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Abstract: As one possible alternative to the finite element method, the interpolation characteristic
is a key property that meshless shape functions aspire to. Meanwhile, the interpolation meshless
method can directly impose essential boundary conditions, which is undoubtedly an advantage
over other meshless methods. In this paper, the establishment, implementation, and horizontal
comparison of interpolative meshless analyses of orthotropic elasticity were studied. In addition, the
radial point interpolation method, the improved interpolative element-free Galerkin method and the
interpolative element-free Galerkin method based on the non-singular weight function were applied
to solve orthotropic beams and ring problems. Meanwhile, the direct method is used to apply the
displacement boundary conditions for orthotropic elastic problems. Finally, a detailed convergence
study of the numerical parameters and horizontal comparison of numerical accuracy and efficiency
were carried out. The results indicate that the three kinds of interpolative meshless methods showed
good numerical accuracy in modelling orthotropic elastic problems, and the accuracy of the radial
point interpolation method is the highest.

Keywords: interpolative shape functions; meshless method; elastic mechanics; orthotropic elasticity

1. Introduction

Unlike finite element methods (FEM), which are currently the most widely used in
engineering computational simulations, meshless/mesh-free methods employ a node-
based rather than element-based approach when constructing shape functions discretizing
the problem domain [1,2]. This strategy makes meshless approaches an increasingly
effective substitute to finite element methods when dealing with problems involving large
deformation [3–6] and crack propagation [7–10], where numerical implementations may
be restricted by predefined meshes/elements. However, mainstream meshless shape
functions, such as the most widely used moving least-squares approximation [1,3,4,6–8,10]
and the reproducing kernel function [2,5,9] and their various modifications, do not have
the same interpolation properties as finite element methods. For the approximate rather
than interpolated meshless methods, certain kinds of additional techniques, such as the
Lagrange multiplier method [1,2] and the penalty method [3–10], will necessarily be used
to enforce essential boundary conditions, with some unwanted side effects in terms of
computational efficiency or numerical accuracy.

Therefore, lots of research efforts have been devoted to the construction of mesh-
less shape functions with the Kronecker delta interpolation property, so that the essential
boundary conditions could be easily and directly imposed in large-scale engineering mod-
elling. A point interpolation method whose shape function is interpolative but prone to
singularity was proposed by Liu et al. [11]. Later, Wang et al. [12] proposed the radial
point interpolation method (RPIM) to overcome the singularity problem of polynomial
point interpolation shape functions. Ren et al. [13] proposed the interpolating moving
least-squares method (IMLSM) by improving the Lancaster’s interpolative approach [14]
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with a singular weight function. Wang et al. [15] used the non-singular weight function
to develop an improved interpolating moving least-squares method (IIMLSM) thereafter.
An interpolative complex variable moving least-squares method (ICVMLSM) was devel-
oped by Deng et al. [16]. An interpolative variational multiscale element-free Galerkin
method was presented by Zhang and Li [17] for convection-diffusion equations and Stokes
problems. Wang et al. [18] introduced the weighted orthogonal basis in the IIMLSM to
get a diagonal moment matrix. An interpolating meshless local Petrov-Galerkin method
(IMLPGM) with an IMLS scheme for steady-state heat conduction problems was reported
by Singh et al. [19]. Bourantas et al. [20] modified the error functional of the IMLSM to
construct almost interpolating shape functions with ensured invertibility of the moment
matrix. Wang et al. proposed the stable collocation method [21,22] and the gradient smooth
collocation method [23].

The application of different interpolative meshless methods to analyze the mechanical
response of various anisotropic elastic solids widely present in natural [24,25] and artifi-
cial [26,27] engineering materials has also received extensive attention. Dinis et al. [28]
proposed the natural neighbor RPIM and used it to analyze the problems of thin plates
and shells of composite materials. Njiwa et al. [29] combined isotropic boundary element
and local point interpolation to solve the three-dimensional anisotropic elasticity problem.
Bui and Nguyen [30] developed a novel moving Kriging interpolative scheme for efficient
meshfree vibration and buckling analysis of orthotropic plates. Fallah et al. [31] used the
Delaunay triangulation scheme to discretize arbitrarily distributed node sets in the domain
and proposed a meshless finite volume formula to model cracks and fracture in orthotropic
media. A modified interpolative element-free Galerkin method was applied to the mod-
elling of orthotropic thermoelastic fracture by Lohit et al. [32]. Luo et al. [33] developed
an efficient and stable nodal integration RPIM to evaluate the buckling performance of
variable-stiffness composite plates with elliptical cutouts.

