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Abstract: Adding basalt fiber (BF) can effectively enhance the performance of asphalt mixtures and
improve the service quality of asphalt pavement. However, the effect of BF on the high-temperature
performance of different types of asphalt mixtures and systematic high-temperature performance
test analysis are still not well known. To address this issue, three typical types of asphalt mixtures of
AC-13, SMA-13, and SUP-13 were selected. Wheel tracking test, uniaxial penetration test, dynamic
modulus test, and dynamic creep test were conducted. In addition, relevant parameters of dynamic
stability, penetration strength, dynamic modulus index, and flow number were analyzed. The results
showed that adding BF into the asphalt mixture could improve the dynamic stability, penetration
strength, dynamic modulus index, and flow number significantly, indicating that adding basalt fiber is
an effective solution to the rutting deformation damage of asphalt pavement. Moreover, the parameter
of dynamic stability presented an approximate polynomial correlation with penetration strength,
dynamic modulus index, and flow number, respectively. These findings provide a certain theoretical
reference for evaluating the high-temperature performance of BF-modified asphalt mixtures.

Keywords: basalt fiber; asphalt mixtures; high-temperature performance; correlation analysis

1. Introduction

Asphalt pavement has already become the main high-grade pavement form in China
because of its unique advantages. After decades of development, the performance of
asphalt pavement has made great progress. However, with the rapid development of
the national economy, the passenger and cargo transport volume of high-grade highways
increased rapidly, which led to various diseases of asphalt pavement. Among them, high-
temperature deformation damages, such as rutting and upheaval, will appear on asphalt
pavements and deteriorate rapidly under high temperatures and overload vehicle condi-
tions [1–4]. Meanwhile, once the maintenance is not in time, deformation will accumulate,
causing damage to the pavement structure and resulting in a decrease in asphalt pavement
performance and service life. Enhancing the high-temperature deformation resistance of
mixtures has become one of the hot issues in the asphalt industry [5–8].

The application of fiber into asphalt mixture is one of the most common solutions for
researchers to improve the high-temperature performance of asphalt mixture by changing
its material composition [9–11]. Fiber-modified asphalt mixture is a kind of physical
synthesis composite material. At present, the main fiber types applied in asphalt mixture
to improve pavement performance include lignin fiber, mineral fiber, polymer fiber, glass
fiber, and so on. Among these, as a new environmentally friendly mineral fiber, basalt fiber
has gained more attention for the improvement of asphalt pavement performance due to
its unique advantages: better strength, chemical stability, wide working temperature range,
etc. It has been approved that adding basalt fiber can strengthen the pavement property
of asphalt mixtures [12–16], especially the high-temperature deformation resistance and
fatigue resistance [17–19]. Zhang et al. [20,21] employed a wheel tracking test and dynamic
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modulus test to measure the high-temperature rutting resistance of fiber-modified asphalt
mixtures. The results show that at a high temperature, adding basalt fiber into an asphalt
mixture can evidently improve its stiffness. Guo et al. [22–27] studied the impact of basalt
fiber on the high-temperature performance of asphalt mixtures using the Marshall stability
test and wheel tracking test. The results present that adding basalt fiber can improve
several high-temperature indexes of asphalt mixtures effectively.

Li et al. [28] studied the high-temperature deformation resistance of SBS-modified
asphalt mixtures and pointed out that the asphalt mixtures possess better deformation
resistance when the basalt fiber content is 0.25%, compared with the neat mixtures without
basalt fiber. Cheng et al. [29] employed the uniaxial compression creep test and the rutting
test to assess the high-temperature deformation resistance to permanent deformation of
the diatomite and basalt fiber-modified asphalt mixture. Test results indicate that adding
basalt fiber can reinforce the rutting resistance and slow down the creep rate. Wu et al. [30]
discussed the impacts of basalt fiber on the high-temperature rutting resistance of asphalt
mixtures with reclaimed asphalt pavement (RAP) contents of 0%, 30%, 40%, and 50%,
based on wheel tracking tests. In addition, Zhang et al. [31] found that adding basalt fiber
into asphalt mixtures can increase the dynamic stability and reduce the rutting depth of
open-graded friction course (OGFC) mixtures significantly by Hamburg wheel tracking
test and proposed the optimal basalt fiber dosage of 0.15%.

