures/components under operational conditions. While the
input load used in this study varies from moving traffic load, this study proves the concept
for future real-world application.

The paper is organized as follows. Section 2 is focused on test methodology and
preliminary results including an introduction to the testbed structure and the experiments,
modal identification, and development of the initial FE model. The two-step FE model
updating method and the results are discussed in Section 3. Concluding remarks are
provided in Section 4.

2. Material, Test Methodology, and Preliminary Results

In this section, first, a description of the field experiment including testbed structure,
dynamic excitation system, wireless sensing network, and force-vibration tests is presented.
Then, the modal identification process and corresponding results are shown in Section 2.2.
Finally, the initial FE model is developed in Section 2.3.
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2.1. Description of the Field Experiment
2.1.1. Testbed Structure

The testbed structure in this study includes two AASHTO precast prestressed bridge
I-girders that were part of the Maryland 90 bridge. After decommissioning, the girders were
salvaged and transferred to the Turner-Fairbank Highway Research Center (TFHRC) in
McLean, VA, USA to be used as a research testbed [45,46]. The cross-section and elevation
views of the girders are shown in Figure 1.
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Figure 1. The testbed structure: (a) cross-section view of each girder and (b) elevation view of each
girder. All the dimensions are in centimeters, and all reinforcing rebars are #4 (equivalent to Φ13).

The studied girders are 1.37 m deep and 26 m long. Reinforcements and prestressing
steel strands are shown in Figure 1. A side view of the testbed structure (with a 20 cm
slab on top of each girder) is shown in Figure 2a. After being transferred to the TFHRC,
each girder was placed on two 1 × 1 m2 bearing pads on top of two 2.3 × 1.6 × 1.6 m3

geosynthetic reinforced soil (GRS) piers [47]. These can be seen in Figure 2b,c. The girders
were placed parallel to each other with 2.9 m centerline spacing and were connected with
four coupling beams with 0.3 × 1.4 m2 cross-sectional area. Three out of four coupling
beams are seeable in Figure 2d.

The studied girders were in service in a corrosive environment for almost 40 years.
The environment simultaneously exposed the concrete matrix of the girders to physical and
chemical deterioration processes. Concrete delamination and degradation, as well as steel
corrosion, are the main damage mechanisms for concrete bridges in such environment [48].
Due to this, the girders experienced aging and deterioration in several locations, including
cracking, steel reinforcement corrosion, spalling, etc. Figure 2e shows an example of the
observed damage in girders.

Aside from the aging-related damage discussed above, in 2012, salt spray chambers
were installed on each girder to accelerate deterioration in the girders. The chamber
installed on the west girder sprayed a 15 weight percent (wt.%) NaCl solution and the
chamber installed on the east girder sprayed a 3.5 wt.% NaCl solution. This was part of
a study to develop protocols for non-destructive testing (NDT) methods for prestressed
girder bridges [45].
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Figure 2. Testbed structure: (a) side view and north direction, (b) bearing pad, (c) piers and coupling
beam, (d) top view, and (e) example of existing damage (west girder close to the north pier).

2.1.2. Dynamic Excitation System

The shaker used in this study was a small uniaxial hydraulic device capable of pro-
ducing arbitrary displacement motions in the vertical direction. The device consisted of a
hydraulic piston connected to a servo-hydraulic valve that controlled the motion of a stack
of steel plates that combined to form 4450 N of moving weight. The motion was controlled
by an MTS PID hydraulic controller using an LVDT sensor to provide feedback displace-
ment. The shaker’s hydraulic piston, moving weights, and steel frame of the shaker were
supported on four 4450 N load cells, which were used to measure the total force generated
by the shaker. The load cells were installed between the shaker plate and the clamping
plate on the girder. The shaker plate with dimensions of 30 cm × 30 cm × 2 cm was located
on the top center of the clamping plate with dimensions of 140 cm × 70 cm × 5 cm (see
Figure 3). The shaker displacement and force time histories were collected through a LORD-
Microstrain V-Link-200 wireless node [49]. The wireless sensing network is discussed
further in the following section. Figure 3 shows a close view of the shaker, and Figure 4
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shows the two locations (layout 1 and layout 2) at which the shaker was installed on the
testbed structure. The hydraulic power for the shaker was provided by a diesel-powered
mobile pump.
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2.1.3. Wireless Sensing Network

The wireless sensing network included ten battery-powered triaxial MEMS wire-
less accelerometers (LORD-Microstrain G-Link-200) and a V-Link-200 node [49]. Each
accelerometer had an adjustable measurement range of ±8 g and could be configured
for continuous, periodic, or event-triggered sampling modes to output acceleration, tilt,
or derived vibration parameters (velocity, amplitude, etc.). The measured data could be
transmitted in real-time and/or be saved to the onboard memory with storage capacity up
to 8× 106 data points. The accelerometers had a noise density of 25 µg√

Hz
with a wireless

range of up to 1 km and an adjustable sampling rate of up to 4 kHz. Each accelerometer
had dimensions of 47 mm × 43 mm × 44 mm. To install the accelerometers, zinc-plated
steel washers were glued on top surface of the girders. Then, each accelerometer was
screwed to a magnetic base and attached to the washers. Figure 5 shows an installed
wireless accelerometer. Data collection and coordination between the wireless nodes in-
cluding the accelerometers and the V-Link-200 node, which was used to collect shaker
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data, were carried out through the wireless USB data acquisition gateway. The gateway
used the lossless extended range synchronized (LXRS) data communication protocol and
facilitated lossless data collection with node synchronization of ±50 µs. Synchronization
was carried out by transmission of a continuous system-wide timing reference known as
the beacon. The communication between the gateway and sensors was wireless through a
license-free 2.405 GHz to 2.480 GHz radio frequency with 16 channels. The configuration
of the network, data acquisition initialization, and sampling mode selection were managed
through the SensorConnect software [50], which was installed on a host computer. The
layout of the employed accelerometers is shown in Figure 4. In this study, the sampling
rate was 128 Hz, and the acceleration data were collected in directions 1 (i.e., east-west) and
3 (i.e., up-down).
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2.1.4. Forced-Vibration Testing

