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Abstract: Construction hazards occur at any time in outfield test sites and frequently result from
improper interactions between objects. The majority of casualties might be avoided by following
on-site regulations. However, workers may be unable to comply with the safety regulations fully
because of stress, fatigue, or negligence. The development of deep-learning-based computer vision
and on-site video surveillance facilitates safety inspections, but automatic hazard identification is
often limited due to the semantic gap. This paper proposes an automatic hazard identification
method that integrates on-site scene graph generation and domain-specific knowledge extraction. A
BERT-based information extraction model is presented to automatically extract the key regulatory
information from outfield work safety requirements. Subsequently, an on-site scene parsing model
is introduced for detecting interaction between objects in images. An automatic safety checking
approach is also established to perform PPE compliance checks by integrating detected textual and
visual relational information. Experimental results show that our proposed method achieves strong
performance in various metrics on self-built and widely used public datasets. The proposed method
can precisely extract relational information from visual and text modalities to facilitate on-site hazard
identification.

Keywords: construction hazard; information extraction; scene graph; safety inspection

1. Introduction

In China, the development of a national defense information infrastructure is acceler-
ating, supporting the rapid growth of the military electronics industry. Outfield tests are
crucial in the research and development process of military electronic devices since the
laboratory environment differs from practical application conditions [1,2]. The outfield
test in the military electronics industry is defined as electronic devices leaving the original
research and production site for a specific site for practical application testing [3]. In order
to conduct testing, it is necessary to transfer electronic equipment and products to the field.
There are many construction safety hazards present in the process, particularly during the
packaging and strengthening of the devices before transfer, the installation and erection
phase, the product testing stage, and the post-test dismantling.

Construction is a hazardous occupation, with a high rate of occupational injuries. In
2020, construction was responsible for roughly 22% of fatal occupational injuries in the
United States [4], and in China, 689 safety incidents involving housing and municipal
engineering led to 794 fatalities [5]. The top two accident classifications with the highest
proportion are falling from heights and object contact, which are commonly caused by
failure to comply with the required specifications and improper interactions with the envi-
ronment. The same risks are present for the outfield tests. The most common workplace
accidents in outfield sites include falls, fires, lifting, electrocution, scalding, object contact,
and mechanical injury. Most of these hazards result from inadequate precautions and
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incorrect use of tools, which result in irreparable loss and significantly limit the devel-
opment of the national science and technology industry. A thorough safety inspection
is necessary for outfield tests at least once each week. To tackle hazards effectively and
record the findings of the safety checks, the safety manager should perform daily on-site
safety inspections. Before executing different operations, employees must also go through
rigorous training and instruction. However, they might not be able to fully comply with
the safety requirements because of stress, fatigue, or negligence. Regulations may also alter
based on the workplace. Therefore, it is necessary to conduct an automatic text analysis
study on redundant safety regulations and laws.

The Internet of Things (IoT) and advanced vision devices have been used in construc-
tion safety management to help monitor construction sites [6–8]. According to the outfield
work safety requirements [3], key areas, such as the entrance, exit, test area, and equipment
area, must be entirely covered by monitoring and guarded by personnel throughout the
day. However, such a method cannot quickly detect and eliminate hazards. Additionally,
manually checking surveillance for compliance with safety regulations is labor-intensive
and error-prone. Thus, an automated safety inspection is needed to facilitate the safety
monitoring of outfield construction workers and hazard identification. Visual data from
key areas and safety regulations text can meet these objectives. Large amounts of image
and text data make the automatic extraction of key information challenging, but the devel-
opment of artificial intelligence has mostly solved this issue. Deep-learning-based models
may automatically extract complex features and key information from a large amount of
data, which contributes to more efficient safety management. Therefore, some researchers
utilized deep learning convolutional neural networks [9–12] to process on-site images
directly. These methods can be more effectively used on the construction site.

Deep-learning-based computer vision methods have been widely used for construction
safety management in the past five years, with the majority of studies concentrating on
object detection [10,13], proximity measurement [7,14], and action recognition [11,15].
However, these studies rely on visual feature extraction and lack semantic understanding
to parse visual scenes accurately. Subsequently, deep learning image understanding is
gradually developing from low-level feature extraction to high-level semantic learning
(e.g., scene understanding [16], visual question and answer [17], image caption [18]).
Recently, some researchers have proposed approaches to parse on-site construction scenes
by detecting the semantic relations between objects [19,20]. The majority of the methods that
are now available rely on vision models to identify construction hazards. However, they
do not automatically extract textual information, such as safety standards and regulations.
It will be a significant challenge to the practicability of current vision-based methods to
adapt to the diversity of safety regulations. Thus, additional research on automatic safety
inspection that integrates visual and textual information is required.