We already know that interpolation meshless methods can directly impose essential
boundary conditions, which is undoubtedly an advantage over other meshless methods.
Therefore, the purpose of this paper is to compare the proposed meshless interpolation
methods horizontally, so as to find out which meshless interpolation method has better
accuracy, which is meaningful. In this study, one mature and two relatively fresh interpo-
lating meshless methods, namely the RPIM, the IMLSM and the IIMLSM, are employed to
construct interpolative shape functions of the displacement field of orthotropic elastic solids.
The corresponding formulas of the radial point interpolative meshless method (RPIM),
the interpolative element-free Galerkin method (IEFGM) and the improved interpolative
element-free Galerkin method (IIEFGM) for orthotropic elasticity are established and the
computer programs are developed. In implementations of all three interpolative meshless
orthotropic elastic analyses, the displacement boundary conditions are imposed by the
direct method. Three typical numerical examples are analyzed for verification purpose and
to compare the differences in numerical performance between the three methods. Finally,
we find that the three meshless interpolation methods have good numerical accuracy in the
modeling of orthotropic elastic problems, and the radial point interpolation method has
the highest accuracy.

2. Basics of Three Interpolative Meshless Shape Functions

Here we briefly review the three schemes, i.e., the RPIM [12], the IMLSM [13] and
the IIMLSM [15], to construct the interpolative meshless shape function uh(x) of the dis-
placement field u(x) in the local domain of point x with n nodes xI. Hereinafter, p or
pi(x)(i = 1, 2, 3, · · · , m) are used to represent the vector of m-term polynomial basis.
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2.1. Radial Point Interpolation Method (RPIM)

The interpolative function uh(x) in the local domain could be constructed by the linear
superposition of the radial basis and the polynomial basis as follows [12]:

uh(x) =
n

∑
i=1

ri(x)ai(x) +
m

∑
j=1

pj(x)bj(x) = ra + pb (1)

where r is the vector of n-term radial basis, and a and b are the coefficients corresponding to
two kinds of basis. The generally adopted multiquadric (MQ) basis [34] is also employed,

ri(x) = (c2 + ‖x− xI‖2)
q

(2)

where q and c are two coefficients.
Let the interpolation function uh(x) take the value of nodal displacement at each

node, i.e.,
u = Ra + Pb (3)

where u is the nodal displacement vector, and P= [p1 p2 · · · pn
]T and

R= [r1 r2 · · · rn
]T are nodal basis matrices. With an extra constraint PTa = 0, the

unknown coefficient vectors a and b can be written as

a =

[
R−1 −R−1P

(
PTR−1P

)−1
PTR−1

]
u (4)

b =
(

PTR−1P
)−1

PTR−1u (5)

Substituting Equations (4) and (5) into Equation (1) can yield

uh(x) = Φ(x)u (6)

where Φ(x) is the shape function of RPIM,

Φ(x) = r[R−1 −R−1P
(

PTR−1P
)−1

PTR−1]+p
(

PTR−1P
)−1

PTR−1 (7)

2.2. Improved Interpolating Moving Least-Squares Method (IMLSM)

To construct interpolative moving least-squares shape functions, Ren et al. [13] em-
ployed a strategy to rebuild basis functions with a singular weight function ω(x, xI). The
local interpolating function uh(x) of the IMLSM is

uh(x) = p1(x)a1(x) +
m

∑
i=2

pi(x)ai(x) = p1(x)a1(x) + pa (8)

where a is the unknown coefficient vector, and the reformed basis function
pi(x)(i = 1, 2, 3, · · · , m) is reconstructed from the corresponding polynomial basis pi(x)
as follows:

pi(x) =


1[

n
∑

I=1
ω(x,xI)

]1/2 i = 1

pi(x)−
n
∑

I=1
Γ(x, xI)pi(xI) i = 2, 3, · · · , m

(9)

where γ(x, xI) = ω(x, xI)
/ n

∑
J=1

ω(x, xJ). The singular weight function ω(x, xI) is

ω(x, xI) =

{∥∥∥ x−xI
ρI

∥∥∥−α
‖x− xI‖ ≤ ρI

0 others
(10)
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where ρI = dmaxdc is the characteristic radius of the local support domain of point x, dmax is
the scale factor to control the size of the local domain, dc is the characteristic node spacing,
and the parameter α is an even number and takes a value larger than zero in general.