It can be observed that the above-mentioned literature mainly focuses on the improve-
ment of basalt fiber on the high-temperature rutting resistance of asphalt mixtures by a
single parameter, such as dynamic stability at 60 ◦C from wheel tracking test, dynamic
modulus at high temperature from dynamic modulus test, or penetration strength from
a uniaxial penetration test, etc. However, there is still a lack of comprehensive analy-
sis of different parameters and an understanding of the relationship between pavement
performance and mechanical properties.

In this paper, four different types of test methods, including wheel tracking test,
uniaxial penetration test, dynamic modulus test as well as dynamic creep test, were adopted
to investigate and evaluate the high-temperature performance of basalt fiber modified
asphalt mixtures. Three widely used types of asphalt mixtures containing dense graded
gradations AC-13, Superpave-13 (SUP-13 for short), and stone matrix SMA-13 were selected.
Typical parameters from the four tests were analyzed, and the correlations were established.
Then the high-temperature performance index obtained by a simple experimental method
can be used to predict other high-temperature performance test indexes. It is expected that
the findings can provide a reference for the evaluation of the high-temperature performance
of the basalt fiber-modified asphalt mixtures.

2. Raw Materials and Test Methods
2.1. Raw Materials
2.1.1. Short-Chopped Basalt Fiber

In this paper, short-chopped basalt fiber (BF) with a length of 6 mm produced by
Jiangsu Tianlong Basalt Fiber Co., Ltd., Yizheng, China, was used, as shown in Figure 1.
Flocculent lignin fiber (LF), produced by JRS company, Germany, was also selected as a
fiber stabilizer for neat sample of SMA-13 graded asphalt mixture for comparison, as shown
in Figure 2. The properties of BF and LF are listed in Tables 1 and 2.

Table 1. The properties of BF.

Index Elastic
Modulus/Gpa

Moisture
Content/%

Fracture
Strength/Mpa

Combustible
Content/%

Elongation at
Break/%

Value 90–110 0.1 2500–5000 0.55 2.69
Requirements in T/CHTS 10016 ≥80 ≤0.2 ≥2000 - ≥2.1
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Figure 2. Lignin fiber.

Table 2. The properties of LF.

Index Ash Content/% PH Value Oil Absorption
Rate/Times

Value 19.3 7.7 6.2
Requirements in JT/T 533-2020 13–23 6.5–8.5 5–9

2.1.2. Asphalt

The styrene butadiene styrene (SBS)-modified asphalt, provided by Tiannuo Road
Materials Technology Co., Ltd., Zhenjiang, China, was selected in this research. The
physical properties are summarized in Table 3.

Table 3. Physical properties of SBS-modified asphalt.

Properties Penetration
(25 ◦C)/0.1 mm

Ductility
(5 ◦C, 5 cm/min)/cm

Softening Point
/◦C

Penetration Index
(PI)

Viscosity
(135 ◦C)/Pa·s

SBS modified asphalt 67 48 78 0.3 1.8
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2.1.3. Aggregates and Mineral Powder

Basalt aggregates were used for asphalt mixtures of SMA-13 gradation, while limestone
aggregates were selected for AC-13 and SUP-13. The apparent relative densities of the
coarse and fine aggregates of basalt aggregates are 2.929 g/cm3 and 2.840 g/cm3. In
addition, the apparent relative densities of the coarse and fine aggregates of limestone
aggregates are 2.750 g/cm3 and 2.700 g/cm3.

2.2. Gradation Design
2.2.1. Gradation Curve

Three typical mixtures, AC-13, SMA-13, and SUP-13, were adopted. The gradation
curves are illustrated in Figure 3, respectively. The AC-13 and SMA-13 gradation design
processes were conducted following the procedures listed in the JTG F40-2004 [32], while
SUP-13 gradation design process was in accordance with the Superpave design method.
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Figure 3. Gradation curves of different types of asphalt mixtures: (a) Gradation curve of AC-13;
(b) Gradation curve of SMA-13; (c) Gradation curve of SUP-13.