The testbed structure was subjected to a series of designed sinusoidal force excitations
through frequency sweeps with pre-defined frequency range, duration, and amplitude.
Sweeps ranged between 2 Hz and 20 Hz, including 50 different frequencies increasing
logarithmically with a duration of 30 s for each frequency. Moreover, the sweeps excited
the girders with three different target load amplitudes equal to 445 N, 2225 N, and 4450 N.
Considering two layouts (see Figure 4) and three levels of load amplitudes, girders were
tested under six frequency sweeps. A general view of the testbed structure during the
field experiments is shown in Figure 6. The excitation force time history and instantaneous
excitation frequency—calculated using a short-time Fourier transform [51]—for each sweep
are presented in Figure 7.
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Figure 7. Excitation force time histories and instantaneous excitation frequencies: (a) Layout 1 with
445 N target load amplitude, (b) Layout 2 with 445 N target load amplitude, (c) Layout 1 with 2225 N
target load amplitude, (d) Layout 2 with 2225 N target load amplitude, (e) Layout 1 with 4450 N
target load amplitude, and (f) Layout 2 with 4450 N target load amplitude.

2.2. Modal Identification

In this section, the modal properties of the testbed structure are identified from the
forced-vibration experimental data. For the purpose of modal identification, the collected
data from the sweep with layout 1 and 445 N target load amplitude are used (see Figure 7a).
These data include the acceleration of 10 channels in directions 1 and 3 (results in 20 input
signals—see Figure 4) and the shaker excitation force. A brief summary of the modal
identification process and the identified modal properties are presented in this section.

Various modal identification techniques are available in the literature to identify
modal properties—including natural frequencies, damping ratios, and mode shapes—from
experimental data [19,21,22]. In this study, due to the nature of the excitation, the empirical
frequency response functions (EFRFs) [22] are calculated using applied input (shaker
excitation force) and measured outputs (acceleration responses). Then, the calculated multi-
output EFRFs are used to estimate a state-space model. This two-stage frequency-domain
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approach helps to specify the frequency band of interest in which the modal identification
needs to be carried out.

The EFRF between a measurement signal y(t) and input signal u(t)—depicted by
G( f )—is defined as below:

G( f ) =
Y( f )
U( f )

(1)

where Y( f ) and U( f ) are Fourier transforms of y(t) and u(t), respectively. In a real-
world setting, data are always polluted with measurement noise. To reduce the effects of
the measurement noise and obtain a smooth EFRF, Welch’s averaging method [52] with
12,800 data points Hamming window is used for spectral estimation. This size of window
is selected to ensure covering the full length of excitation and the ambient signal before
and/or after it.

Having EFRFs for all 20 signals, an n-order state-space model is estimated to fit the
estimated EFRFs in the frequency band of interest. In this study, to reduce uncertainties
due to low- and high-frequency noises, the frequency band of interest is selected between 2
to 25 Hz. Blue curves in Figure 8 show the calculated EFRFs using measured data.

To estimate the state-space model, the subspace state-space identification method is
used [53,54]. While this method is briefly explained here, the proof of theory and more
details can be found in [53]. In the subspace state-space identification method, measure-
ments are placed in a block Hankel matrix which is divided into a past and a future part.
The identification algorithm proceeds with projecting the future measurements into the
past measurements, while the projection matrix can be factorized as the product of an
observability matrix and a state sequence. These two matrices are identified by apply-
ing the singular value decomposition (SVD) to the projection matrix, and the order of
the system is calculated as the number of non-zero singular values. By applying one
block shift in separation between past and future measurements in the Hankel matrix,
another projection matrix, shifted observability, and state sequence matrices can be ob-
tained. At this point, the system matrices can be calculated from the overdetermined set of
linear equations.

The numerical algorithms for system identifications are available in the Matlab
n4sid [55] function and are used in this study. As a classical remedy, the modal iden-
tification is carried out for a range of model orders, and a stability diagram is plotted on
which true modes appear as stable modes [56]. For this purpose, the stability analysis is
run considering model orders from 2 to 40 with 1% and 5% error tolerances for natural
frequency and damping ratios, respectively. The stability analysis showed that a model
order of n = 26 is the lowest model order to have all stable modes within the frequency band
of interest. The fits between estimated and calculated EFRFs can be improved using the
prediction error minimization algorithm and nonlinear least-squares objective functions.
This approach is carried out using the Matlab ssest function [57], which initializes the model
parameters based on the previously estimated state-space model, and then updates the
parameters using an iterative search to minimize the prediction errors [21]. Red curves
in Figure 8 display EFRFs of the estimated state-space model at measurement points. As
can be seen, the estimated state-space model is able to approximate the calculated EFRFs
acceptably. Identified natural frequencies ( f ID) and damping ratios (ξ ID) of the system are
reported in Table 1. The identified mode shapes—those which will be used for modal-based
model updating—are later shown in Section 3.1.
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Table 1. Identified natural frequencies and damping ratios.

Mode Number
1 (Tr *) 2 (Tr) 3 (V **) 4 (Tr) 5 (V) 6 (To ***)

f ID(Hz) 4.07 5.57 9.73 9.76 12.79 20.98
ξ ID(%) 1.92 1.78 2.97 0.60 1.39 2.18

*: Transverse mode, **: Vertical mode, ***: Torsional mode.
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2.3. Finite Element Modeling of the Testbed Structure

The initial FE model of the testbed structure is developed in OpenSees [58] using the
available as-built drawings. The girders are modeled using fiber-section force-based beam-
column elements (forceBeamColumn) with approximately 30 cm length and 3 integration
points. Moreover, the linear-elastic shear stiffness and torsional stiffness are aggregated to
the fiber sections. The slab is also modeled using rectangular fiber sections as a part of the
girders’ sections. Steel reinforcement is modeled using single fibers located at the center of
each bar. To model the profile of the draped strands—with a nominal cross-sectional area of
1 cm2—the strands’ depth at the integration points of each element is calculated based on
Figure 1. The strand is modeled using a single fiber at its corresponding depth. Concrete
material for girders and slabs is modeled with nominal compressive strength ( f

