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Abstract: The rigid floor assumption is commonly used in structural design, but it is not applicable to
buildings with a large plane aspect ratio. This study designed nine frame-shear wall structures with
the story of 3, 6, and 12, with a plane aspect ratio of 2, 3.33, and 4. Based on the design results, the
finite element models were set up by ETABS. Both the rigid diaphragm and the flexible diaphragm
cases were considered in each model. The effect of elastic diaphragm deformation on structural
seismic performance was investigated, including fundamental period, top displacement, inter-story
drift, and base shear force. The results indicate that the diaphragm deformation on 3-story structures
is more significant than that on 6-story and 12-story structures. The diaphragm in-plane deformation
increases with the aspect ratio. On the basis of the analysis results, a simplified formula to calculate
the internal force amplification factor and a quantitative assessment method for evaluating the
diaphragm flexibility were proposed, which can provide a reference for engineering design.

Keywords: flexible diaphragm; rigid diaphragm; frame-shear wall structure; finite element analysis
(FEA); seismic performance; in-plane deformation of diaphragm

1. Introduction

The diaphragm is an important part of a building structure, and its in-plane stiffness
directly influences the structure’s seismic performance. In the present structural design,
the rigid floor assumption is commonly adopted. However, in the case of buildings with
a large aspect ratio [1], openings in the diaphragm plane [2], or asymmetric plane [3,4],
the elastic deformation of the flexible diaphragm significantly impacts the mechanical
behavior of the overall structure. Under these circumstances, the rigid floor assumption is
not applicable anymore.

Recently, there have been more and more studies about structures’ mechanical per-
formance with a flexible diaphragm. Koliou et al. [5–7] analyzed the numerical models of
buildings with rigid walls and flexible roof diaphragms (RWFD) and developed a semi-
empirical fundamental period formula and a concept of distributed yielding in the flexible
diaphragm to improve the seismic performance of RWFD buildings. Sadashiva et al. [8]
proposed a conservative displacement prediction equation and a fundamental natural
period estimate equation for flexible diaphragm structures through a series of elastic and
inelastic time history analyses. Eivani et al. [3,9] studied the seismic behavior of asymmetric
structures with flexible diaphragms and suggested a proper configuration of stiffness and
strength centers to reduce the sensitivity of structural responses to diaphragm flexibility. In
addition, it is worth mentioning that timber and steel diaphragms are commonly regarded
as flexible [5,6]. Due to low pollution, low cost, and renewability [10,11], there are increas-
ing research on timber diaphragms, including timber–concrete composite diaphragm [11],
retrofitting of existing masonry buildings [12], connection characteristic to walls of un-
reinforced masonry buildings [13], a combination between cross-laminated timber with
reinforced concrete (RC) or structural steel [14].
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Simultaneously, many scholars investigated the stiffness and deformation problems
of the diaphragm. Ju and Lin [15] proposed a deformation coefficient R to determine the
diaphragm type. Subsequently, Tena-Colunga et al. [1] used R to determine the diaphragm
type and then concluded that the diaphragm system behaved rigid in apartment buildings
with a small floor span (6 m or less), but in office buildings with floor spans of 10 m or
more, the diaphragm system probably behaved semi-rigid, semi-flexible, or even flexible.
Ruggieri et al. [16–18] developed a practical numerical procedure to determine whether the
diaphragm system is rigid or flexible. The analysis results of existing RC buildings showed
that the diaphragms of an infill-frame and retrofitted frame were more inclined to the flexi-
ble diaphragms than that of bare-frame. The simulations conducted by Pecce et al. [19,20]
presented that the in-plane diaphragm deformation of RC wall structures was not negligi-
ble, and the building shape, aspect ratio, and number of walls had effects on the in-plane
diaphragm deformation. Fleischman et al. [21] proved that the rigid floor assumption no
longer applies to the perimeter lateral-system structures and then proposed a deformation
coefficient to evaluate the diaphragm deformation. Zhang et al. [22] analyzed the assembly
truss beam composite floor, concluding that the rigid floor assumption no longer applies
to this kind of structure. Wei et al. [23] discussed the analysis and design methods of the
diaphragm’s in-plane stress and came up with a checking method for the diaphragm’s
bearing capacity.