Minimize the weighted error functional J =
n
∑

I=1
ω(x, xI)[uh(xI)− u(xI )]

2, and consider

additional constraint
n
∑

I=1
ω(x, xI)Γ(x, xI)uI pi = 0 to establish a group of algebraic equations

to obtain the unknown coefficient term a as

p1(x)a1(x) =
n

∑
I=1

Γ(x, xI)uI (11)

a = A−1Bu (12)

where A = BPT
0 , and the elements of the matrix B(m−1)×n and the matrix P0 are

BkJ =


ω(x, xJ)pk(xJ) x 6= xJ

Γ(x, xJ)
n
∑

I=1,I 6=J
ω(x, xI)[pk(xJ)− pk(xI)] x = xJ

(13)

P0 =


p2(x, x1) p2(x, x2) · · · p2(x, xn)
p3(x, x1) p3(x, x2) · · · p3(x, xn)

...
...

. . .
...

pm(x, x1) pm(x, x2) · · · pm(x, xn)

 (14)

Substituting Equations (11) and (12) into Equation (8), the interpolative function can
be rewritten as

uh(x) =
n

∑
I=1

ΦI(x)uI = Φ(x)u (15)

where the shape function of IMLSM is

Φ(x) = (Φ1(x), Φ2(x), · · · , Φn(x)) = γ + pA−1B (16)

γ = (γ(x, x1), γ(x, x2), · · · , γ(x, xn)) (17)

2.3. Improved Interpolating Moving Least-Squares Method (IIMLSM)

To remove the unwanted singular weight function in practice, some modifications
are made to the field variable function u(x) and the basis function in the IIMLSM by
Wang et al. [15]. The transformed field variable function is written as

ũ(x) = u(x)−
n

∑
I=1

γ̃(x, xI)u(xI) (18)

where γ̃(x, xI) = ζ(x, xI)
/ n

∑
J=1

ζ(x, xJ) and ζ(x, xI) = ∏
J 6=I

(‖x− xI‖2/∥∥xI − xJ
∥∥2
). Its local

moving least-squares interpolation is defined as

ũh
x(x) =

m

∑
i=2

p̃i(x)ãi(x) = p̃ã (19)

The modified basis function p̃ is constructed from the original polynomial basis as

p̃i(x) = pi(x)−
n

∑
I=1

γ̃(x, xI)pi(xI) (20)

where apparently p̃1(x) = 0.
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To minimize the weighted discrete error norm J =
n
∑

I=1
ω(x− xI)[ũh

x(xI)− ũ(xI)]
2
, the

unknown coefficient ã could be expressed as

ã = Ã
−1

B̃u (21)

where Ã = P̃
T
0 ωP̃0, B̃ = P̃

T
0 W(I− Ỹ), ω= dig[ω(x− x1) · · · ω(x− xn)

]
, I is the identity

matrix, ω(x− xI) can take any non-singular weight function, P̃0 is the n× (m− 1) matrix
of the nodal basis row vector p̃, and Ỹ is the n× n matrix of the row vector γ̃(x, xI).

Substituting Equation (21) into Equation (18), the IIMLS interpolation uh(x) of u(x) is

uh(x) = Φ(x)u (22)

where the IIMLS shape function Φ(x) is

Φ(x) = γ̃ + p̃Ã
−1

B̃ (23)

γ̃= (γ̃(x, x1), γ̃(x, x2), · · · , γ̃(x, xn)) (24)

3. The Establishment of Discrete Equations

The three meshless interpolative methods, namely the RPIM, the IMLSM, and the
IIMLSM, are used to approximate orthotropic elastic displacement fields and to discretize
the Galerkin weak form of control equation. The corresponding radial point interpolative
meshless method (RPIM), the interpolative element-free Galerkin method (IEFGM) and
the improved interpolative element-free Galerkin method (IIEFGM) for orthotropic elastic
problems are presented. The Galerkin weak form of control equation for orthotropic
elasticity can be written as∫

Ω

δ(Lu)TD(Lu)dΩ−
∫
Ω

δuTbdΩ−
∫
Γt

δuTtdΓ = 0 (25)

where L is the partial differential operator, D is the orthotropic elastic matrix, u is the
column of the nodal displacement, b and t are the columns corresponding to the body force
and the surface traction, respectively, and Ω and Γt represent the problem domain and the
force boundary, respectively.