′
c,E and f

′
c,W

for the east and west girders) of 46 MPa, strain at maximum strength (εc) of 0.2%, strain at
crushing strength (εu) of 0.5%, and zero crushing strength. As girders are already damaged,
no tensile strength is assumed, and therefore, the Concrete01 material model is employed.
To model the shear and torsional stiffness of the girder sections, the shear modulus (G)
is calculated based on the concrete modulus of elasticity, E (= EE = EW), and Poisson’s
ratio of 0.2. Moreover, the shear area for girder sections is set equal to 0.38 and 0.65 m2

in the Y and X directions (see Figure 1), and torsional constant of girder sections is set
equal to 0.03 m4. The parameters EE and Ew—modulus of elasticity for the east and west

girders—are set equal to the initial slope in Concrete01 model (i.e.,
2 f
′
c,E

εc
and

2 f
′
c,W
εc

) which is
46 GPa here. Steel is modeled using bilinear steel01 material with a modulus of elasticity of
200 GPa, and yielding strength of 455 MPa and 1720 MPa for reinforcing steels and strands,
respectively. Moreover, the prestressing force in strands (128.60 kN per strand) is modeled
by applying its resulting initial strain to the steel material. For this purpose, the normal
strain in strands’ steel resulting from the prestressing force is calculated by dividing the
prestressing force by strand’s axial rigidity (product of the strand’s modulus of elasticity
and gross section area). The calculated strain (0.65%) is assigned to the strands’ steel01
material using InitStrainMaterial. The mass, 104× 103 kg in total, and weight of the girders
are assigned to the element nodes.

Coupling beams are modeled using elasticBeamColumn elements considering the gross
cross-sectional area and an Elastic material with the modulus of elasticity equal to 30 GPa.
The coupling beams are connected to the girders assuming rigid connections. The mass
and weight of the coupling beams are assigned to the element nodes. To model each
support, the girder nodes that are located along the bearing pad are constrained to a node
at the center of the bearing pad using rigidLink constraint. To account for flexibility in the
piers and bearing pads, supports are defined using a 6 degrees of freedom (DOFs) spring.
This is modeled using ZeroLength elements with Elastic uniaxial material. Moreover, the
energy dissipation in the piers and bearing pads is collectively modeled using a dashpot in
the vertical direction. This is performed using ZeroLength elements with Viscous uniaxial
material. The corresponding stiffness and damping parameters are initially selected based
on engineering judgment [47,59] and are later updated using modal-based and time-
domain model updating. In summary, the FE model consists of 214 beam-column elements,
16 rigidLink elements, 12 ZeroLength elements, and 230 joints. The list of model parameters
that are later treated as unknown parameters in Section 3.1 and 3.2 and their initial values
are summarized in Table 2. In this table, the equivalent values for concrete compressive
strength and modulus of elasticities of girders are shown in the same row separated with
‘/’. The directions in this table are based on Figure 4.



Buildings 2023, 13, 420 12 of 27

Table 2. Model parameters for the initial FE model. The directions in this table are based on Figure 4.

Parameter Parameter Description Initial Values
f
′

c,W /EW Concrete compressive strength/Concrete modulus of elasticity for the west girder 46 MPa/46 GPa
f
′
c,E/EE Concrete compressive strength/Concrete modulus of elasticity for the east girder 46 MPa/46 GPa

Ec Modulus of elasticity for coupling beams 30 GPa
KR Rotational stiffness of bearing pads about directions 1 and 2 and 3 9.4× 105kN⁄rad

KV Vertical stiffness of bearing pads in direction 3 1.2× 105kN⁄m
KT Transverse stiffness of bearing pads in direction 1 1.6× 104kN⁄m
KL Longitudinal stiffness of bearing pads in direction 2 1.6× 104kN⁄m
CD Damping coefficient for bearing pads in direction 3 45× 102kN.sec⁄m
ξ1 Damping ratio for mode 1 0.02
ξ2 Damping ratio for mode 2 0.02

The nonlinear time history analysis is performed using the Newmark average ac-
celeration method with a constant time step size of 0.0078 s equal to the measurement
sampling rate. The Newton-Raphson method is used to iteratively solve the nonlinear
equilibrium equations [60]. To define energy dissipation in the structural system aside from
the material nonlinearity, modal damping is modeled for the first six modes. The damping
ratios, i.e., ξi, ∀ i ∈ {1, 2, 3, 4, 5, 6}, are set equal to the identified ones (see Table 1). The
only exceptions are damping ratios for modes 1 and 2, which are set equal to 0.02. The
reason is to have similar initial values—which is not very different from the identified
values (0.0192 and 0.0178)—during time-domain model updating, which is discussed later.

3. Two-Step Model Updating: Methodology, Results, and Discussion
3.1. First Step: Modal-Based Model Updating

The modal properties of the initial FE model are different from the identified ones
(Figure 9). Hence, the initial FE model needs to be updated using modal-based model
updating to better fit the identified modal properties. As mentioned before, the modal-
based model updating is limited to the linear response behavior of structures. Hence, only
the linear model parameters are updated at this step. Modal-based model updating process
is discussed next.

The modal-based model updating is a process to minimize the discrepancies between
identified and FE-predicted modal frequencies and mode shapes by updating the linear
parameters of the FE model [24,61]. In this process, an objective function, g(θ), is defined
as shown in Equation (2). The discrepancies between modal frequencies, mode shapes, and
a regularization term are respectively the first, second, and third terms in Equation (2).

g(θ) = W f r f
T r f + WM

(
N −

i=N

∑
i=1

MACi

)
+ (θ− θ0)

T Wθ (θ− θ0) (2)

In Equation (2), the parameter W f is the weighing scalar for frequency residuals
and the term r f ∈ RN×1 is the vector including the square root of normalized differences
between FE-predicted and identified modal frequencies. The parameter WM is the weighing
scalar for modal assurance criteria (MAC) residuals. The term N is the total number of
identified modes that are used for model updating, and the term MACi indicates the MAC
value for mode i. The parameter Wθ is the weighing scalar for penalizing large deviation
of the unknown FE model parameters from their initial values. The vector θ ∈ RnθM×1

is the vector of unknown FE model parameters and nθM is the number of unknown
model parameters for modal-based model updating. The vector θ0 ∈ RnθM×1 is the initial