According to the American ASCE 7 standard [24], the performance index coefficient
RASCE for evaluating the diaphragm flexibility can be calculated by Equation (1). When
RASCE < 2, the diaphragm system can be regarded as rigid, and the rigid floor assumption is
applicable. When RASCE > 2, the diaphragm system should be considered flexible, and the
elastic floor assumption is appropriate to be adopted. It is worth noting that this evaluation
method was concluded mainly based on the experimental and analytical study of wood
structures’ roofs. Consequently, the applicability of the RC diaphragm needs to be further
analyzed. Currently, there is no quantitative provision for judging rigid diaphragm or
flexible diaphragm in Chinese code, which needs further improvement.

RASCE =
∆C

0.5(∆1 + ∆2)
(1)

where ∆c is the in-plane maximum relative deformation of the diaphragm; 0.5(∆1 + ∆2) is
the average lateral displacement value of the adjacent lateral force-resisting components at
two ends of the diaphragm, as shown in Figure 1.
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Figure 1. Definition of flexible diaphragm in ASCE 7.

In this study, nine frame-shear wall buildings with a different number of stories and
aspect ratios were designed firstly by current Chinese codes. Then, the corresponding
structural models with rigid and flexible diaphragms were established using the finite
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element software ETABS. The influence of the diaphragm deformation on structural seis-
mic performance was investigated through time history analysis. Finally, a regression
analysis was performed on the results, leading to a simplified method for determining
diaphragm type.

2. Investigated Frame Structures

Nine frame-building models with different stories and aspect ratios were designed.
The specific parameters are listed in Table 1. The design plane width of all building models
was 12 m, so the lengths of building models with aspect ratios of 2, 3.33, and 4 were 24 m,
40 m, and 48 m, respectively. The column spacing in the X and Y directions were 8 m
and 4 m, respectively. Moreover, the plane arrangement of the structure with an aspect
ratio of 4 is depicted in Figure 2. For all building models, the thickness of the diaphragm
was 100 mm, and the bottom shear wall was 200 mm, which was the minimum value
recommended by the Chinese code of Technical Specification for Concrete Structures of Tall
Building (JGJ 3-2010) [25]. In addition, the site category was Class II, and the precautionary
seismic intensity was 7 degrees. The exceedance probability in a 50-year return period
is 63% and 2% for frequent and rare earthquakes [26], respectively. The primary wind
pressure was 0.3 kN/m2, and the ground roughness category was Class B. Moreover, the
height of the first and other floors were 4.5 m and 3.6 m, respectively. Additionally, the dead
loads of floor, roof, exterior, and interior walls were 4.8 kN/m2, 3.6 kN/m2, 2.48 kN/m2,
and 2.35 kN/m2, respectively. The live load of all members was 2 kN/m2, and the yield
strength of steel reinforcements was 400 MPa. The parameters in the structure design
software of PKPM V3.2 were set following Chinese specifications [27–29]. The dimensions
of the primary components are listed in Table 1.

Table 1. Design parameters and dimensions of primary components.

Model Story Aspect
Ratio

Section Dimension of Bottom
Column/(mm ×mm)

Section Dimension of
Main Beam/(mm ×mm)

F3-LB2 3 2 400 × 400 200 × 500
F3-LB3.33 3 3.33 400 × 400 200 × 500

F3-LB4 3 4 400 × 400 200 × 500
F6-LB2 6 2 400 × 400 200 × 500

F6-LB3.33 6 3.33 400 × 400 200 × 500
F6-LB4 6 4 400 × 400 200 × 500

F12-LB2 12 2 550 × 550 200 × 500
F12-LB3.33 12 3.33 550 × 550 200 × 500

F12-LB4 12 4 550 × 550 200 × 500
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3. Finite Element (FE) Modeling and Verification
3.1. FE Modeling
3.1.1. Element Type and Meshing