The constitutive matrix of orthotropic material is represented as

D =

s11 s12 0
s21 s22 0
0 0 s66

−1

(26)

where sij is the orthotropic elastic compliance coefficient.
Discretizing Equation (25), we can get

KU = F (27)

where U is the column of the total displacement, and the overall stiffness matrix K and
the total external force vector F could be assembled from the nodal values, respectively,
as follows:

KI J =
∫
Ω

BT
I DBJdΩ (28)

FI =
∫
Ω

ΦT
I bdΩ +

∫
Γt

ΦT
I tdΓ (29)
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where ΦI =

[
ΦI 0
0 ΦI

]
, BT

I =

[
ΦI.1 0 ΦI.2

0 ΦI.2 ΦI.1

]
.

The interpolative shape functions of the above three methods can be used in meshless
methods to impose displacement boundary conditions as easily as in the finite element
methods. In the following three numerical examples, the interpolative meshless methods
adopt the direct method to apply the corresponding essential boundary conditions. The
principle of the direct method is to recombine the equations according to the determined
and undetermined nodal displacements:[

Kaa Kab
Kba Kbb

](
ua
ub

)
=

(
fa
fb

)
(30)

where ua and ub are the unknown and the known nodal displacements, respectively. The
overall stiffness matrix and the total external force vector are partitioned to Kaa, Kab, Kba,
Kba, f a and f b, respectively, according to the dividing of the displacement. Since ub is known,
ua can be obtained as

ua = K−1
aa (fa −Kabub) (31)

4. Numerical Examples

In this section, three numerical examples are analyzed by using the three developed
interpolative meshless methods, namely the radial point interpolative meshless method
(RPIM), the interpolative element-free Galerkin method (IEFGM) and the improved in-
terpolative element-free Galerkin method (IIEFGM), to demonstrate their numerical per-
formance. The corresponding numerical results are validated with both the analytical
solutions and those obtained by the element-free Galerkin method (EFGM). In all meshless
implementations, the rectangular local domain is used and the 4× 4 Gauss integral is
adopted. Relative errors er and energy norm errors ee are defined to compare numerical
accuracy:

er =
Numerial result− Exact solution

Exact solution
× 100% (32)

ee =

√√√√1
2

∫
Ω

(
εh − ε

)T
D
(
εh − ε

)
dΩ (33)

where εh and ε are the numerical results and exact solutions of the strain, respectively.

4.1. Clamped-Clamped Beam Subjected to Uniformly Distributed Load

The orthotropic material clamped-clamped beam is shown in Figure 1. Beam span l is
48 m, the depth h is 12 m, the upper boundary is under uniformly distributed load, and the
load q is 60 KN/m. Regardless of the structure weight, the numerical example is modelled
as a plane stress problem.

Figure 1. Clamped-clamped beam subjected to uniform load.

The material compliance coefficients (unit: m/KN) of the beam are s11 = 0.078 × 10−10,
s12 = −0.038 × 10−10, s21 = −0.038 × 10−10, s22 = 0.080 × 10−10, and s66 = 0.233 × 10−10.
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The exact solutions of the displacements and the stresses for this problem are expressed
as [35]

u1 = (2x1 − l)(s12 + s66)qx3
2/h3 + (l − 2x1)(x1 − l)s11qx1x2/h3 (34)

u2 = −
[
2s11s12

(
6x2

1 − 6lx1 + l2)− 3s11s22h2 + 3s2
12h2]qx2

2/
(
4s11h3)+(

2s2
12 − s11s22 + s12s66

)
qx4

2/
(
2s11h3)− (s11s22 − s2

12
)
qx2/(2s11)+

x1(x1 − l)
(
2s11x2

1 − 3s66h2 − 2s11lx1
)
q/
(
4h3) (35)

σ1 = 2(2s12 + s66)qx3
2/
(
s11h3)− [2s11

(
6x2

1 − 6lx1 + l2)+
3s12h2]qx2/

(
2s11h3)+ qs12/(2s11)

(36)

σ2 = −q
(

4x3
2 − 3h2x2 + h3

)
/2h3 (37)

τ12 = 3q(l − 2x1)
(

h2/4− x2
2

)
/h3 (38)