In this work, we aim to design a framework that integrates visual and linguistic
information to enable outfield on-site safety inspection while addressing the challenges
mentioned above. First, a BERT-based safety regulations processing method is presented for
automatically extracting text information. The key semantic information related to hazard
identification is represented in a structured form. The method presented here extracts and
represents textual features based on natural language processing (NLP). Subsequently, a
vision-based scene parsing approach is developed to process on-site images. The visual
features of the on-site workers and their interacting objects (e.g., PPEs) are extracted based
on Mask R-CNN [21]. The interaction relations between the object instances are further
predicted by on-site scene graph generation. Additionally, an automatic safety checking
process is established based on relational triples analysis by integrating extracted visual
and textual relational information.

The key contributions are summarized as follows:

• We propose a BERT-based text processing approach to extract key textual information
from Chinese safety regulations automatically.
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• We develop a deep-learning-based scene parsing method for detecting visual interac-
tions between objects in on-site images. The textual and visual information is then
integrated to implement safety inspection and hazard detection.

• Experiments on self-built and public datasets show that the proposed approaches
effectively extract relational information from visual and textual modalities. Demon-
stration of PPE compliance checking on two scenes show the feasibility of our proposed
method.

2. Related Work

Recently, many studies have employed new technologies on construction sites to
identify occupational hazards. Guo et al. utilized an RGB-D camera (Kinect v2 Sensor)
to collect the worker behavior information by capturing the depth images [9]. Kelm et al.
applied radio-frequency identification (RFID) to assess the PPE compliance of workers [22].
Yan et al. developed a real-time motion warning PPE based on wearable Inertial Measure-
ment Units (IMUs) [23]. Gheisari et al. conducted a survey to indicate the safety activities
that can be improved using unmanned aerial vehicles (UASs) by monitoring construction
sites [24]. However, the RGB-D sensors are incompatible with complex and unstable out-
field situations due to their sensitivity to solar radiation. Wearable sensors typically prohibit
employees from performing their tasks effectively and utilizing UAVs to obtain complete
surveillance coverage would be too costly. The restrictions have been greatly improved
with the quick progress of deep-learning-based computer vision. Many studies developed
the vision-based model to process on-site images to identify hazards. The majority of these
methods focused on detecting on-site resources based on classic neural network approaches,
such as Region Proposals (Faster R-CNN [25], Mask R-CNN [21]), Single Shot MultiBox
Detector (SSD), [26], and You Only Look Once (YOLO) [27–29]. Fang et al. utilized the
Faster R-CNN network to detect construction workers’ non-hardhat-use in different site
conditions [30]. Kim et al. proposed a UAV-assisted monitoring video method based on
YOLO-V3 that enabled the detection of struck-by hazards [31]. Fang et al. utilized Mask
R-CNN to identify workers’ unsafe behavior to avoid falls from heights [32]. Wu et al.
proposed a one-stage convolutional neural network based on SSD for hardhats wearing
and corresponding color detection [33]. Wang et al. adopted the MobileNet as the backbone
for detecting workers wearing hard hats on construction sites [34]. The aforementioned
methods showed their capacity to support on-site safety checks. However, object detection
methods based on neural networks only detected the categories and locations of objects.
These methods also could not perform high-level visual semantic understanding of the
on-site scene because they do not explore the rich semantic information and interactions
between objects.

Many methods have been developed to explore the semantic relations between on-
site objects to address these issues. Xiong et al. integrated a visual relationship detec-
tion network with construction safety otology to identify hazards in the workplace [19].
Zhang et al. [35] proposed an automatic hazard identification method combining object
detection and ontology in the foundation pit excavation scene. Wu et al. [36] developed a
method for hazard identification that integrated Mask R-CNN object detection and ontol-
ogy to detect three types of spatial relations (on, overlap, and away). Unlike spatial-based
interaction detection, Tang et al. [20] proposed a human–object interaction (HOI) recogni-
tion model for checking personal protective equipment compliance, which explored three
action-based interactions (standing, using, and wearing). To extract richer semantic infor-
mation, Wang et al. [37] proposed a semantic information extraction method integrating
object detection and image captioning to facilitate on-site safety management. However, it
did not perform automatic checking on regulatory rules.

Even though the rich semantic information for the vision-based model makes it easier
to understand on-site scenes, there is still a lack of connection between visual informa-
tion and domain-specific knowledge [38]. Ontology can generate formatted knowledge
representations from domain-specific knowledge and has been widely adopted in the
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architecture, engineering, and construction (AEC) industry. Both methods [19,35,36,39]
processed regulatory rules based on ontology for on-site hazard identification. Ontology
development and inference processes often utilize Protégé (software), the most popular
and widely used ontology editor. However, it cannot be easily integrated into a unified
model with deep neural networks. With the achievements of natural language processing
(NLP) techniques and large text corpus pre-trained language models, NLP-based methods
have been widely adopted to perform occupational accident analysis. Improving relation
extraction and integrating multi-source information are major concerns and problems in
on-site construction. Chen et al. [40] proposed a graph-based framework to process regula-
tory rule text and images for on-site occupational hazards identification, which integrated
NLP-based syntactic structure analysis and a deep learning visual model. Zhang et al.
proposed a cross-modal automatic hazard inference method integrating scene graph gen-
eration and BERT-based text classification. Domain knowledge combined with on-site
images can make it easier to identify hazards by integrating on-site visual features and
regulations textual features. In order to facilitate safety inspection and hazard inference,
it is essential to narrow the semantic gap between natural language and vision. Based on
previous studies, we propose a method that reduces the semantic gap by integrating visual
and textual relational information. Additionally, we design an automatic control process
for performing automatic security checks.