Buildings 2023, 13, 420 13 of 27

estimates of the unknown model parameters. The ith entry of the vector r f , denoted as r f ,i,
is defined as follows:

r f ,i =

√√√√∣∣∣∣∣ f ID
i − f FE

i
f ID
i

∣∣∣∣∣ 1, 2, . . . , N (3)
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In the above equation, the terms f ID
i and f FE

i are the modal frequencies of the ith

identified and FE-predicted modes. The term MACi is defined as follows:

MACi =

∣∣∣∣(ψID
i

)T
ψFE

i

∣∣∣∣2((
ψID

i

)T
ψID

i

) ((
ψFE

i

)T
ψFE

i

) (4)

The terms ψID
i and ψFE

i ∈ RNDOF×1 are the ith identified and FE-predicted mode
shape vectors, respectively, and NDOF is the number of DOFs. The superscript T denotes
matrix/vector transpose operator.

To update the FE model using modal-based model updating, the stiffness-related
model parameters E (= EE = EW), Ec, KR, KV and KT are selected as unknown FE model
parameters to be updated (nθM = 5). Note that parameter KL is not selected as there is no
measurement in the longitudinal direction of the girders. The vector θ0 is initiated using
the initial values listed in Table 2.

The first two lateral and the first two vertical identified modes (N = 4) are used for
the modal-based model updating. This is because the first two identified vertical modes are
the only ones with frequencies less than 20 Hz (maximum excitation frequency). As can be
seen in Figure 4, measurements are collected in 5 vertical (i.e., in direction 3) and 5 lateral
(i.e., in direction 1) DOFs for each girder; therefore, NDOF = 20. The terms W f , WM and
Wθ are selected equal to 4, 1, and 0.01 to balance the contributions of the MAC value and
frequency errors in the objective function. As a result, the difference between identified and



Buildings 2023, 13, 420 14 of 27

estimated modal frequencies will be penalized more than mode shapes [61]. This is because
the uncertainty in identified mode shapes is greater than frequencies. The constrained
nonlinear multivariate optimization function fmincon within the Matlab Optimization
Toolbox is used [62] with the interior-point algorithm [63]. The maximum iteration number
is set to 30, and the process terminates when the relative difference between successive
values of the objective function is lower than a given threshold of 10−4. Moreover, the
lower and upper bounds for parameter estimation are set equal to 10±4 times of the
initial values.

A comparison between the identified, initial, and updated modal properties is shown
in Figure 9, and the updated values for the FE model parameters are shown in Table 3. It is
noteworthy that as parameters EE = EW are updated, the parameters f

′
c,E = f

′
c,W are also

updated (using EE =
2 f
′
c,E

εc
and EW =

2 f
′
c,W
εc

assuming fixed value for εc). These equivalent
values for each girder are shown in a same column in Table 3 and are separated using ‘/’.
A comparison between Tables 2 and 3 shows that the parameters EE and EW are estimated
to a smaller value than their initial ones. This was expected as both girders are aged and
have experienced severe damage. The parameter Ec is estimated to a smaller value than its
initial one. This is probably due to the presence of cracks in the section and could also be an
indication of the fact that the connections between the girders and coupling beams are not
completely rigid. The parameters KR, KV , and KT are estimated to have values greater than
their initial ones, which indicates that the bearing pads are stiffer than what is considered
in the initial model. The improvement in the modal frequencies is superior to the MAC
values. This means that the modal-based model updating process compensates for the
frequency match with MAC values. The maximum error in frequency is at the second
lateral mode, which is less than 8% and is acceptable. The updated model is later used as
the prior FE model for the time-domain model updating.

Table 3. The updated FE model parameters after modal-based model updating.

Parameter f’
c,W/EW f’

c,E/EE Ec KR KV KT

Updated
value

39 MPa/39
GPa

39 MPa/39
GPa 28.23 GPa 1.4×

106kN⁄rad

1.8×
105kN⁄m

2.2×
104kN⁄m

3.2. Second Step: Time-Domain Model Updating

To this point, the initial FE model of the studied girders is updated using modal-based
model updating. It is noteworthy that concrete material has nonlinear response behavior
even under small levels of excitation. In addition to that, presence of prestressing force
pushes the concrete material across the section along its nonlinear response curve. Then, the
applied excitation—shaker force here and traffic load in operational conditions—results in
small loading/unloading of concrete material in nonlinear range of the response curve. The
level of nonlinearity in the response behavior of concrete material increases as a function of
deterioration and damage [64]. However, the nonlinear response behavior of the studied
girders is not captured through modal-based model updating.

To account for the nonlinear response behavior of girders as well as refining the esti-
mation of damage-related model parameters, time-domain model updating—here referred
to as the second step of the model updating procedure—is carried out. The cumulative
damage effects in a reinforced concrete section can be modeled by altering the stress-strain
response behavior of the concrete material, e.g., reduction of the effective compressive
strength [65–67]. Based on this, it is intended to estimate the concrete compressive strengths
of girders using time-domain model updating. Moreover, the acceleration measurements
contain information regarding the dynamic behavior of the testbed structure. Hence, the
energy-dissipation-related model parameters can also be estimated using time-domain
model updating. For this purpose, first, the most identifiable FE model parameters are
selected using an information-theoretic identifiability analysis [68]. Then, these parameters
are updated using the Bayesian model updating process.
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3.2.1. Identifiability Analysis for Time-Domain Model Updating

The identifiability analysis is an approach to determine the most identifiable unknown
model parameters using the sensitivity of FE-predicted responses with respect to the
unknown model parameters. In this method, the relative information that each candidate
model parameter gains from the responses and the mutual information gain between these
parameters are calculated. The model parameters with high relative information gain and
little dependency on other parameters are likely more identifiable than others and are
selected to be updated in the model updating process.

The data used for identifiability analysis are noted as Data 1-2 in Table 4, which
corresponds to layout 1 and the target load amplitude of 2225 N. It is noteworthy that
no significant difference is expected in the identifiability analysis results using different
layouts and target load amplitudes. However, the target load amplitude for identifiability
analysis is selected high enough to have a moderate level of loading/unloading response
behavior in the concrete material of the testbed structure. The data in Table 4 are later used
for model updating.