The computing parameters of the four meshless schemes are obviously different. The
optimal values for each method are surely not the same. To be able to compare the four
methods horizontally, this paper adopts the best results with regard to the energy norm
error of each method within a certain range of the computing parameters for accuracy
comparison. The computing parameters in a certain range for all four methods are collected
as: the number of nodes n1 = (19, 21, 23, 25) in the x1 direction and the number of nodes
n2 = (7, 9, 11, 13) in the x2 direction for a uniform mesh, a fixed uniform background mesh
with l1 × l2 = 12 × 8 for the Gauss quadrature, the scale factor dmax = (1.5, 2.5, 3.5, 4.5) in
the local domain, q = (−0.5, 0.5, 1.5, 2.5) and c = (1.0, 3.0, 5.0) for the MQ radial basis, the
singular weight parameter α = (4, 6, 8) in IMLSM and the penalty factor β = 3 × 1014 in
EFGM. Therefore, according to the different combinations of each computing parameter
within the corresponding ranges, there are, in total, 64, 768, 192 and 64 groups of computing
settings for the EFGM, the RPIM, the IEFGM, and the IIEFGM that need to be evaluated,
respectively. We recode the optimal computing parameters of each method with the lowest
energy norm error in all corresponding computing sets in Table 1. The numerical results
according to these four computing settings are employed for accuracy comparison.

Table 1. Optimal computing parameters of each method within the tested range.

n1 × n2 l1 × l2 dmax Others

EFGM 19 × 11 12 × 8 3.5 β = 3 × 1014

RPIM 25 × 11 12 × 8 4.5 q = 2.5, c = 1.0
IEFGM 25 × 13 12 × 8 2.5 α = 6.0
IIEFGM 19 × 13 12 × 8 1.5 —

To investigate the characteristics of the four shape functions, Table 2 shows the contour
plots of the shape functions of the four methods with the parameters in Table 1 and their
first-order derivatives at the beam center point a (24, 0). It can be seen from Table 2 that
the contour plots of the shape functions of the three interpolative meshless methods are
completely consistent. They all meet the property of the Kronecker delta function and are
significantly different from the contour maps of the MLS. The difference between the four
methods is mainly reflected in the contour maps of the first-order derivatives of the shape
functions, which may be the main reason for the difference in numerical accuracy of the
three meshless interpolative methods.
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Table 2. Contour plot of the shape functions and their 1st order derivate at point (24, 0) by four
different methods.
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Figure 2. Deflection u2 and its relative error at x2 = 0 m. 

Figure 3 shows the numerical stress results of 22σ  on the central axis x2 = 0 of the 
beam and the relative errors. The EFGM with relative errors below 0.38% showed the best 
numerical accuracy over all the four meshless schemes for this example. For the RPIM, the 
accuracy near the two fixed ends with a maximum relative error of 3.73%, which is higher 
than the relative error of 1.32% at the middle span of the beam, is relatively poor. The 
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively. 
Figure 4 shows the cloud diagram of the Von Mises stress on the problem domain for the 
analytical solution and the four meshless numerical results. The numerical solutions of 
the Von Mises stress obtained by the four meshless methods showed good agreement to 
the exact ones. 
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Figure 2. Deflection u2 and its relative error at x2 = 0 m. 

Figure 3 shows the numerical stress results of 22σ  on the central axis x2 = 0 of the 
beam and the relative errors. The EFGM with relative errors below 0.38% showed the best 
numerical accuracy over all the four meshless schemes for this example. For the RPIM, the 
accuracy near the two fixed ends with a maximum relative error of 3.73%, which is higher 
than the relative error of 1.32% at the middle span of the beam, is relatively poor. The 
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively. 
Figure 4 shows the cloud diagram of the Von Mises stress on the problem domain for the 
analytical solution and the four meshless numerical results. The numerical solutions of 
the Von Mises stress obtained by the four meshless methods showed good agreement to 
the exact ones. 

Buildings 2023, 13, x FOR PEER REVIEW 9 of 18 
 

, yΦ  

    

The nodal deflection u2 on the central axis x2 = 0 of the beam and the corresponding 
relative errors are shown and are compared in Figure 2. It is obvious that the meshless 
displacement results of the four methods agree very well with the analytical solutions, 
and all the relative errors are below 1.16%. However, the accuracy of the IEFGM is rela-
tively lower than those of the other three meshless methods. The numerical solutions of 
EFGM and RPIM have better stability, and their maximum relative errors do not exceed 
0.06% and 0.36%, respectively. The maximum relative error of the IIEFGM is also below 
0.59%. 