3. Methodology
3.1. Research Philosophy and Design

The purpose of this study is to develop an on-site hazard identification framework
that automatically performs on-site scene safety inspections against outfield safety regula-
tions. Based on the aforementioned literature review, deep-learning-based computer vision
algorithms have recently gained popularity for identifying hazards on construction sites.
Scene graph generation methods also showed promising results for construction scene
understanding, but there is still a gap between visual information and domain-specific
knowledge. Many research studies employed ontology to generate new forms of expression
of domain knowledge. These ontology-related studies need to be conducted across differ-
ent platforms, making it more challenging to combine with computer vision models. The
development of NLP and large pre-trained language models has substantially improved
knowledge mining in the construction industry. BERT is a language model with high
accuracy and ease of fine-tuning that can implement automatic information extraction on
safety regulation texts. However, few studies about employing NLP and vision-based
methods for construction safety inspections integrate textual relational information with
visual relational information.

Consequently, we integrate on-site scene graphs and BERT-based information ex-
traction to develop a framework for identifying construction hazards. Our proposed
deep-learning-based methodology consists of three main processes: data processing, model
development, and model validation. (1) Data processing: A schema-based Chinese work
safety regulation dataset was established by manual annotation. The on-site image dataset
was established by open resources crawler and manual annotation. We also employed
widely used public benchmark datasets to assist with model validation. (2) Model develop-
ment: This paper builds a BERT-based model for extracting textual information and a scene
graph generation model for parsing on-site visual scenes. Additionally, a simple automatic
control method is applied to match the relational triples output from the linguistic and
visual model for automatic safety checking and hazard identification. (3) Model validation:
This paper uses qualitative and quantitative analytical methods to validate the performance
of the models on the self-built and public datasets.

The overview of our proposed framework and the detailed procedures for data pro-
cessing, model development, and validation are then described.
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3.2. Overview of Our Proposed Framework

This paper proposes a framework for safety inspection based on the NLP-based
regulations information extraction and the on-site scene graphs. The following functions
are available through our framework: (1) The capacity to automatically parse regulations
text: A BERT-based model is used to extract textual relational information from safety
regulations to parse outfield work safety requirements. (2) The capacity to generate on-site
scene graphs: A visual network and semantic modeling are used to detect the objects and
relations in an image. The on-site scene graphs are generated as a result. (3) Safety checking
and hazard inference capability: Visual and textual relational information are integrated
to perform PPE compliance safety checking and on-site hazard identification. Figure 1
shows the overall pipeline of our proposed framework, which consists of a BERT-based
information extraction module, an on-site scene parsing module, and an automatic safety
checking process. We will detail each part of our framework.
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Figure 1. Overall pipeline of the proposed framework.

3.3. BERT-Based Safety Regulations Information Extraction (IE) Module

The outfield test involves vast quantities of text data, including work safety standards,
construction regulations, and terminology. The manual extraction of these safety require-
ments is labor-intensive, costly, and error-prone. This paper proposes a BERT-based IE
model for jointly extracting entities and relations from Chinese domain-specific text to ad-
dress these issues. IE can automatically process regulations text and extract key information
to identify the hazards of non-compliance.

Relation extraction is a core task in IE, and its goal is to detect specific types of
entities and the relations between entity pairs from unstructured natural language text. It
is essential for ontology learning and building knowledge bases [41]. Our proposed IE
enables the extraction of multiple relational triples. A relational triple contains a subject
entity (S), an object entity (O), and a semantic relation R between entities. A triple is often
formalized as < S, R, O >. For example, <worker, wear, helmet>. As Figure 2 shows, the
proposed model comprises a BERT-based encoding layer and a BIEO tagging decoder.
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Figure 2. An illustration of proposed regulations information extraction (IE) module.

3.3.1. Pre-Processing

We first design a schema to guide domain knowledge information extraction. Schema
can clearly define the entity type and relation in the knowledge bases. A schema is
a set of relational triple templates [42]. Each schema contains a subject entity type, a
predicate (semantic relation), and an object entity type. Defining the schema is equivalent
to constructing ontology in knowledge graphs and helping integrate domain knowledge
through formal conceptualization.

The knowledge sources utilized to design the schema include the work safety stan-
dardization requirements of the outfield test, the experience of previous scholars, and
public information retrieval. We pick the eight most commonly used relation types by
analyzing the domain text information. Table 1 shows some examples. Next, we select the
related relational triples from the regulations text according to the schema. The relation in a
triple should be equivalent to the predicate in the schema, and the subject and object entity
correspond to the instances of the pre-defined object types, respectively. These relational
triples are used to parse the text and generate annotations for training the IE model.