2.2.2. Volumetric Properties of Asphalt Mixtures

The types and dosages of fiber for different asphalt mixtures are summarized in
Table 4. Standard Marshall specimens were carried out by the Marshall design method,
according to Chinese standard JTG E20 [33]. For each set, at least four specimens should
be prepared. Every standard Marshall specimen would be compacted 75 times on both
sides. The volumetric properties results of all the different types of asphalt mixtures with
the corresponding optimum asphalt content (OAC) are shown in Table 5.

Table 4. Fiber usage of asphalt mixtures.

Gradation Type Asphalt Type Fiber Type Fiber Dosage/%

AC-13

SBS modified asphalt

/ /
BF 0.3

SMA-13
LF 0.3
BF 0.3

SUP-13
/ /

BF 0.3
Note: Fiber dosage refers to the percentage of the fiber mass to the total mixture mass

Table 5. The results of Marshall test for different asphalt mixtures.

Mixture Type Optimum Asphalt
Content/%

Marshall
Stability/kN

Flow
Value/mm Air Voids/% Voids Filled with

Asphalt/%
Voids in Mineral

Aggregate/%

AC-13 5.1 10.7 3.9 4.0 71.3 13.8
AC-13C+BF 5.3 10.4 3.7 4.3 70.7 14.5

SMA-13 6.1 12.0 2.4 4.3 76.0 18.0
SMA-13+BF 6.0 12.8 2.2 4.1 76.9 17.8

SUP-13 4.7 10.9 3.9 4.0 71.6 14.2
SUP-13+BF 4.8 10.9 3.8 4.2 71.6 14.7

2.3. Test Methods
2.3.1. Wheel Tracking Test

In accordance with JTG E20-T0719 [33], the wheel tracking test was conducted under
the wheel pressure of 0.7 MPa. Considering the high ambient temperature in summer, the
in-situ pavement temperature can be higher than 60 ◦C. Therefore, both 60 ◦C and 70 ◦C
were selected as the test temperatures. Dynamic stability (DS), calculated by Equation (1),
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was employed to evaluate the high-temperature rutting resistance of asphalt mixtures. In
general, higher DS values are expected to obtain superior rutting resistance.

DS =
(t2 − t1)× N

d2 − d1
× C1 × C2 (1)

where N is the running speed of the wheel, usually 42 times/min; d1 and d2 are the
deformations of the asphalt mixtures at the running time t1 (45 min), t2 (60 min), mm; C1
and C2 are tested coefficients, C1 = C2 =1.0.

2.3.2. Uniaxial Penetration Test

According to JTG D50-2017 [34], a cylindrical specimen with a height of 100 mm and
a diameter of 150 mm was used for the uniaxial penetration test. A loading bar with a
height of 50 mm and a diameter of 42 mm was used. The test temperature was set at
60 ◦C. The schematic diagram of this test is shown in Figure 4b. The penetration stress (σP),
penetration strength (RT), and penetration modulus (ES), calculated by Equations (2)–(4),
were used to assess the high-temperature deformation resistance of mixtures.

σP =
P
A

(2)

RT = fTσP (3)

ES =
σP

h/H
(4)

where P is the maximum load, N; A is the contact area, mm2; fT is the penetration stress
coefficient, with a value of 0.35; h is the penetration depth, mm; H is the height of test
specimen, mm.
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2.3.3. Dynamic Modulus Test

In order to explore the dynamic modulus of the basalt fiber-modified asphalt mixtures,
five temperatures (−10 ◦C, 5 ◦C, 20 ◦C, 30 ◦C, and 50 ◦C) were selected for dynamic
modulus test, in accordance with the Chinese specification of JTG E20- T0738 [33], along
with six loading frequencies (0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz, and 25 Hz). The test
equipment was carried out by the equipment of universal testing machine of UTM-25. The
tests were conducted from low temperature to high temperature and from high frequency
to low frequency. The stress control mode was adopted, and half sine load was applied
to the specimen. In order to reduce the error, four duplicate test specimens in each group
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were fabricated in this test. Before the test, the specimens shall be kept in an environmental
chamber at the target temperature for more than 4 h. The dynamic modulus (|E*|) and
phase angle (φ) could be obtained by Equations (5) and (6), respectively.

|E∗| = σ

ε
=

σ0 sin(ωt)
ε0 sin(ωt− φ)

(5)

φ =
ti
tp
× 360◦ (6)

where σ0 (ε0) is the maximum stress (strain); ω is the angular velocity; ti is the lag time of
the deformation peak and the load peak; tp is the loading period.