Table 4. Field experimental data used for the Bayesian FE mode updating. The measured data with
excitation frequencies close to mode 1 and mode 2 are lumped together.

Data
I.D. Layout Target Load

Amplitude
Excitation

Frequencies Data I.D. Layout Target Load
Amplitude

Excitation
Frequencies

1-1 1 445 N 9.73 Hz and 12.86 Hz 2-1 2 445 N 9.73 Hz and 12.86 Hz
1-2 1 2225 N 9.73 Hz and 12.86 Hz 2-2 2 2225 N 9.73 Hz and 12.86 Hz
1-3 1 4450 N 9.73 Hz and 12.86 Hz 2-3 2 4450 N 9.73 Hz and 12.86 Hz

As can be seen in Table 4, the identifiability analysis and model updating process
are performed using experiments with excitation frequencies of 9.73 Hz and 12.86 Hz.
These excitation frequencies are selected as they are the closest ones to the identified modal
frequencies (9.73 Hz and 12.79 Hz) and are expected to provide useful information on the
dynamic behavior of the testbed structure. Moreover, the measured signal-to-noise ratio
in the experiments with these frequencies is higher than the similar ratio in experiments
with excitation frequencies far from the identified modal frequencies. A higher measured
signal-to-noise ratio results in more stable parameter estimation [69].

Each data set in Table 4 augments two experiments with excitation frequencies of
9.73 Hz and 12.86 Hz (while the layout and target load amplitude are similar). This is
shown in the following equations:

y =

[
y9.73 Hz

y12.86 Hz

]
(5)

u =

[
u9.73 Hz

u12.86 Hz

]
(6)

The terms y ∈ R20×te and u ∈ R2×te denote the acceleration measurements and in-
put excitations that are being used for identifiability analysis and time-domain model
updating. The terms y9.73 Hz ∈ R10×te and y12.86 Hz ∈ R10×te refer to the collected acceler-
ation measurements (at 10 measurement channels in direction 3) from experiments with
input excitation frequencies of 9.73 Hz and 12.86 Hz. The terms u9.73 Hz ∈ R1×te and
u12.86 Hz ∈ R1×te refer to the input excitations with frequencies of 9.73 Hz and 12.86 Hz.
The term te is the total length of collected data.

One of the intentions of identifiability analysis/time-domain model updating is to
analyze the identifiability of/update the unknown model parameters ξ1 and ξ2. For this
purpose, it is required to implement measurements from both excitation frequencies equal
to 9.73 Hz and 12.86 Hz. The augmenting process provides measurements that contain
dynamic response behavior of the testbed from both its vertical modes.
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Parameters f
′
c,W , f

′
c,E, Ec, KR, KV , KL, CD, ξ1, and ξ2 are selected as candidate unknown

model parameters. It is intended to refine the damage state estimation of girders for the
west and east girder separately. Therefore, the concrete compressive strengths of the west
and east girders are modeled using two different parameters f

′
c,W and f

′
c,E, respectively.

While the main intention of the time-domain model updating is to update the model
parameters related to the energy dissipation and nonlinear behavior of the structure, the
parameters Ec, KR, KV , and KL are also considered as candidate unknown parameters. As
will be seen later, this is to highlight how the introduced two-step model updating helps
with unidentifiability and mutual dependencies between the model parameters. Since the
input load mainly excites the first two vertical modes of the girders, the modal damping
ratios of these two modes are included in the list of candidates for unknown parameters.
The value for parameters f

′
c,W , f

′
c,E, Ec, KR, and KV are set equal to their final estimates in

modal-based model updating (see Table 3). As the input load is in the vertical direction, the
parameter KT is most probably not identifiable and is excluded from the list of candidate
model parameters. The value of parameter KL is set equal to the updated value of KT (after
modal-based model updating) as the properties of bearing pads are assumed to be the same
in the transverse and longitudinal directions. The value of parameters CD, ξ1, and ξ2 are
set equal to their initial values (see Table 2), as these parameters were not updated using
modal-based model updating.

The relative information gain of the candidate unknown model parameters and relative
mutual information gain between the candidate unknown model parameter pairs are shown
in Figure 10. As can be seen in this figure, although the parameters Ec, KR, KV , and KL
have considerable levels of relative information gain, they are highly dependent on the
parameters f

′
c,W and f

′
c,E. This dependency is likely because all these parameters contribute

to the stiffness of the testbed structure. Based on this, parameters Ec, KR, KV , and KL are
most probably not identifiable together with parameters f

′
c,W and f

′
c,E. Parameters Ec, KR,

KV , and KL reflects the linear-elastic response behavior of the testbed structure and are
already estimated using modal signatures. Moreover, the parameters f

′
c,W and f

′
c,E have

relatively large information gain, and their estimation is of main interest in time-domain
model updating as their final estimates help to refine the damage estimation in girder level
and reflect the cumulative damage status of each girder. Hence, parameters f

′
c,W and f

′
c,E are

selected to be estimated using time-domain model updating while parameters Ec, KR, KV ,
and KL are fixed at their corresponding values in Table 3 obtained from the modal-based
model updating. This reduces the challenges of model updating due to the unidentifiability
and/or mutual dependencies between model parameters. It is noteworthy that the final
estimates of parameters f

′
c,W and f

′
c,E using time-domain model updating will inherently be

dependent on the fixed values selected for parameters Ec, KR, KV , and KL. Parameters ξ1,
ξ2, and CD have relatively moderate information gain and have a negligible dependency
on other parameters. However, parameter CD is dependent on parameters ξ1 and ξ2 as
all of them contribute to the viscous damping energy dissipation of the structure. As the
initial value for parameter CD is selected based on judgment, it is of interest to update this
parameter using the model updating process. However, the final estimates of parameters
ξ1, ξ2, and CD are expected to vary between different case studies and depend on each
other. Therefore, the overall damping of the testbed will be calculated at the end. Based
on the above discussion, parameters f

′
c,W , f

′
c,E, ξ1, ξ2, and CD are selected to be estimated

using the time-domain model updating.