Table 1. Schema examples in regulations dataset.

Subject Type Predicate Object Type SPO Example

person be equipped with PPEs S: worker, P: be equipped
with, O: eye protection

person perform. . . operations working operations
S: worker, P:

perform. . . operations, O:
welding operations

working operations occurrence occupational injuries S: welding operations, P:
occurrence, O: burns

3.3.2. Encoding Layer

This paper adopts the BERT [43] as the encoding layer for input regulations text. We
will briefly review the BERT, a multi-layer transformer-based language representation
model, which contains the input embedding space (denoted by W) and N identical Trans-
formers block modules. The input to BERT is a sequence of words where 15% WordPiece
tokens are masked. The i-th input word is converted into a one-hot vector x(i), and the
positional embedding per input token is denoted as pi. The original words in the input
sentence are translated into N Transformer blocks. The Transformer encoder’s hidden
dimension is represented as h, and hj is the hidden state of the input sentence at the j-th
layer.
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h = W ∗ xi + pi (1)

hj = Transformer(hj−1), j ∈ [1, N] (2)

The output of the Transformer block is a sequence of contextualized word embeddings
(denoted by O), and the output of the pre-training BERT is a word score vector (denoted
by yx) for each masked word. The word score vector for i-th position masked word is
extracted from the Transformer block output by transposing: yx = W>O(i).

For the i-th position masked word, the pre-training BERT’s original prediction is to
make the normalized exponential for y textx infinitely close to the masked word one-hot
vector. This is achieved by minimizing the loss between the y textx and the masked word
one-hot vector. The 0/1 sequence tagging in this paper is a multi-label classification task.
Softmax + cross-entropy is introduced here as a multi-label categorical loss function Lm:

Lm = log

(
1 + ∑

i∈K
esi

)
+ log

(
1 + ∑

j∈L
e−sj

)
(3)

where si and sj denote the non-target and target class, and K and L denote the category sets
of negative and positive samples.

3.3.3. BIEO Tagging Decoder

The semantic representation of regulations text is first output through the BERT-based
encoding layer described in the previous section. The BIEO tagging scheme for decoding is
introduced in this section. Finally, we explain how to extract key textual relational triples
from the text.

We utilize BIEO signs to distinguish entities, drawing inspiration from the classic
BIO tagging scheme [44]. The BIEO signs represent the word position within the entity
(Begin, Inside, End, Outside). A set of |N| predicates in the pre-defined schema is used to
determine the relation type between entities.

Figure 3 is an example to detail our tagger. The input sentence from outfield safety reg-
ulations is “Workers should be equipped with face protection during welding operations”.
It contains two overlapped triples: < worker, perform. . . operations, welding operations>,
< worker, be equipped with, face protection>, where “perform” and “be equipped with”
are the pre-defined predicates in the schema. The words “worker, welding operations,
face protection” are all related to the final extracted entities. Next, each word in the input
sentence is tagged based on BIEO signs. For example, the word “face” is the first word of
the object entity “face protection” and is related to the subject (sub) “worker” and predicate
“be equipped with” (P1). So its tag form is sub− P1− B. Similarly, the last word of the
object entity “protection” is tagged as sub− P1− E. All words between an entity’s first
and last word are labeled as “I” (inside). Moreover, the other words unrelated to the final
relational triples are labeled as “O”. We set B and E signs for each subject entity and object
entity, a total of 4|N|+ 2 tags (2|N| “B” tags, 2|N| “E” tags, 1 “I” tag, and 1 “O” tag) are
generated. The BERT-based encoding layer’s output is the tagging decoder’s input. Finally,
the decoder matches the “B” and “E” signs of the subject and the object to form triples,
which is performed by matching tags separated by the total number of predicates. The
number of subject and object tags are doubled, so more entities and relational triples can be
extracted from a sentence. More comprehensive information can also be obtained from the
safety regulations.
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Tags: OB-P1-obj

B-P2-obj

E-P1-obj

E-P2-obj sub-P1-B sub-P1-E

O sub-P2-B sub-P2-E

Output triples: <workers, P1, face protection> <workers, P2, welding operations>

Input Sentence: [Workers] should be equipped with [face protection] during [welding operations].

Figure 3. Gold annotation for an example sentence based on our tagger.

3.4. On-Site Scene Parsing Module

The IE module can automatically extract the key information from the regulations.
In addition, detecting the visual relations and parsing the on-site scene is necessary for
additional research on automatic hazard inspections. The S, P, O > (SPO) relational triples
can also express visual relations. An on-site scene graph has the perceptual capacity to
recognize the position, class, and interrelationship of entities. The visual relations between
entities could be action-based, comparative, or spatial. As shown in Figure 4, the on-site
scene parsing module extracts visual and semantic features for each visual relationship
proposal.