Beams and columns were simulated by Beam/Column/Brace Objects elements. The
nonlinear performance of the frame was realized by plastic hinges. M3 hinges were em-
ployed in beams that were mainly subjected to bending moment, and P-M2-M3 fiber hinges
were used in columns that were mainly subjected to the combined action of compression
and bending moment. Beam and column elements were meshed by the frame automatic
mesh option. The diaphragms were simulated by layered shell elements, meshed by the
default floor automatic mesh option. Additionally, the rigid diaphragms were specified by
nodes. In terms of flexible diaphragms, the option of S11 (principal stress 1), S22 (principal
stress 2), S12 (shear stress) for concrete layers, and S11 and S12 for reinforcements layers
were set as elastic. The shear walls were also simulated by layered shell elements and
meshed by the automatic rectangular mesh option. The concrete layers of diaphragms
and shear walls were divided into two layers, respectively. One layer simulated in-plane
(membrane) performance, and the other layer simulated out-of-plane (plate) performance.

3.1.2. Material Modeling

The Mander model was applied for concrete material [30], and the Poisson’s ratio,
peak strain ε

′
c, ultimate strain εu were taken as the default values in ETABS. In detail,

the Mander-unconfined concrete constitutive model described beams’ concrete behav-
ior and the non-boundary region of shear walls. Figure 3a presents the corresponding
stress–strain relationship curve, which consists of a curved and straight part calculated by
Equation (2). On the contrary, the Mander-confined concrete constitutive model described
the confined compressive concrete behavior of columns and the boundary region of shear
walls. Figure 3b and Equation (3) present the corresponding stress–strain relationship.
Additionally, the Hillerborg two-line model was selected to perform the tensile concrete
behavior of all components [31], as shown in Figure 3c and Equation (4).

σc =


f
′
c xr

r−1+xr εc ≤ 2ε
′
c(

2 f
′
c r

r−1+2r

)(
εu−εc

εu−2ε
′
c

)
2ε
′
c < εc ≤ εu

(2)

where x = εc/ε
′
c; r = E/

[
E
(

f
′
c/ε

′
c

)]
; E = 4730

√
f ′c [32,33]; σc and εc are the compressive

stress and strain of unconfined concrete, respectively; f
′
c and ε

′
c are the compressive strength

and corresponding strain of unconfined concrete, respectively; εu is the ultimate strain of
unconfined concrete; E is the elastic modulus of concrete.

σcc =
f
′
ccxr

r− 1 + xr (3)

where x = εcc/ε
′
cc; r = E/(E− Esec); ε

′
cc =

[
5
(

f
′
cc/ f

′
c − 1

)
+ 1
]
ε
′
c; Esec = f

′
cc

ε
′
cc

; σcc and εcc

are the compressive stress and strain of confined concrete, respectively; Esec is the elastic
secant modulus of concrete; f

′
cc and ε

′
cc are the compressive strength and corresponding

strain of confined concrete, respectively [30,34].

σt =


ftεt

2×10−4 εt ≤ 2× 10−4

ft(8×10−4−εt)
6×10−4 2× 10−4 < εt ≤ 8× 10−4

(4)

where σt, εt, ft are the tensile stress, corresponding strain and tensile strength of concrete.
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Furthermore, all the steel reinforcements adopted the constitutive model defined by
simplified parameters in ETABS [34]. The stress–strain relationship of steel reinforcements
is depicted in Figure 3d and Equation (5), and the strain-hardening segment is simplified
as a parabola.

σs =


Eεs εs ≤ εy
fy εy < εs ≤ εsh

fy +
(

fu − fy
)√ εs−εsh

εu−εsh
εsh < εs ≤ εu

(5)

where E = 21, 000 MPa; εy = fy/E; σs, εs, fy, fu, εy, εu, and E are the stress, strain,
yield strength, ultimate strength, yield strain, ultimate strain and elastic modulus of steel
reinforcements; εsh is the strain at the initial strain strengthening of steel reinforcements [34].