3.2.2. Bayesian Inference

In the Bayesian model updating, the unknown FE model parameter vector is consid-
ered as a random vector with joint probability density function (PDF) whose mean (referred
to as estimate hereafter) and covariance are updated recursively through the integration
of the FE-predicted and measured responses. The unknown FE model parameters are
updated using measured responses in successive overlapping windows. In this approach,
known as the sequential estimation window approach [70], the a priori estimates of the
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unknown FE model parameters at each estimation window are updated to the a posteriori
estimates. A brief review of this method is provided in the following.
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Assuming zero-mean Gaussian white noise processes for the measurement noise
(λ) and the process noise (q), the state-space model at each estimation window is set up
as follows:

ϑw+1 = ϑw + qw (7)

yw = hw(ϑw, uw) + λw (8)

As can be seen in Equation (7), the unknown FE model parameter vector for Bayesian
model updating, ϑ ∈ RnϑBFE×1, evolves linearly in the state equation by a random walk
process. The term nϑBFE is the number of unknown FE model parameters in the Bayesian
model updating. In this study, the term nϑBFE is equal to 5 (which counts the number
of parameters f

′
c,W , f

′
c,E, ξ1, ξ2, and CD) and the initial values for the unknown model

parameters are equal to those described in the previous section. In Equation (8), the term
yw ∈ R(ny×tw)×1 denotes the measurement vector and hw(.) ∈ R(ny×tw)×1 denotes the non-
linear FE-predicted response function at the wth estimation window, which spans between
time steps tw,1 and tw,2 with to time steps overlap with the previous estimation window.
The parameter ny (here 20) is the number of collected signals and tw is number of time steps
at the wth estimation window. The term uw ∈ Rtw,2×1 is the deterministic input vector at
the wth estimation window. In this study, estimation windows have the length of 150 time
steps with 50 time steps overlap, i.e., t1,2 = 50 and tw = 150 and tw−1,2 − tw,1 = 50 ∀ w ≥ 2.

The measurement equation (Equation (8)) is linearized using the first-order Taylor
series expansion with linearization point at the a priori estimate. The following equation
is obtained:

yw
∼= hw

(
ϑ̂
−
w , uw

)
+

∂hw(ϑw, uw)

∂ϑw

∣∣∣∣ϑw=ϑ̂
−
w

(
ϑw − ϑ̂

−
w

)
+ λw (9)

in which the superscripts –/+ denote the a priori/posteriori estimates, and derivation of
hw(ϑw, uw) with respect to ϑw is referred to as the sensitivity matrix and is calculated using
the finite difference approach. The estimation method that is used in this study is referred
to as the Extended Kalman filter (EKF) for parameter-only estimation [71]. In this method,
the a priori estimates of the mean vector and covariance matrix of the unknown model
parameters at each estimation window are considered equal to the a posteriori estimates at
the previous estimation window. This is depicted in Equations (10) and (11). Moreover, the
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estimation problem is solved across each estimation window iteratively, and the subscripts
0 and k in the following equations denote the iteration number.

ϑ̂
−
w,0 = ϑ̂

+
w−1 (10)

^
P
−

ϑϑ,w,0 =
^
P
+

ϑϑ,w−1 (11)

The term
^
P
−/+

ϑϑ,w is the a priori/posteriori estimate of the covariance matrix of the un-
known model parameters at the wth estimation window. For the sake of brevity, the details
for the derivation of the Bayesian inference based on the EKF method is not shown here,
and only the recursive equations at each estimation window are presented. After com-
pleting the iteration process at each estimation window, the estimation moves to the next
window, and the process is repeated. To complete the iteration process at each estimation
window, the estimates of unknown model parameters need to be converged. However, to
improve the efficiency of the process, the maximum number of iterations is limited. More
details are available in [71].

ϑ̂
−
w,k+1 = ϑ̂

+
w,k (12)

^
P
−

ϑϑ,w,k+1 =
^
P
+

ϑϑ,w,k + Qw (13)

ϑ̂
+
w,k+1 = ϑ̂

−
w,k+1 + Kw,k+1

(
yw −

^
y
−
w,k+1

)
(14)

^
P
+

ϑϑ,w,k+1 = (I−Kw,k+1Cw,k+1)
^
P
−

ϑϑ,w,k+1(I−Kw,k+1Cw,k+1)
T+Kw,k+1RwKw,k+1

T (15)

while

Kw,k+1 =
^
P
−

ϑy,w,k+1

(
^
P
−

yy,w,k+1

)−1

(16)

Cw,k+1 =
∂ hw(ϑ, uw)

∂ ϑT

∣∣∣∣
ϑ=ϑ−w,k+1

(17)

^
P
−

yy,w,k+1 = Cw,k+1
^
P
−

ϑϑ,w,k+1Cw,k+1
T + Rw (18)

^
P
−

ϑy,w,k+1 =
^
P
−

ϑϑ,w,k+1Cw,k+1
T (19)

The term Qw ∈ RnϑB×nϑB is the covariance matrix for the process noise (qw ∼ N(0, Qw)).
The matrix Qw is a diagonal matrix, and its jth diagonal entry is equal to q times the jth

entry in vector ϑ̂−w . The term q is set equal to 0.002. The term Rw ∈ R(tw×ny)×(tw×ny) is
the measurement noise (λw ∼ N(0, Rw)) and is modeled as a block diagonal matrix with
the simulation error covariance matrix—including measurement noise—on the diagonal
blocks. In this study, the diagonal entries of the matrix Rw are set equal to (0.32%g)2

at all measurement channels. The value 0.32%g is approximately equal to the average

root-mean-square of ambient measurements. The term
^
y
−
w,k+1 is the a priori FE-predicted

response calculated at ϑ̂−w,k+1. The matrix Kw,k+1 ∈ RnϑB×(tw×ny) is the Kalman-gain matrix
at the (k + 1)th iteration in the wth estimation window. The matrix Cw,k+1 ∈ R(tw×ny)×nϑB

is the FE response sensitivity matrix—with respect to ϑ̂−w,k+1—at the (k + 1)th iteration
in the wth estimation window. The term I ∈ RnϑB×nϑB denotes the identity matrix. The

matrix
^
P
−

yy,w,k+1 ∈ R(tw×ny)×(tw×ny) is a priori estimate of the covariance matrix of
^
y
−
w,k+1,

and
^
P
−

ϑy,w,k+1 ∈ RnϑB×(tw×ny) is the a priori estimate of the cross-covariance matrix of ϑ̂−w,k+1

and
^
y
−
w,k+1. The matrix

^
P
+

ϑϑ,0 is initialized diagonally with diagonal entries equal to the
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initial variance of the initial estimate of the unknown model parameters. The jth diagonal

entry in
^
P
+

ϑϑ,0 is equal to the square of pϑ times the jth entry in vector ϑ̂+0 . In this study
pϑ is set equal to 0.1. The recursive Bayesian model updating process in each estimation
window is completed after 10 iterations or meeting the following convergence criteria in
the posterior estimates of unknown model parameters.∣∣∣ϑ̂+w,k+1 − ϑ̂