(1) Semantic modeling: We first introduce a pre-trained fastText model to map the
word vectors into an embedding space that preserves higher semantic similarity. (2) Visual
network: Based on earlier research [16], we build a separate CNN branch to extract the
predicate feature from interactive areas of the subject and object. The structure of the on-site
scene parsing network is shown in Figure 4.
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Visual Network

Semantic Modeling

Figure 4. The on-site scene parsing module architecture.

3.4.1. Semantic Modeling

The relation and object labels can be properly initialized using pre-trained word vec-
tors. Here, we introduce pre-trained word embedding, which maps the source words into
an embedding space while maintaining higher semantic similarity. We initialize the word
embeddings for the objects and predicates with pre-trained two million word vectors fastText
learned on Common Crawl [45]. The word embedding is computed by representing a word as
a bag of n-grams [46]. This word-internal information-rich embedding outperforms random
initialization and the word2vec tool, which consider words as independent representations
and disregard the morphological features within words. Inspired by stacked motif net-
works [47], we condition on objects when predicting predicate class. The statistical analysis
shows that object labels are highly predictive of relation labels. For each on-site image, we
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compute the empirical distribution p̂(p | s, o) over the predicate between the subject and
object in the training annotations. We assume the testing set has the same distribution as
the training set. In the training annotations set, p represents the instances of the predicate
class given the subject class (s) and object class (o).

3.4.2. Visual Network

We employ Mask R-CNN [21] as the object detector that generates the ROI (region of
interest) feature map for on-site images. The ROI feature of the subject and object entities
( fsub, fobj) are extracted from the convolution layer. The visual features for relations usually
come from the interactive areas of subjects and objects, so we build a separate CNN branch
to extract the predicate feature from interactive regions of the subject and object based on
previous research [16].

The ROI feature of relations ( frel) is also extracted from the CNN branch, the same as
the structure of the entity convolution layer. These features are then mapped to the hidden
layer nodes through the multilayer perceptron (MLP) and generate hidden features hs, hr,
and ho. The entity embeddings of subjects and objects are output:

ys = g(hs
k) = g(

M

∑
i=0

ws
jkhs

jk) (4)

yo = g(ho
k) = g(

M

∑
i=0

wo
jkho

jk) (5)

where i, j, and k denote the node of the input layer, hidden layer, and output layer, re-
spectively; i → j → k represents the relative connection among the different layers of
the MLP; g(h) is the activation function; and wij denotes the weight of the current j layer.
Then, we generate a fusion relation embedding hr

j by concatenating the subject and object
embeddings with hr

j−1:

hr
j =CONCATENATE(y

s + hr
j−1 + yo)

=ys ⊕
M

∑
i=0

wr
i(j−1)h

r
i(j−1) ⊕ yo.

(6)

Finally, the relation embeddings yr are output through a fully connected layer:

yr = g(hr
k) = g(ys ⊕

M

∑
i=0

wr
jkhr

jk ⊕ yo). (7)

As shown in Figure 4, the logits (the unnormalized class probabilities) from the
semantic modeling (logit(psem) and visual network (logit(pvis)) are output through the final
fully connected layer. The output logits are added and then perform softmax normalization
to obtain the final probability distribution of the predicate class:

p(pre) = softmax(logit(psem) + logit(pvis). (8)

3.5. Automatic Work Safety Checking Approach

To conduct on-site safety inspections, we design an automatic control process, as
shown in Figure 5. This process aims to identify any deviations between the on-site
construction process and the safety regulations by comparing the visual relations output
from the on-site scene graphs with the key textual relational information derived from the
IE model. The correction instructions are then created and relayed to the safety managers
and the on-site workers until the current production step is finished. Integrating on-site
visual understanding with plain-text information extraction can make automatic safety
inspections effective.
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Figure 5. The flowchart of the work safety checking process.

In order to conduct PPE compliance checking, we set a relational information matching
procedure to analyze the occurrence of each PPE-related triple (Yppe =

(
Pppe, Sppe, Oppe

)
)

in the set of visual relational triples (Yvis = (Pvis, Svis, Ovis)). If no worker is detected in an
image from object detection, this scene is not applicable for the PPE compliance checks.
Suppose the detected visual relational triple set for each worker contains all the PPE-related
textual relational information ( Yppe ⊆ Yvis, Yppe 6= ∅). In that case, it means that the PPE
inspection of workers meets the requirements. If no textual relational triples or part of
them exists in the worker-related relationship triples (Yppe ∩ Yvis = ∅ or Yppe ∩ Yvis = A,
A & Yppe), it means the PPE checks do not comply with the regulations.

4. Experiments and Results

The experimental details are described in this section. We used key sentences from
the outfield work safety standardization to test the feasibility of the IE method. An image
dataset for PPE checking was constructed to test the feasibility of our proposed on-site
scene parsing method. Our proposed IE and scene parsing approaches on both self-built
and public benchmark datasets showed good performance.