3.1.3. Ground Motion Selection

The selected method is based on the Chinese code GB50011-2010 [27]. The selected nine
ground motions include seven natural waves and two artificial waves. The average spectral
acceleration of the nine ground motions was close to the design response spectrum [35,36]
for frequent earthquakes, as shown in Figure 4. The peak accelerations of the selected
nine ground motions were scaled to represent rare earthquakes in the nonlinear dynamic
time history analysis. In order to meet the requirement of effective peak acceleration, the
“proportional coefficient” in the load case menu of ETABS was scaled [36], as listed in Table 2.
Under the precautionary seismic intensity of seven degrees, the peak accelerations of each
seismic record were scaled to 35 cm/s2 and 220 cm/s2 for frequent and rare earthquakes
in the time history analysis [27]. There were eighteen FE models in this study, including
nine rigid diaphragm models and nine flexible diaphragm models. Each model was run
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separately under nine ground motions. Since the response spectrum of each ground motion
record was not the same as the design response spectrum, we took the average value of the
nine-time history analysis results as the final result to represent the seismic behavior.
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Figure 4. Earthquake acceleration response spectrum for frequent earthquake.

Table 2. Amplitude scaling factor.

Ground Motion Peak
Acceleration/(cm/s2)

Under Frequent
Earthquake

Under Rare
Earthquake

ELCentro 341.70 0.102 0.644
TangShanEW 65.94 0.531 3.336
HOLLISTER-2 174.55 0.201 1.260

KAR-3 143.89 0.243 1.529
Taiwan-05 76.75 0.456 2.866

ArtWave-RH1TG045 100.00 0.350 2.200
Imperal Valley 80.01 0.437 2.750

Taiwan-02 31.21 1.122 7.050
ArtWave-RH1TG040 100.00 0.350 2.200

3.1.4. Load Case and Analysis Method

According to the Chinese code GB50011-2010 [27], the dead load factor and live load
factor were separately taken as 1 and 0.5 when defining the mass sources. Set gravity
load to Case 1, which was static nonlinear. The earthquake load was set to Case 2 as the
time–history analysis case. Case 2 was initiated from the endpoint of Case 1. Because the
diaphragm deformation was mainly concentrated in the Y direction, only the seismic action
in the Y direction was considered. The solution method was the direct integration method.

3.2. Verification
3.2.1. Verification of Parameter Settings

The shear wall specimen RW2 [37] and the frame specimen PCF-1 [38] were selected to
verify the rationality of the above FE parameters. The dimensions and steel reinforcements
configurations are depicted in Figure 5.
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Figure 5. Dimensions and details of specimens: (a) shear wall specimen RW2; (b) frame specimen
PCF-1.

For the shear wall specimen RW2, a constant and uniform vertical pressure was
applied on the top area of the wall first, and then applied a horizontal monotonic load
to the left endpoint on the top of the wall, using the displacement control method. The
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load-displacement curve of FEA and test are illustrated in Figure 6a, which matched well.
At the same time, the failure modes of the test and FEA are presented in Figure 7. The
bottom right concrete of the shear wall in FEA reached the ultimate strength of 41.87 MPa
and crushed, which was consistent with the experimental failure phenomenon in Figure 7a,
indicating that the finite element model can simulate the mechanical performance of the
shear wall well.
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Figure 7. Failure mode of specimen RW2: (a) test; (b) FEA.

For the frame specimen PCF-1, the vertical loads were first applied to the frame with an
exterior column load of 250 kN and an interior column load of 350 kN, followed by a cyclic
horizontal load on the top of the frame. The load-displacement hysteresis curves obtained
by the test and FEA are shown in Figure 6b, which also match well. Simultaneously,
the occurrence order of plastic hinges is depicted in Figure 8a, which is consistent with
the description of the experimental phenomenon [38]. Moreover, when the structural
displacement reached 45 mm, a large piece of concrete fell off at plastic hinge 1 in the
test [38]. It can be seen from Figure 8b that the concrete reached the ultimate compressive
strain of 0.004 when the structural displacement reached 50 mm in the FEA, which was
consistent with the test phenomenon. Subsequently, the FE model can accurately simulate
the mechanical behavior of the frame-shear wall structure.
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3.2.2. Analysis Results: Comparison between ETABS and PKPM