+
w,k

∣∣∣ < (0.02)×
∣∣∣ϑ̂+w,k

∣∣∣ (20)

3.2.3. Results

This section presents the results of the second step of the introduced two-step model
updating approach as well as its application for damage identification of the testbed struc-
ture. First, the Bayesian model updating is carried out, and its performance is discussed
through the updating process of unknown model parameters and the fit between measure-
ments and posterior estimates of FE-predicted responses. Subsequently, the final estimates
of unknown model parameters are used to infer damage in the girders and calculate the
overall damping of the testbed structure. To assess the application of Bayesian FE model
updating, the data sets presented in Table 4 are used. As explained in Section 3.2.1, while
the excitation frequencies close to the first two modes are lumped together, the target load
amplitudes and layouts differ from one data set to another one. As mentioned before,
lumping the frequencies together increases the identifiability of model parameters and the
parameter estimation stability by using the dynamic response behavior of testbed structure
from its two first vertical modes.

The updating process for the posterior estimates of the unknown model parameters
f
′
c,W , f

′
c,E, ξ1, ξ2, and CD using data from Table 4 is shown in Figure 11. In this figure,

the estimates of the unknown model parameters are normalized to their corresponding
initial values in time-domain model updating process. As can be seen in this figure, all the
unknown model parameters are updated from their initial values and smoothly converged
to their final estimates.
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Figure 11. Updating process for the posterior estimates of the unknown model parameters using
data in Table 4.

Next, the prior estimates of responses—simulated responses using the prior FE
model—and the posterior ones are compared with the field measurements. For the sake of
brevity, only one second of data obtained using Data 1-2 are shown in Figure 12. In this
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figure, the two top rows correspond to channels 1–10 and an excitation frequency of 9.73
Hz, and the two bottom rows correspond to the same channels and an excitation frequency
of 12.86 Hz. For the case of excitation frequency of 9.73 Hz, the prior FE responses mostly
underestimate the measurements in channels located between the supports (channels 2, 3,
4, 7, 8, and 9) and slightly overestimate the responses in channels located on the overhang
parts (channels 1, 5, 6, and 10). However, the responses in all channels are initially over-
estimated for the excitation frequency of 12.86 Hz. This shows that although the prior FE
model matches the main modal signatures of the real structure, it cannot correctly predict
the measurements in the time domain. As can be seen in Figure 12, after the application of
Bayesian model updating, the updated FE model better fits the measurement responses
in the time domain. This improvement is noticeable in various channels and for both
excitation frequencies of 9.73 Hz and 12.86 Hz.
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To quantify the discrepancies between two signals, the relative root mean square error
(RRMSE) is calculated as follows:

RRMSE(%) =

√
∑tn

i=t1

(
^
si − si

)2

√
∑tn

i=t1
(si)

2
× 100 (21)

In the above equation, si and
^
si denotes the measured and estimated responses at

the ith time step. The closer the RRMSE gets to zero, the better signals s and
^
s match.
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The RRMSEs are calculated between the measured responses and their prior/posterior
FE-predicted responses and are listed in Table 5.

Table 5. RRMSEs (%) between the measurements and FE-predicted responses from the prior and
posterior model.

9.73 Hz Excitation Frequency 12.86 Hz Excitation Frequency
Data I.D. CH # 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1-1
Prior 201 75 74 80 66 170 76 74 83 46 161 63 63 70 67 202 67 68 72 97

Posterior 172 14 9 22 27 192 22 17 28 28 132 16 15 22 40 153 11 11 23 57

1-2
Prior 163 107 110 102 127 119 101 102 99 101 300 112 117 103 164 565 133 140 109 269

Posterior 24 11 10 10 22 34 10 9 8 21 72 23 24 24 30 133 20 21 13 55

1-3
Prior 191 128 134 116 165 137 114 118 108 130 429 146 156 126 235 1111 193 205 141 480

Posterior 24 11 12 20 21 46 11 13 18 18 90 33 35 35 41 254 27 28 20 93

2-1
Prior 312 61 58 71 55 259 63 60 75 30 590 30 27 46 124 236 30 26 51 84

Posterior 191 8 8 18 46 213 17 14 23 50 312 7 4 22 68 133 9 9 22 54

2-2
Prior 229 78 78 84 66 187 78 77 85 40 388 54 52 64 80 250 55 54 66 117

Posterior 139 11 9 20 46 172 18 15 20 60 236 7 7 17 65 175 9 7 26 72

2-3
Prior 109 611 64 46 114 104 62 66 43 128 124 38 34 36 17 54 33 33 49 33

Posterior 83 8 7 17 52 99 12 11 11 61 180 9 10 13 49 177 10 9 21 82

As can be seen in Table 5, RRMSE values are reduced from prior to posterior values
for all measurement channels. This shows that the time-domain model updating reduces
the discrepancies between FE-predicted and measured responses successfully. However,
the highest posterior RRMSEs are due to channels 1, 5, 6, and 10. These channels are
located on the overhang parts of the girders (see Figure 4), and the measurements are likely
less reliable due to the low signal-to-noise ratio. It is understandable from Figure 12 and
Table 5 that the FE-predicted responses at these channels are promisingly updated to match
the measurements.