0 10 20 30 40 50

0

2

4

6

8

10

u 2
(1

0−6
m

)

x1(m)

 Analytical solution
 RPIM
 IEFGM
 IIEFGM
 EFGM

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e 

er
ro

r(%
)

x1(m)

 RPIM       IEFGM
 IIEFGM   EFGM

 
Figure 2. Deflection u2 and its relative error at x2 = 0 m. 

Figure 3 shows the numerical stress results of 22σ  on the central axis x2 = 0 of the 
beam and the relative errors. The EFGM with relative errors below 0.38% showed the best 
numerical accuracy over all the four meshless schemes for this example. For the RPIM, the 
accuracy near the two fixed ends with a maximum relative error of 3.73%, which is higher 
than the relative error of 1.32% at the middle span of the beam, is relatively poor. The 
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively. 
Figure 4 shows the cloud diagram of the Von Mises stress on the problem domain for the 
analytical solution and the four meshless numerical results. The numerical solutions of 
the Von Mises stress obtained by the four meshless methods showed good agreement to 
the exact ones. 
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The nodal deflection u2 on the central axis x2 = 0 of the beam and the corresponding
relative errors are shown and are compared in Figure 2. It is obvious that the meshless
displacement results of the four methods agree very well with the analytical solutions, and
all the relative errors are below 1.16%. However, the accuracy of the IEFGM is relatively
lower than those of the other three meshless methods. The numerical solutions of EFGM
and RPIM have better stability, and their maximum relative errors do not exceed 0.06% and
0.36%, respectively. The maximum relative error of the IIEFGM is also below 0.59%.

Figure 3 shows the numerical stress results of σ22 on the central axis x2 = 0 of the
beam and the relative errors. The EFGM with relative errors below 0.38% showed the best
numerical accuracy over all the four meshless schemes for this example. For the RPIM, the
accuracy near the two fixed ends with a maximum relative error of 3.73%, which is higher
than the relative error of 1.32% at the middle span of the beam, is relatively poor. The
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively.
Figure 4 shows the cloud diagram of the Von Mises stress on the problem domain for the
analytical solution and the four meshless numerical results. The numerical solutions of the
Von Mises stress obtained by the four meshless methods showed good agreement to the
exact ones.
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Figure 2. Deflection u2 and its relative error at x2 = 0 m.

Figure 3. Stress σ22 and its relative error at x2 = 0 m.
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Figure 4. Contour of the Von Mises stress of the clamped-clamped beam.

4.2. Cantilever Beam Subjected to a Uniform Load

The orthotropic elastic cantilever beam shown in Figure 5 is considered in this example.
Beam span l is 48 m, and depth h is 12 m. The upper boundary of the beam is subjected to a
uniform load of q = 1000 N/m. The self-weight of the beam is ignored, and the structure is
considered as in a plane stress state in the modelling.

The material coefficients of the beam are considered as s11 = 0.0799 × 10−10,
s12 =−0.0375× 10−10, s21 =−0.0375× 10−10, s22 = 0.0798× 10−10, and s66 = 0.2326 × 10−10.
The analytical solutions of the displacements and the stresses of the beam are [35]

u1 =
2px1x3

2(s12+s66)

H3 −
[

2s11x3
1

H3 −
(9s12−3s66)x1

10H + (9s12+12s66)L
10H − 2s11L3

h3

]
px2

+ s12 p(L−x1)
2

(39)
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u2 =
(s12s66−s11s22+2s2

12)px4
2

2s11 H3 −
(

s12x2
1

H2 + s12s66
20s11

+
s2

12
10s11
− s22

4

)
3px2

2
H − s22 px2

2

+ p(L−x1)
2

20H3 (10s11x2
1 + 20s11Lx1 − 12s66H2 − 9s12H2 + 30s11L2)

(40)

σ1 = −
6qx2

1x2

H3 + 2p
2s12 + s66

4s11
(

4x3
2

H3 −
3x2

5H
) (41)

σ2 = − p(x2 + H)(H − 2x2)
2

2H3 (42)

τ12 =
3px1(4x2

2 − H2)

2H3 (43)

As the geometry and the material in this example are similar to those in the example of
Section 4.1, the trailed value range of the computing parameters in the meshless numerical
modelling is chosen to be exactly the same as that in Section 4.1. Therefore, the optimal
computing parameters for each meshless method are picked as the ones that get the
lowest energy norm error among the tested value range and are listed in Table 3. The
numerical results according to the optimal computing parameters in Table 3 are used for
the comparison of the computational performance of the four meshless methods.