In addition, it is necessary to verify the consistency between the analysis models in
ETABS and the design models in PKPM. Based on the calculation results of rigid diaphragm
models under frequent earthquakes in PKPM and ETABS, the total mass, fundamental
period, elastic displacement at the top of the middle column in the X direction (as shown at
point D in Figure 9), and base shear force of models were extracted. The comparison results
are listed in Table 3. The total mass deviations and the fundamental period deviations were
not more than 4%, and the top displacement deviations and the base shear force deviations
were not more than 7%, representing that the structural analysis model in ETABS was
consistent with the design model in PKPM.
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Figure 9. In-plane deformation of diaphragm.

Table 3. Calculation results comparisons of response spectrum case between ETABS and PKPM.

Model Mass Ratio Period Ratio Elastic Displacement
Ratio at Point D

Base Shear
Force Ratio

F3-LB2 1.00 0.98 1.06 1.05
F3-LB3.33 1.00 0.98 1.04 1.05

F3-LB4 1.00 0.98 1.04 1.05
F6-LB2 0.99 1.02 0.97 1.03

F6-LB3.33 1.02 1.03 1.00 1.02
F6-LB4 1.02 1.02 0.95 1.02

F12-LB2 1.01 1.03 1.02 1.06
F12-LB3.33 1.02 0.98 1.04 0.94

F12-LB4 1.01 1.04 0.93 1.05
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4. The Effect of Flexible Diaphragm on Structural Seismic Performance

In this section, the fundamental period ratio, top displacement ratio at the top of the
middle column in the X direction (as shown at point D in Figure 9), maximum inter-story
drift ratio, and base shear force ratio were used to investigate the effect of the flexible
diaphragm on structural seismic performance, described as follows:

4.1. Fundamental Period Ratio

The relationship between the ratio of the fundamental period of flexible diaphragm
models to that of rigid diaphragm models with a structural plane aspect ratio is shown
in Figure 10a. The ratio of the period changed with the structural plane aspect ratio.
Specifically, the period ratio decreased as the number of the story increased but increased
as the aspect ratio increased. For the 3-story structures, the period of flexible diaphragm
models with aspect ratios of 2, 3.33, and 4 increased by 3%, 12%, and 19%, respectively,
compared with the corresponding rigid diaphragm models. For the 6-story and 12-story
structures, the impact of elastic diaphragm deformation on the structural period was less
than 7%, which could be ignored. Therefore, it turns out that the effect of the flexible
diaphragm on the fundamental period is more significant in low-rise buildings.

Buildings 2023, 13, x FOR PEER REVIEW 11 of 17 
 

4. The Effect of Flexible Diaphragm on Structural Seismic Performance 

In this section, the fundamental period ratio, top displacement ratio at the top of the 

middle column in the X direction (as shown at point D in Figure 9), maximum inter-story 

drift ratio, and base shear force ratio were used to investigate the effect of the flexible 

diaphragm on structural seismic performance, described as follows: 

4.1. Fundamental Period Ratio 

The relationship between the ratio of the fundamental period of flexible diaphragm 

models to that of rigid diaphragm models with a structural plane aspect ratio is shown in 

Figure 10a. The ratio of the period changed with the structural plane aspect ratio. Specifi-

cally, the period ratio decreased as the number of the story increased but increased as the 

aspect ratio increased. For the 3-story structures, the period of flexible diaphragm models 

with aspect ratios of 2, 3.33, and 4 increased by 3%, 12%, and 19%, respectively, compared 

with the corresponding rigid diaphragm models. For the 6-story and 12-story structures, 

the impact of elastic diaphragm deformation on the structural period was less than 7%, 

which could be ignored. Therefore, it turns out that the effect of the flexible diaphragm on 

the fundamental period is more significant in low-rise buildings. 

  

  

Figure 10. Cont.