The final estimates of unknown model parameters using all data are shown in
Figure 13. The average final estimates of parameters f

′
c,W and f

′
c,E are approximately 30%

and 26% less than their initial values in Table 2. Previous studies [72,73] have shown
more than 25% reductions in concrete compressive strength of deteriorated concrete
structures—e.g., abandoned structures and structures in acidic environments. Consid-
ering that the operating environment of girders caused them to be prone to various damage
mechanisms (including concrete degradation, as well as steel corrosion as discussed in
Section 2.1.1), the final estimates of parameters f

′
c,W and f

′
c,E are reasonable. Moreover, as

mentioned in Section 2.1.1, after being decommissioned, the west girder has been under
more intense environmental testing conditions than the east girder [45]. This can be under-
stood from the model updating results as the final estimates of parameter f

′
c,W is smaller

than f
′
c,E. The only exception is the case study with Data 2-1 in which the final estimate

of f
′
c,E is smaller than f

′
c,W . This is most probably an estimation error due to measurement

noise, experimental error, etc. Moreover, based on Figure 13 and ignoring the case study
with Data 2-1, the maximum difference in the estimation of parameter f

′
c in layouts 1 and 2

is less than 7%, which shows the consistency of Bayesian model updating results regardless
of the shaker location and target load amplitude.
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Figure 13. The final estimates of unknown model parameters using data sets in Table 4. The
information on each set of data is shown in Table 4. The estimates for parameters f

′

c,W , f
′
c,E and CD

are normalized to their corresponding initial values in time-domain model updating process.

The final estimates for modal damping parameters vary between different data sets.
The identifiability analysis showed dependencies between parameters ξ1, ξ2, and CD. This
dependency is most probably a reason for the discrepancy between the final estimates of
these parameters using different data sets. Aside from this, it is known that structural
damping roots in various factors, including opening and closing of micro cracks, friction
in structural joints, level of vibration, and other sources of energy dissipation, etc. [74,75].
These conditions could be varied from one experiment to another and result in different
levels of damping. To have insight into the overall damping of the testbed structure, the
modal damping ratios are calculated using the state matrix of the system. For this purpose,
the stiffness, mass, and damping matrices of the system are developed for the posterior
models. The stiffness (K) matrix is recorded as the current global system matrix (using
OpenSees printA command) while a static analysis using LoadControl integrator is carried
out, and damping is removed from the model. The mass matrix (M) is calculated based on
the current global system matrix while a static analysis using LoadControl integrator and a
transient analysis using CentralDifference integrator is carried out, and damping is removed
from the model. Using the Central Difference formulation presented in Equation (22), the

mass matrix is equal to the recorded current global system matrix (
^
KCDF) times ∆t2. In

Equation (22), the term ∆t is the size of the time step increment and is set to a very small
value (here 10−6 s) to record the current global system matrix with high precision. The
term C is the damping matrix.

^
KCDF =

M

(∆t)2 +
C

2∆t
(22)

Including damping in the model and carrying out a transient analysis using New-

mark integrator with γ = 0.5 and β = 0.25, the matrix
^
KNewmark can be recorded us-

ing printA. The damping matrix is calculated as it is shown in Equation (23) using the
Newmark formulation.

C =
β ∆t

γ

(
^
KNewmark −K− M

β (∆t)2

)
(23)

The matrices M, C, and K are condensed at the dynamic DOFs, and the state matrix is
calculated [74]. Using the state matrix of the posterior models, the modal damping ratios
are obtained for all data sets. These damping ratios are reported in Figure 14. As can
be seen, the testbed structure dissipates a greater level of energy in its first mode than in
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the second mode, which agrees with the identified modal damping ratios (see Table 1).
Moreover, the overall modal damping ratios estimated from experiments with larger target
load amplitudes are smaller than those estimated from experiments with smaller target
load amplitudes. Although this has been previously observed in a few system identification
studies [76,77], it is in contrast with the literature in which damping increases as load
amplitude increases.
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4. Conclusions

This paper proposed a two-step FE model updating process for operational health
monitoring and damage identification of bridge structures. In the proposed approach,
first, modal-based model updating was carried out to calibrate the initial FE model of
the bridge. In this step, the stiffness-related model parameters—mainly related to bound-
ary conditions—as well as the initial stiffness of concrete material were updated to fit
the FE-predicted and identified modal signatures of the bridge. Then, to account for the
nonlinear response behavior of the bridge as well as refinement of model parameter es-
timation, Bayesian time-domain model updating was carried out in the second step. In
this step, material properties that reflect the cumulative damage in the bridge, e.g., effec-
tive concrete compressive strength, as well as damping energy-dissipation-related model
parameters, were estimated. The linear-elastic boundary conditions were fixed at their
final estimates obtained from the modal-based model updating. To prevent convergence
of the model updating algorithm to the local solution, the initial values for concrete com-
pressive strength were selected using the final estimates of concrete initial stiffness from
modal-based model updating.

The application of the two-step model updating approach was presented using a pair
of full-scale precast prestressed deteriorated bridge I-girders as the testbed structure. For
this study, a series of forced-vibration experiments were planned, and the testbed structure
was subjected to sinusoidal force excitations through frequency sweeps at three different
amplitudesusing a small shaker. The input excitation was measured using load cells, and
the acceleration responses were collected using a wireless sensing network. The findings
confirm the following conclusions:

• Identifiability analysis showed significant mutual dependency between different
model parameters. This mutual dependency could lead to weak identifiability of
model parameters in the traditional FE model updating process. The proposed two-
step model updating helped with this challenge to update the most sensitive model
parameters separately using modal-based and time-domain model updating.

• Sequential application of modal-based and time-domain model updating reduced the
challenges due to ill-conditioning and modeling errors.

• It was demonstrated that the updated FE model using only modal-based model
updating was not capable of reflecting true response behavior of the structure in
time domain.
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• Concrete compressive strength was correlated with damage/deterioration in the
monitored structure and could be used to assess the health condition of the structure.
In this study, a 30% reduction in concrete compressive strength from its nominal value
correctly showed significant deterioration in the studied girders.

It is noteworthy to mention that although the input load in this study was different
from the traffic load during the operation of bridges, it provided a real-world exercise to
validate the capability of the two-step model updating approach for damage identification
of bridge structures.
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