Figure 5. Cantilever beam under uniform load at its upper boundary.

Table 3. Optimal value of computing parameters in this example.

n1 × n2 l1 × l2 dmax Other Parameters

EFGM 19 × 13 12 × 8 3.5 β = 3 × 1014

RPIM 21 × 7 12 × 8 4.5 q = 2.5, c = 1.0
IEFGM 25 × 13 12 × 8 1.5 α = 6.0
IIEFGM 25 × 13 12 × 8 1.5 —

Since there is no special difference in the accuracy of curves in each direction, this
paper only provides curves in a certain direction for illustration. The meshless solutions for
the deflections of the nodes on the central axis of the beam x2 = 0 and the corresponding
relative errors are presented in Figure 6. Generally, the numerical displacement results
obtained by the four meshless methods show good accuracy and agree well with the exact
solutions. The overall relative error values of RPIM, IEFGM and IIEFGM are about 0.07%,
1.1% and 1.6%, respectively, and the maximum relative error values are about 1.88%, 8.9%
and 13.5%, respectively. The maximum relative error of EFGM is less than 0.27%. The
relative errors of the three interpolative meshless methods, especially the IIEFGM and the
IEFGM, show dramatic increase for the nodes at the fixed end of the beam.

In Figure 7, the numerical results of the Von Mises stress for the nodes on the central
axis of the beam are compared to the values calculated from the analytical stress solutions.
The corresponding relative errors of the Von Mises stress results are also presented in this
figure. Unlike the case of the displacement solutions, the Von Mises stress solutions of
the IEFGM and the IIEFGM show obvious deviation from the corresponding analytical
solution at the fixed end of the beam. Generally, the relative errors of Von Mises stress
calculated by the four meshless methods are relative larger at the free end of the beam and
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gradually decrease and become stabilized towards the fixed end. Meanwhile, the IEFGM
and the IIEFGM show much poorer accuracy with very large relative error near the fixed
end of the beam. The EFGM has the highest accuracy, with a nodal relative error around
0.72% with a maximum of 6.4%. The nodal relative errors of the Von Mises stress solutions
for the RPIM, the IEFGM and the IIEFGM are mostly around 0.4%, 3% and 1%, respectively.
When x2 is between 10m and 40m, the variances of the RPIM, EFGM, IEFGM and IIEFGM
are 0.0425, 0.1129, 0.797 and 0.546 respectively. Therefore, the Von Mises stress solutions of
the RPIM are more accurate and stable than those of the other two interpolative approaches
in this case.

Figure 6. The nodes deflection and its relative error at central axis.

Figure 7. Solutions of the Von Mises stress and the relative error at x2 = 0.

4.3. Ring under Pressures Applied Both Internally and Externally

To consider an orthotropic elastic ring under both internal and external compression,
as shown in Figure 8, only one quarter of the structure needs to be modeled by symmetry.
The inner and outer diameters of the ring are a = 12 m and b = 20 m, respectively. The
pressures of Pa = 100 Pa and Pb = 300 Pa are applied both internally and externally. The
numerical example is considered as in a plane stress state.

Figure 8. A quarter of the ring.
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The ring is circular orthotropic, and the anisotropic pole is located at the center of the
ring. The material compliance coefficients in a polar coordinate system are
s11 = 0.0799 × 10−4, s12 = −0.0375 × 10−4, s21 = −0.0375 × 10−4, s22 = 0.0798 × 10−4

and s66 = 0.2326 × 10−4. The exact solutions of the radial displacement and the stresses are
written as follows [35]:

ur =
b

Eθ(1− c2k)

[
(Pack+1 − Pb)(k− vθ)(

r
b
)

k
+ (Pa − Pbck−1)ck+1(k + vθ)(

b
r
)

k
]

(44)

σr =
Pack+1 − Pb

1− c2k (
r
b
)

k−1
− Pa − Pbck−1

1− c2k ck+1(
b
r
)

k+1
(45)