Buildings 2023, 13, 376 11 of 16Buildings 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 
 

Figure 10. The effect of flexible diaphragm on seismic performance: (a) fundamental period ratio; 

(b) elastic top displacement ratio under frequent earthquakes; (c) inelastic top displacement ratio 

under rare earthquakes; (d) elastic maximum inter-story drift ratio under frequent earthquake; (e) 

inelastic maximum inter-story drift ratio under rare earthquake; (f) base shear force ratio under 

frequent earthquake. 

4.2. Top Displacement Ratio at Point D 

Figure 10b presents the relationship between the elastic top displacement ratio of 

flexible diaphragm models to that of rigid diaphragm models with a structural plane as-

pect ratio under frequent earthquakes. The top displacement ratio decreased with the in-

crease in the number of stories. For the 3-story structures, the top displacement of flexible 

diaphragm models with aspect ratios of 2, 3.33, and 4 increased by 9%, 33%, and 65% 

compared with the corresponding rigid diaphragm models, respectively. Meanwhile, for 

the 6-story structures, the top displacement of flexible diaphragm models with aspect ra-

tios of 2, 3.33, and 4 increased by 1%, 2%, and 10% compared with the corresponding rigid 

diaphragm models, respectively. However, for the 12-story structures, the influence of the 

flexible diaphragm on the top displacement was less than 5%, which was inconsiderable. 

As a result, the impact of elastic diaphragm deformation on the top displacement of low-

rise buildings is more significant. 

Figure 10c depicts the relationship between the inelastic top displacement ratio of 

flexible diaphragm models to that of rigid diaphragm models with a structural plane as-

pect ratio under rare earthquakes. The top displacement ratio decreased with the increase 

in the number of stories. For the 3-story structures, the top displacement of flexible dia-

phragm models with aspect ratios of 2, 3.33, and 4 were 3%, 20%, and 57% larger than that 

of the corresponding rigid diaphragm models, respectively. Nevertheless, for the 6-story 

and 12-story structures, the influence of the flexible diaphragm on the top displacement 

was less than 5%, which was inconsequential. Thus, the impact of elastic diaphragm de-

formation on the top displacement of low-rise buildings is more significant. 

In order to compare the influence of a flexible diaphragm on structural members, the 

deformation shapes of model F3-LB3.33 with rigid diaphragm and flexible diaphragm un-

der rare earthquakes are illustrated in Figure 11. The number of plastic hinges in the rigid 

diaphragm model is significantly less than that of the flexible diaphragm model. Conse-

quently, the influence of diaphragm deformation on the mechanical behavior of structural 

components should be considered. 

Figure 10. The effect of flexible diaphragm on seismic performance: (a) fundamental period ratio;
(b) elastic top displacement ratio under frequent earthquakes; (c) inelastic top displacement ratio
under rare earthquakes; (d) elastic maximum inter-story drift ratio under frequent earthquake;
(e) inelastic maximum inter-story drift ratio under rare earthquake; (f) base shear force ratio under
frequent earthquake.

4.2. Top Displacement Ratio at Point D

Figure 10b presents the relationship between the elastic top displacement ratio of
flexible diaphragm models to that of rigid diaphragm models with a structural plane
aspect ratio under frequent earthquakes. The top displacement ratio decreased with the
increase in the number of stories. For the 3-story structures, the top displacement of flexible
diaphragm models with aspect ratios of 2, 3.33, and 4 increased by 9%, 33%, and 65%
compared with the corresponding rigid diaphragm models, respectively. Meanwhile, for
the 6-story structures, the top displacement of flexible diaphragm models with aspect ratios
of 2, 3.33, and 4 increased by 1%, 2%, and 10% compared with the corresponding rigid
diaphragm models, respectively. However, for the 12-story structures, the influence of the
flexible diaphragm on the top displacement was less than 5%, which was inconsiderable.
As a result, the impact of elastic diaphragm deformation on the top displacement of low-rise
buildings is more significant.