4.1. Automated Textual Information Extraction for Outfield Safety Regulations

The proposed IE method was implemented and tested on selected outfield work safety
regulations related to hazard identification. Experimental results on the self-built and
large-scale public datasets performed well in information extraction.
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4.1.1. Schema-Based Dataset Establishment and Model Training

We collected outfield work safety regulations from open network resources and docu-
ments released by the enterprises. These texts were first cleaned up by correcting typos
and spelling mistakes. The full texts were then split into several separate sentences. Next,
we deleted the irrelevant and meaningless sentences. According to the pre-defined schema,
we chose 336 key sentences related to on-site hazards for training. We labeled the entities
and relations for each candidate sentence using the label studio tool to generate relational
triples that follow the schema. Finally, 1218 relational triples in total were obtained.

In the training process, a total of 269 and 67 sentences were, respectively, used for
training and validating. We employed the pre-trained BERT-Base Chinese model (12-layer
Transformer, 768-hidden, 12-heads, 110 M parameters) [43] for fine-tuning. The learning
rate was set to 1 × 10−5. Additionally, the training process was early stopping when the F1
score on the validation set did not increase for 10 sequential epochs.

4.1.2. Results of Regulations Information Extraction

We followed the evaluation metrics from Fu et al. [48], the standard precision (Prec.),
recall (Rec.), and F1 score (F1) were adopted to evaluate our IE model. A relational triple
was considered correct only if the two entities and a predicate type were all correct.

To demonstrate the effectiveness, our IE model was first evaluated on the widely used
public dataset DuIE [42]. DuIE is a large-scale Chinese dataset built by Baidu Inc for relation
extraction, consisting of 210,000 sentences covering 49 predicate types. The proportion of
overlapping pattern sentences in the DuIE dataset is higher than the other widely used
public datasets, such as NYT[49] and WebNLG [50]. Therefore, extracting information from
DuIE is more challenging. As Table 2 shows, our IE model achieved encouraging Prec.,
Rec., and F1 of 77.3%, 82.1%, and 79.6% on the DuIE dataset, respectively, which indicated
good performance. For the selected outfield work safety regulations, it achieved Prec., Rec.,
and F1 of 80.1%, 78.6%, and 79.3%, respectively.

Table 2. Results of information extraction on DuIE and Regulations datasets.

Task
DuIE Regulations Dataset

Prec. (%) Rec. (%) F1 (%) Prec. (%) Rec. (%) F1 (%)

Information extraction 77.3 82.1 79.6 80.1 78.6 79.3

According to the statistics, most of the sentences in the selected regulations belong to
overlapping patterns, making information extraction more difficult. If two relational triples
share the same entity pairs or two triples contain at least one overlapping entity but do
not share the same entity pairs, the sentence belongs to an overlapping pattern. Next, we
conducted a qualitative study to prove the IE approach of extracting key information from
work safety regulations. Table 3 shows the results of processing the overlapping sentences
in the regulations text.

Table 3. Case study of regulations information extraction.

Instance Examples Results

(1). Workers should be equipped with face protection and hand
protection to prevent burns when performing welding

operations.

<workers, be equipped with, face protection> <workers, be
equipped with, hand protection> <welding operation,

occurrence, burn> <workers, perform. . . operations, welding
operations>

(2). Workers working at height should be equipped with hard
hats to prevent head injury from falls.

<workers, be equipped with, hard hats> <working at height,
occurrence, head injury from falls> <workers,

perform. . . operations, working at height>
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4.2. On-Site Scene Graph Generation for Visual Information Extraction

On-site visual information extraction based on the proposed scene parsing method
is described in this section, along with its implementation and performance. We selected
several types of PPE objects and built an on-site scene graph dataset to test the feasibility of
the proposed method.

4.2.1. On-site Scene Graph Dataset Establishment

First, PPE safety checking rules were selected from outfield work safety regulations
based on the IE model in Section 4.1. Second, on-site images were crawled from open image
resources based on these safety rules, then manually selected. A total of 829 images were
selected as the final candidates and then annotated by the LabelImg annotation tool [51]
and PySimpleGUI.

The image annotation process consists of entity annotation and relation annotation. As
shown in Figure 6, the bounding box and box labels were used to identify the locations and
types of entities. The subject, object, and predicate attributes were adopted to describe the
visual relational triple. Finally, the entities and relations annotation results were organized
into the Visual Genome [52] format to facilitate model training. As the statistics in Table 4
show, we obtained a total of 2316 visual relations annotations.

+TZOZ_�GTTUZGZOUTY <OY[GR�XKRGZOUT�GTTUZGZOUTY

'TTUZGZOUTY�YZUXKJ�OT�<-�LUXSGZ

(U[TJOTM�HU^

5HPKIZ�RGHKRY

6XKJOIGZK�Z_VK

'TTUZGZOUTY YZUXKJ OT <- LUXSGZ

Figure 6. Interface and storage format of the image annotation.

Table 4. Visual relation annotations statistics.