2.3.4. Dynamic Creep Test

According to the method described in NCHRP 9-29 [35], the dynamic creep test was
performed. The axial pressure was 0.7 Mpa, the contact pressure was 0.02 MPa, and the
test temperature was 60 ◦C. In addition, half sine wave was used for repeated loading with
loading time of 0.1 s and intermittent time of 0.9 s. Figure 5 presents the dynamic creep
test process and the typical strain-loading time curve. The creep rate can be obtained from
Stage II in Figure 5b, while another index, flow number, is the corresponding loading time
of the connection point of the curves between Stage II and Stage III. In this paper, creep rate
and flow number were both used to evaluate the high-temperature deformation resistance
of asphalt mixtures. Generally, a smaller value of flow number and a higher value of
creep rate denote that the asphalt mixtures possess worse high-temperature deformation
resistance and are prone to suffering creep failure.
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3. Results and Discussion
3.1. Results of the Wheel Tracking Test

The results of dynamic stability from the wheel tracking test are shown in Figure 6.
Figure 6 revealed that the dynamic stability values of all the asphalt mixtures decreased
significantly at the higher test temperature of 70 ◦C, no matter whether basalt fiber was
added or not. For instance, the DS values of AC-13 declined sharply from 3336 times/mm
to 1308 times/mm by 60.8%, while SMA-13 and SUP-13 decreased from 5673 times/mm
to 3859 times/mm by 32.0%, and from 4215 times/mm to 2537 times/mm by 39.8%,
respectively. Compared with the neat asphalt mixtures, the dynamic stability values of
AC-13, SMA-13, and SUP-13 increased by 41.5%, 19.1%, and 25.4% at the test temperature
of 60 ◦C, respectively, while increased by 113.0%, 40.2%, and 51.4%, respectively, at 70 ◦C.
This phenomenon indicates that adding basalt fiber into asphalt mixtures can improve
the high-temperature rutting resistance effectively, and the strengthening effect is more
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significant at a higher temperature. This is due to the fact that the three-dimensional spatial
distribution of basalt fiber can restrict the movement of aggregates [19]. Furthermore, in
terms of the asphalt types, the DS value of AC-13 presented the highest increasing rate
when adding basalt fiber. The reason may be that the original DS value of the neat sample
AC-13 is small, so the percentage of improvement is relatively more obvious after the
addition of basalt fiber.
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Figure 6. Results of the wheel tracking test.

3.2. Results of the Uniaxial Penetration Test

Figure 7 illustrates the results from the uniaxial penetration test. It could be found
from Figure 7 that basalt fiber improved the shear stress resistance of asphalt mixtures
effectively. And compared with neat asphalt mixtures, the penetration stress values of
AC-13, SMA-13, and SUP-13 with basalt fiber increased from 2.63 MPa to 2.88 MPa by 9.5%,
3.48 MPa to 4.28 MPa by 23.0%, and 3.13 MPa to 3.63 MPa by 16.0%, while penetration
strength values increased by 9.8%, 23.0%, and 15.5%, and penetration modulus values
increased by 12.2%, 32.8%, and 26.3%, respectively. In addition, in terms of the asphalt
types, it is noteworthy that SMA-13 with basalt fiber not only showed the best penetration
strength but also presented the highest increasing rate. This is due to the fact that SMA
gradation possesses a skeleton dense structure, and a three-dimensional network structure
was formed by basalt fibers in asphalt mixtures, which controls binder drain down and
improves the resistance to rutting [36].

3.3. Results of Dynamic Modulus

The master curves of dynamic modulus were constructed so as to predict the long-
term mechanical properties of the asphalt mixture, which can not only represent the
dynamic modulus values at various temperatures and loading frequencies but also avoid a
large number of test processes. The sigmoidal model was adopted to construct dynamic
modulus master curves. The fitting function was illustrated in Equation (7). Furthermore,
the standard reference temperature was selected to be 20 ◦C.