Figure 10c depicts the relationship between the inelastic top displacement ratio of
flexible diaphragm models to that of rigid diaphragm models with a structural plane aspect
ratio under rare earthquakes. The top displacement ratio decreased with the increase in the
number of stories. For the 3-story structures, the top displacement of flexible diaphragm
models with aspect ratios of 2, 3.33, and 4 were 3%, 20%, and 57% larger than that of the
corresponding rigid diaphragm models, respectively. Nevertheless, for the 6-story and
12-story structures, the influence of the flexible diaphragm on the top displacement was less
than 5%, which was inconsequential. Thus, the impact of elastic diaphragm deformation
on the top displacement of low-rise buildings is more significant.

In order to compare the influence of a flexible diaphragm on structural members, the
deformation shapes of model F3-LB3.33 with rigid diaphragm and flexible diaphragm
under rare earthquakes are illustrated in Figure 11. The number of plastic hinges in the
rigid diaphragm model is significantly less than that of the flexible diaphragm model.
Consequently, the influence of diaphragm deformation on the mechanical behavior of
structural components should be considered.
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aphragm model.

4.3. Inter-Story Drift Ratio

Figure 10d illustrates the relationship between the elastic maximum inter-story drift
ratio of flexible diaphragm models to that of rigid diaphragm models with structural plane
aspect ratio under frequent earthquakes. For the 3-story structures, the inter-story drift of
flexible diaphragm models with aspect ratios of 2, 3.33, and 4 increased by 10%, 33%, and
61% compared to the corresponding rigid diaphragm models, respectively. However, for
the 6-story structures, the changes in the inter-story drift of structures with aspect ratios of
2 and 3.33 were less than 5%; when the aspect ratio was 4, the inter-story drift of the flexible
diaphragm model increased by 19% compared with the corresponding rigid diaphragm
model. For the 12-story structures, the influence of the flexible diaphragm on structural
inter-story drift was less than 5%, which was negligible. Hence, the impact of elastic
diaphragm deformation on the inter-story drift of low-rise buildings is more significant.

Figure 10e shows the relationship between the inelastic maximum inter-story drift
ratio of flexible diaphragm models to that of rigid diaphragm models with structural
plane aspect ratio under rare earthquakes. For the 3-story structures, the inter-story drift
of flexible diaphragm models with aspect ratios of 2, 3.33, and 4 increased by 4%, 20%,
and 41% compared with the corresponding rigid diaphragm models, respectively. At the
same time, for the 6-story structures, the inter-story drift of flexible diaphragm models
with aspect ratios of 2, 3.33, and 4 increased by 1%, 7%, and 11% compared with the
corresponding rigid diaphragm models, respectively. However, for the 12-story structures,
the influence of the flexible diaphragm on structural inter-story drift was less than 5%,
which was inconsequential. Consequently, the impact of elastic diaphragm deformation on
the inter-story drift of low-rise buildings is more significant.

4.4. Base Shear Force Ratio

Figure 10f presents the relationship between the ratio of base shear force of flexible
diaphragm models to that of rigid diaphragm models with structural plane aspect ratio
under frequent earthquakes. The impacts of the flexible diaphragm on all models were less
than 9%, which was negligible.

5. A Quantitative Assessment Formula of Diaphragm Type

Although the total base shear force of structures remained almost unchanged after
considering the elasticity of the diaphragm, the proportion of shear force shared by the
frame and shear wall changed a lot. In particular, the shear force borne by frame columns
increased significantly, which affected the safety of the structural design. Therefore, this
section analyzes the magnified effect of in-plane diaphragm deformation on the internal
force of the frame. Then a quantitative evaluation formula of diaphragm elasticity will be
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proposed. The diaphragm deformation coefficient R and the amplification factor of frame
columns’ internal force β are defined as Equations (6) and (7), respectively.

R =
∆flexible − ∆rigid

∆flexible
(6)

β =
Fflexible − Frigid

Fflexible
(7)

where ∆flexible is the maximum displacement of each story of the flexible diaphragm model;
∆rigid is the maximum displacement of the corresponding story of rigid diaphragm model.
Fflexible is the internal force of the middle frame column in the X direction of the flexi-
ble diaphragm model because this is the position of the largest in-plane deformation of
the diaphragm and the internal force of the frame column here increases the most, as
shown in Figure 9; Frigid is the internal force of the corresponding frame column of rigid
diaphragm model.