Subject Predicates Objects Instances

Worker Wearing Hard hat 1141
Eye protection 220
Hand protection 364
Face protection 169

Holding Welding tool 422
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4.2.2. Results of On-Site Scene Graph Generation

After the annotations, the dataset was randomly divided into a training set (80%)
and a testing set (20%). The basic learning rate was set to 1 × 10−3, and optimization
was performed via momentum SGD. For the object detection task, we used the evaluation
metrics from He et al. [21], which include average precision (AP) (averaged over IoU
thresholds), AP50, AP75, APS, APM, and APL (AP at different scales). The test results of
the object detector using the ResNeXt-101-FPN backbone are displayed in Table 5 .

Table 5. Results of object detection.

Task AP AP50 AP75 APS APM APL

Object detection 0.768 0.841 0.783 0.703 0.652 0.800

Following Zellers et al. [47], we conducted three tasks to evaluate the performance for
relation detection: (1) Scene graph generation (SGGen) predicts the subjects and objects
appearing in an image and all labels(the class label of subjects, predicates and objects).
(2) Scene graph classification (SGCls) predicts the class labels for the subjects and objects
given ground-truth bounding boxes and predicts the predicates labels. (3) Predicate clas-
sification (PredCls) predicts predicate labels are given ground-truth subjects and object
bounding boxes and labels. We use Recall@K (R@20, R@50, and R@100) as the evaluation
metrics for these three tasks. Recall (recall = TP

TP+FP ) is the ratio of the true relationship in
the top-K confident relation predictions in an image. Table 6 shows the evaluation results
(R@20) of scene graph generation using the ResNeXt-101-FPN backbone.

Table 6. Results of scene graph generation using the ResNeXt-101-FPN backbone.

Task SGGen SGCls PredCls

On-site scene graph generation 0.507 0.855 0.978

Our scene parsing model was also evaluated on a benchmark dataset: Visual Relation-
ship Detection (VRD) dataset [53], which includes 5000 images with 100 object categories
and 70 predicate categories.

Figure 7 displays more qualitative results of our model on two datasets. Qualitative
results on the self-built on-site dataset mainly showed the visual relationship between
workers and PPEs. The results on the VRD dataset showed the ability of our model to
extract various types of interactions such as spatial, comparative, or action-based.
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Figure 7. Qualitative examples of scene graph generation on self-built and VRD datasets.

4.3. Case Study of Hazard Identification

As shown in Figure 6, the critical steps of automatic safety inspection are summarized
as follows: (1) scene graph generation for the key work sites, (2) key information extraction
of safety rules, and (3) matching the two kinds of relational triples output from the visual
and linguistic model for PPE compliance checking. Next, we conduct a case study for the
specific scenes. We selected two types of work scenes to illustrate the process for safety
checking and hazard inference, as shown in Figure 8.

In the outfield working environment, it is required that monitoring equipment be set
for the key sites (e.g., working environment of work-at-height). The video surveillance
images are utilized as the input of the on-site scene parsing module. As Figure 8 shows,
the proposed scene parsing model parsed the images of the work-at-height and welding
operation, and the visual relational triples were output. Next, the corresponding safety
regulation texts were retrieved from the database according to the specific construction
scene, and the key textual relational information was extracted through the IE module.

In order to check PPE compliance, we set up a triple keyword matching procedure
to analyze the occurrence of each textual relational triple in the set of visual relational
triples and output three types of labels: (1) On-site workers comply with the regulations
(Yes). (2) The PPE safety checks do not meet the regulations (No). (3) The scene is not
applicable for the PPE compliance checks (N/A). Finally, conditional judgment was utilized
to perform hazard inference.
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Figure 8. Examples of PPEs compliance checking and hazard inference.

5. Discussion

This paper proposed a framework combining NLP and computer vision to achieve
on-site safety inspection and hazard identification in outfield tests. To enable the possibility
of compliance checking, the framework extracted information from safety regulations text
using a BERT-based IE method. Meanwhile, on-site scene graphs were generated to detect
the visual relations between objects to enhance the on-site scene understanding. Compared
with previous research of on-site hazard identification based on deep learning, our study
has the following advantages. (1) In safety regulations processing, this paper proposed a
novel information extraction model based on the BERT encoder and BIEO tagging scheme.
Using BIEO to tag sentences can extract more textual relational triples from the regulation
texts with more overlapping patterns. The extracted textual relational information can be
used for automatic hazard identification against safety rules. (2) In on-site image processing,
we designed a scene graph generation method for scene understanding, which can better
detect the visual relational information combined with semantic modeling. Additionally,
we designed an automatic control process based on matching textual and visual relational
information to conduct safety inspections. The proposed automatic work safety checking
approach can implement hazard inference for the on-site scene graphs with the regulations
retrieved from matching relational triples.