σθ =
Pack+1 − Pb

1− c2k k(
r
b
)

k−1
+

Pa − Pbck−1

1− c2k kck+1(
b
r
)

k+1
(46)

where c = a/b, k =
√

s11/s22, Eθ = 1/s22, vθ = −s12/s22.
In order to effectively compare the accuracy of the four meshless methods with

completely different computing parameter groups, the following appropriate ranges are
also selected for several kinds of the computational parameters in this example: for a
uniform mesh of the nodes, the number of nodes in the radial direction n1 = (7, 9, 11, 13),
the number of nodes in the circular direction n2 = (19, 21, 23, 25); for a fixed uniform mesh
of l1 × l2 = 6 × 24 for the background cells of the Gauss quadrature, the dimensionless
factors for scaling the influence domain dmax = (1.5, 2.5, 3.5), q = (−0.5, 0.5, 1.5, 2.5) and
c = (1.0, 3.0, 5.0); for the MQ radial basis in the RPIM, the singular weight parameter
α = (4, 6, 8, 10) for the IEFGM, and the penalty factor β = 3 × 1014 for the EFGM to enforce
displacement boundary conditions. Apparently, all 48, 576, 192 and 48 groups of the
computing parameters need to be tested for the EFGM, the RPIM, the IEFGM and the
IIEFGM, respectively, to determine the optimal settings for each method with regard to the
relatively lower energy norm error. The corresponding optimal sections of the parameters
for the four meshless schemes are presented in Table 4.

Table 4. Optimal parameters each method within the tested range.

n1 × n2 l1 × l2 dmax Other Parameters

EFGM 9 × 25 6 × 24 2.5 β = 2 × 108

RPIM 11 × 25 6 × 24 3.5 q = 1.5, c = 1.0
IEFGM 13 × 25 6 × 24 1.5 α = 4.0
IIEFGM 7 × 25 6 × 24 1.5 —

The nodal solutions of the radial displacement at section θ = 45◦ of the ring with the
values of parameters in Table 4, the variances of the nodal relative errors in Table 5 and
the relative errors are shown in Figure 9. It is obvious that the displacement results of the
four meshless approaches are in generally good agreement with the analytical ones. The
accuracy of the RPIM and the EFGM are almost the same and are higher and more stable
than the other two methods. The maximum values of the nodal relative errors for the RPIM,
IEFGM and the IIEFGM are about 0.0398%, 0.09% and 0.24%, respectively. The variances of
the nodal relative errors for the RPIM, EFGM, IEFGM and the IIEFGM are about 0.0001,
0.000005, 0.00085 and 0.0043, respectively. The contour plots for the relative errors of the
Von Mises stress obtained by the four meshless methods are presented in Figure 10. It could
be found that the four meshless approaches can get good results of the Von Mises stress
for this example, while the accuracy of each method in the different areas of the problem
domain is not the same.
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Table 5. The variances of the relative errors.

EFGM RPIM IEFGM IIEFGM

Radial
displacement 0.0001 0.000005 0.00085 0.0043

Von Mises stress 0.07225 0.0545 0.391 0.9947

Figure 9. Radial displacement ur and relative error at θ = 45◦ of the ring.

Figure 10. Contour plots of the relative error for the Von Mises stress.

5. Conclusions

In this study, the RPIM, the IEFGM and the IIEFGM are applied to solve orthotropic
elastic problems. The essential/displacement boundary conditions are applied by the
direct method to calculate and analyze orthotropic clamped-clamped beams, orthotropic
cantilever beams and orthotropic rings subjected to uniform loads. Since the principles
and computing parameters of these three interpolative methods are very different, this
paper uses the numerical solution with the optimal parameter group corresponding to the
minimum energy norm error within a certain trailed range of each method to compare their
accuracy. For example in Section 4.1, the maximum relative error of σ22 is 3.73%, which
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is higher than the relative error of 1.32% in the middle of the beam span. However, the
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively.
For example in Section 4.2, the overall relative error values of nodal deformation for RPIM,
IEFGM and IIEFGM are about 0.07%, 1.1% and 1.6%, respectively, and the maximum rela-
tive error values are about 1.88%, 8.9% and 13.5%, respectively. For example in Section 4.3,
the accuracy of radial displacement for the RPIM and the EFGM are almost the same and
are higher and more stable than the other two methods. The maximum values of the
nodal relative errors for the RPIM, IEFGM and the IIEFGM are about 0.0398%, 0.09% and
0.24%, respectively. The results show that the three meshless interpolation methods have
better numerical accuracy in the modeling of orthotropic elastic problems, and the radial
point interpolation method (RPIM) has the highest accuracy. The research results of this
paper can provide a certain reference value for future research on the selection of meshless
form functions in interpolation. It is one of the regrets of this paper that the differences in
numerical efficiency of these methods cannot be effectively investigated at the same time.
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