Log|E∗| = δ +
Max− δ

1 + eβ+γ log fr
(7)
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where fr is the load frequency at the reference temperature; δ is the minimum of the dynamic
modulus, and δ+α is the maximum of the dynamic modulus, namely Max; β, γ are the
parameters describing the shape of the sigmoidal function.
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Figure 7. The results of uniaxial penetration test: (a) Penetration stress results; (b) Penetration
strength results; (c) Penetration modulus results.

The dynamic modulus master curves of the six types of asphalt mixtures are illustrated
in Figure 8. As seen from Figure 8, in the higher frequency section (corresponding to the low-
temperature section), the dynamic modulus values of the same graded asphalt mixtures
were relatively close, regardless of whether basalt fiber was added or not. However,
significant differences in the dynamic modulus values could be observed in the lower
frequency section (corresponding to the high-temperature section). The dynamic modulus
values of asphalt mixtures with basalt fiber were much higher than that of neat asphalt
mixtures without basalt fiber. Taking AC-13, for example, as shown in Figure 8a, at the
reduced frequency of 10−3 Hz, the dynamic modulus values with basalt fiber increased
from 162.44 MPa to 358.41 MPa by 120.64%, compared with neat asphalt mixtures. It
indicates that the addition of basalt fiber into asphalt mixtures can reduce not only the
temperature sensitivity but also enhance the elastic recovery ability, which helps increase
the high-temperature stability. This result may be attributed to the formation of a basalt
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fiber network in the mixtures, which plays a positive role in the reinforcement of the
high-temperature deformation [37]. Moreover, another possible reason could be that the
basalt fibers can absorb free asphalt and increase the number of structural asphalts [20].
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Figure 8. Dynamic modulus master curves at 20 ◦C: (a) Dynamic modulus master curves of AC-13;
(b) Dynamic modulus master curves of SMA-13; (c) Dynamic modulus master curves of SUP-13.

In terms of mixture type, SMA-13 presented much higher dynamic modulus values
than AC-13 and SUP-13 at all the test frequencies. The reason may be that the interlocking
function of the coarse aggregates in SMA-13 is much more excellent than that of AC-13 and
SUP-13 due to the skeleton structure, which is consistent with the findings from Chen’s
research [38].

The dynamic modulus index (|E*|/sinφ) was used to assess the anti-rutting perfor-
mance, according to the recommendation in NCHRP’s report [39] and Louay’s study [40].
The |E*|/sinφ results of all the asphalt mixtures at the temperature of 50 ◦C and the
loading frequencies of 5 Hz and 10 Hz are summarized in Table 6. It could be drawn
that in terms of the same mixture type, dynamic modulus indexes |E*|/sinφ increased
significantly when BF was added. Taking the values under 5 Hz loading frequency as
examples, compared with neat asphalt mixtures, the |E*|/sinφ values of AC-13, SMA-13,
and SUP-13 with basalt fiber increased by 9.44%, 41.53%, and 37.63%, respectively. It also
could be observed that SMA-13 showed the highest |E*|/sinφ values, no matter adding
basalt fiber or not, indicating that SMA-13 possesses better rutting resistance.
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Table 6. The results of dynamic modulus indexes (|E*|/sinφ).