Extracting R and β of each story of each model under four cases (such as shear force am-
plification and bending moment amplification factors under frequent and rare earthquakes)
to perform regression analysis, the relationship between R with β can be obtained, as
expressed in Equation (8). And the fitting curve is illustrated in Figure 12. When R < 0.214,
the internal force amplification factor is less than 20%, and the rigid floor assumption can
be used. When R > 0.445, the internal force amplification factor is greater than 40%, and
the impact of diaphragm deformation should be considered. When 0.214 < R < 0.445, the
impact of diaphragm deformation is appropriate to be considered [15].

β = 0.886R + 0.015 (8)
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Taking the maximum deformation coefficient R from each model, we obtain the
diaphragm classification table of all structures, as listed in Table 4. The larger the aspect
ratio, the larger the deformation coefficient R, and the greater the influence of diaphragm
deformation on the structure.
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Table 4. Assessment of diaphragm type.

Model R Diaphragm Type

F3-LB2 0.138 R
F3-LB3.33 0.352 SR

F3-LB4 0.538 F
F6-LB2 0.063 R

F6-LB3.33 0.186 R
F6-LB4 0.351 SR

F12-LB2 0.040 R
F12-LB3.33 0.206 R

F12-LB4 0.376 SR
Note: R refers to rigid diaphragm; F represents that the impact of diaphragm deformation should be considered;
SR represents that the impact of diaphragm deformation is appropriate to be considered.

6. Conclusions

As presented in this study, linear time history analysis under frequent earthquakes
and nonlinear time history analysis under rare earthquakes were carried out to investigate
the effect of diaphragm deformation on the seismic behavior of frame-shear wall structures.
The fundamental period ratio, top displacement ratio, maximum inter-story drift ratio, and
base shear force ratio between flexible diaphragm models and rigid diaphragm models
were described with the changes in the number of stories and aspect ratios. Based on the
regression analysis of the diaphragm deformation coefficients and the amplification factors
of frame columns’ internal force, a simplified method to evaluate the diaphragm type was
proposed. The main conclusions are as follows:

1. The element types, material constitutive models, and modeling methods used in
this study can accurately simulate the mechanical performance of frame-shear wall
structures, which is applicable for analyzing the seismic performance of frame-shear
wall structures.

2. The fundamental structural period increases by considering the flexibility of the
diaphragm. For the 3-story structures, the period of flexible diaphragm models
with aspect ratios of 2, 3.33, and 4 increased by 3%, 12%, and 19%, respectively,
compared with the corresponding rigid diaphragm models. For the 6-story and 12-
story structures, the impact of elastic diaphragm deformation on the structural period
was less than 7%.

3. After considering the diaphragm’s elasticity, the top displacement and inter-story
drift magnify by decreasing the number of stories and increasing the plane aspect
ratio. For the 3-story structures, under frequent earthquakes, the top displacement
of flexible diaphragm models with aspect ratios of 2, 3.33, and 4 increased by 9%,
33%, and 65% compared with the corresponding rigid diaphragm models; under rare
earthquakes, the top displacement increased by 3%, 20%, and 57%, respectively.

4. A simplified formula to calculate the internal force amplification factor of the frame
column and a quantitative assessment method for evaluating the diaphragm type
were proposed, which could provide a reference for practical engineering. To sum
up, the fewer the number of stories, the larger the aspect ratio, and the greater the
adverse effect of diaphragm deformation on structural seismic performance. When
the deformation coefficient R > 0.445, the impact of diaphragm deformation should
be considered, and the rigid floor assumption is not applicable anymore.

Eventually, it should be pointed out that the above analysis results are based on the
rectangular plane layout of the building structural models with shear walls at the corners
and moment frames in the interior, which is a relatively regular plane. The influence of
parameters such as structural asymmetry and floor openings is not considered, resulting
in limitations in the evaluation criteria for diaphragm type, but the evaluation method is
universal. Further study is needed to consider the impact of more extensive parameters.
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