The effectiveness of the proposed method was experimentally evaluated from qualita-
tive and quantitative perspectives. In text processing, the proposed IE model was trained
with a self-built Chinese text dataset of outfield safety regulations and a large-scale public
Chinese dataset, DuIE. The proposed IE model achieved F1 scores of 79.3% and 79.6%
on two datasets, respectively. The high-performance results of F1 scores show that the
proposed IE model is competitive among various text information extraction methods
and can accurately extract the key information related to hazard identification from safety
regulations text. Qualitative results show that the IE model can automatically extract key
information from a large amount of text, represented as a textual relational triple such as
<workers, be equipped with, hard hats>. In image processing, the scene parsing model
was trained with a self-built on-site image dataset and a public benchmark dataset VRD.
The average precision (AP50) result for the object detector on the on-site test images is
84.1%. The Recall@20 to evaluate the challenging SGG task is 50.7%. The proposed scene
parsing model is competitive in parsing scenes and can extract visual relations between
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workers and their interacting objects from images according to the high-performance re-
sults of precision and recall@20. Qualitative results show the ability of the scene parsing
model to extract various types of relational triples (e.g., spatial, action-based ) represented
as <worker, wear, hard hats>, <worker, holding, welding tool>, and <person, standing
behind, building>. In the safety checking process, the analysis results on different on-site
scenes showed that processing the output from the textual and visual modules based on
relational information matching enabled automatic safety inspections and hazard inference.

Although our model performed well on various evaluation tasks and metrics, there
are still some drawbacks. We next discuss the limitations and future research directions of
this paper.

5.1. Limitations

The automatic detection of hazards in outfield tests is facilitated by rules information
extraction and scene graph generation. However, there are still some limitations. First,
deep-learning-based models require a large amount of training data to perform effectively
but establishing the large-scale text and image datasets for the construction site is labor-
intensive. We constructed two domain-specific datasets for the information extraction and
scene graph generation models, which could be better applied to outfield construction sites.
However, the size of the datasets is inadequate to cover most outfield construction hazards,
so we need to expand and enrich the annotation data. Second, we mainly detected action-
based visual relations in the scene graph generation task without carefully considering
geometric and spatial aspects. Due to the impossibility of proximity measurements, utiliz-
ing the spatial relations detected by the scene parsing model is hard for safety inspections.
The research on pose estimation, which is based on the human skeleton and can provide
more precise information about a person for hazard identification, is also not conducted in
this paper.

5.2. Future Research

This paper proposed a framework based on deep learning to integrate textual informa-
tion extraction with scene graph generation and improve construction safety management
capabilities. Textual relational triples can be extracted from regulation text using an NLP-
based information extraction method. The scene graph generation algorithm detected
entities and visual relational triples. An automatic control procedure matched the tex-
tual and visual relational triples to enable safety inspection. The primary objective of
our ongoing studies is to develop a multi-modal construction knowledge graph. Textual
and visual relational triples are continuously integrated into the knowledge graph for
data updating. Dynamic prediction of construction site hazard will be achieved using the
knowledge graph built on multi-source data fusion. In addition, the personalized safety
training recommendation system combining the knowledge graph feature learning can
be developed to meet the safety training needs of workers and reduce the occurrence of
workers’ unsafe behaviors.

6. Conclusions

This work introduced a method to implement outfield construction safety inspections.
Unlike previous approaches, we extracted key information from visual and textual modali-
ties and represented them in the same relational triple form to relieve the semantic gap. The
IE model employed BERT to encode sentences and extract textual relational triples based
on the proposed BIEO tagging scheme. It was evaluated on the self-built outfield regula-
tions dataset and a large-scale Chinese dataset, DuIE. Our method achieved encouraging
performance in F1 scores of 79.3% and 79.6%, respectively. The proposed scene parsing
method extracted visual relational information by fusing pre-trained fasttext and the deep
visual network. It was trained and tested on the self-built on-site image dataset, and our
method achieved 84.1% measured by the AP50 metric on object detection. For three tasks
widely used to evaluate scene graph generation, our method achieved 50.7%, 85.5%, and
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97.8%, respectively, on relation detection measured by SGGen(R@20), SGCls(R@20), and
PredCls(R@20). The results demonstrated the effectiveness of the proposed methods in
regulation text information extraction and on-site scene parsing. Additionally, an auto-
matic control process was developed by integrating processed visual and textual relational
triples to implement the PPE compliance checks. The results of the two scenes showed the
feasibility of our method in safety inspection and hazard inference.

Most current studies on safety management using construction images and domain
knowledge focus on deep visual–semantic modeling; however, the automatic information
extraction from domain texts is not sufficiently explored. The theoretical contribution
of this research is to present a deep learning framework for automatically extracting
textual and visual relational information, which complements the lack of understanding
of the regulation text in previous vision-based models. Outfield tests involve a variety of
hazards, and there are numerous construction-related regulations in the outfield work safety
requirements. The practical implication of this paper is to provide the possibility of outfield
automated safety management by integrating textual and visual information. Further
improvements will be to expand multi-source data for building a domain knowledge graph
to improve the safety management for multiple types of hazardous operations in outfield
tests.
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