Mixture Type
|E*|/MPa(50°C) φ/◦(50°C) |E*|/sinφ/MPa

10 Hz 5 Hz 10 Hz 5 Hz 10 Hz 5 Hz

AC-13 535.0 389.7 34.08 31.62 954.76 743.30
BF+AC-13 622.5 441.5 34.98 32.87 1085.84 813.47

SMA-13 729.7 581.9 31.28 27.76 1405.38 1249.33
BF+SMA-13 1057.0 841.8 31.79 28.43 2006.43 1768.17

SUP-13 657.0 505.0 32.44 29.95 1224.80 1011.53
BF+SUP-13 877.0 712.0 31.54 30.76 1676.56 1392.14

3.4. Results of Dynamic Creep Test

The flow number and creep rate values from the dynamic creep test are presented in
Figure 9. It could be observed that adding BF could positively enhance the dynamic creep
resistance of asphalt mixtures. For instance, compared with neat asphalt mixtures, the
flow number values of AC-13, SMA-13, and SUP-13 with basalt fiber increased by 39.1%,
59.2%, and 39.7%, respectively, while the creep rate values decreased by 12.0%, 35.2%, and
12.7%, respectively. It indicates that BF can efficiently delay the accumulated permanent
deformation rate of asphalt mixtures. Furthermore, the enhancement effect of basalt fiber
on SMA-13 was more significant than the other two types of mixtures, which is consistent
with Mu’s and Jomoor’s [41,42] research results that SMA-13 bears a longer time to reach
the Stage III of failure than AC-13 and SUP-13 due to its skeleton structure.
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Figure 9. Results of dynamic creep test: (a) The results of flow number; (b) The results of creep rate.

3.5. Comprehensive Analysis of High-Temperature Performance Parameters

It could be noticed that adding BF can effectively improve the high-temperature
rutting resistance of mixtures, which has been proved by all the parameters from the
above-mentioned test methods. In order to further investigate the relationship among
the different high-temperature performance parameters, dynamic stability (DS) from the
wheel tracking test, penetration strength (RT) from the uniaxial penetration test, dynamic
modulus index (|E*|/sinφ, 50 ◦C/5 Hz) from dynamic modulus test and flow number
(Fn) from dynamic creep test were selected. The correlations of dynamic stability versus
penetration strength, dynamic modulus index, and flow number are plotted in Figure 10.
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Figure 10. Correlations between DS and RT, |E*|/sinφ, and Fn: (a) Wheel tracking test temperature
of 60 ◦C; (b) Wheel tracking test temperature of 70 ◦C.

It could be observed that approximate binomial relationships could be found between
DS and the other three parameters. As shown in Figure 10a, when the wheel tracking test
temperature was 60 ◦C, the correlation coefficients between DS and RT, DS and |E*|/sinφ,
and DS and Fn were 0.9013, 0.8632, and 0.9759, respectively. While the correlation coeffi-
cients increased up to 0.9565, 0.9261, and 0.9832, respectively, when the temperature was
70 ◦C during the wheel tracking test, as illustrated in Figure 10b. It means DS values from
70 ◦C possess better correlations with other parameters than those from 60 ◦C. Moreover, it
could be drawn that DS and Fn maintained good correlation coefficients over 0.97 at both
test temperatures of 60 ◦C and 70 ◦C.

In brief, the approximate binomial relationships established above of different parame-
ters can provide a certain basis for researchers to explore the high-temperature performance
of asphalt mixtures with basalt fiber from different aspects. It is hoped that through
this establishment, the wheel tracking test, which is a common method to test the high-
temperature performance of asphalt mixture, can be used to predict the approximate values
of other high-temperature performance indicators.
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4. Conclusions

This paper evaluated the impact of BF on the high-temperature performance of asphalt
mixtures with the gradations of AC-13, SMA-13, and SUP-13 and analyzed the corre-
lations between different parameters; the following conclusions could be drawn in the
research range:

(1) Adding BF makes the OAC of asphalt mixtures increase by 0.1–0.2 percentage points
in terms of dense graded gradations of AC-13 and SUP-13 while making the OAC
decrease by 0.1–0.2 percentage points for the stone matrix asphalt of SMA-13.

(2) Dynamic stability, penetration strength, and flow number of all types of asphalt
mixtures will increase with the addition of BF, resulting in the enhancement of rutting
resistance, shear stress resistance, and dynamic creep resistance of asphalt mixtures.

(3) Adding BF can cause the asphalt mixtures to have more stiffness at high temperatures
to improve the rutting resistance, presenting an increase in dynamic modulus index
|E*|/sinφ. Meanwhile, it also can make the mixtures more flexible at relatively
low temperatures.

(4) In terms of mixture type, the stone matrix asphalt SMA-13 presents superior properties
to resist high-temperature deformations than AC-13 and SUP-13. Moreover, SMA-13
also shows the most significant enhancing effect by adding basalt fiber.

(5) Approximate binomial relationships can be established between dynamic stability and
penetration strength, dynamic stability and dynamic modulus index, and dynamic
stability and flow number. Higher correlation coefficients can be obtained when DS
values from 70 ◦C are used.
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