
Citation: Su, R.; Tangaramvong, S.;

Van, T.H. An BESO Approach for

Optimal Retrofit Design of Steel

Rectangular-Hollow-Section

Columns Supporting Crane Loads.

Buildings 2023, 13, 328. https://

doi.org/10.3390/buildings13020328

Academic Editors: Bo Yang,

Shan Gao, Hai-Ting Li and

Kang Chen

Received: 20 December 2022

Revised: 17 January 2023

Accepted: 19 January 2023

Published: 22 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

An BESO Approach for Optimal Retrofit Design of Steel
Rectangular-Hollow-Section Columns Supporting Crane Loads
Rut Su , Sawekchai Tangaramvong * and Thu Huynh Van

Department of Civil Engineering, Center of Excellence in Applied Mechanics and Structures, Faculty of
Engineering, Chulalongkorn University, Bangkok 10330, Thailand
* Correspondence: sawekchai.t@chula.ac.th

Abstract: In this paper, we propose a cost-effective optimal-topology retrofitting technique for hollow-
steel-section columns to sufficiently support industrial running cranes. A so-called bi-directional
evolutionary structural optimization (BESO) method was encoded within the MATLAB modeling
framework, with a direct interface with an ANSYS commercial finite-element analysis program, to
determine the optimal topology of double external steel plates connected to columns in a 3D space. For
the initial ground structure, we have adopted standard uniform double U-shaped external stiffener
plates located at the top and bottom flange layers of an I-beam to box-column connection (IBBC)
area. The influences of inelastic materials and the incorporated nonlinear geometry can effectively
describe the premature (local buckling) failures of the columns in an IBBC area. The applications of
the proposed optimal-topology BESO-based stiffening method are illustrated through the retrofitting
of three hollow-steel-section columns, characterized by non-slender and slender compression sections.
Some concluding remarks are provided on the pre- and post-retrofitted responses of the columns, with
the results showing both the accuracy and robustness of the proposed external stiffening schemes.

Keywords: hollow steel column; retrofit; topology optimization; local bucking; elastoplastic materials;
stress intensity

1. Introduction

Steel structures have been widely designed and constructed, not only in view of
their engineering safety and integrity, but also because of their light weight and architec-
tural aesthetics, thus providing more sustainable results and high performance in project
development. Considering their superior strength, hollow-steel-section (HSS) members
provide a higher load capacity than open-steel sections [1]. Often, HSS members are
suitably employed in engineering structures and infrastructures, particularly those with
special requirements, such as the need for a long-span capability. One drawback underpin-
ning the use of HSS members that limits their application is the occurrence of premature
local buckling failures under concentrated forces (highly intensive stresses). A specific
example involves the case of an HSS column connected to a corbel used under industrial
running cranes (such as those employed in warehouses) [2]. The thin chord surfaces of HSS
members are prone to premature failures under combined axial compression and flexural
(eccentrically applied) forces.

Although many methods have been presented for the retrofitting of open-steel-section
columns, few efforts have been made regarding the application of HSS columns, which
invariably experience premature local failures, namely, inelastic column chord buckling.
Applying lateral restraining materials (i.e., internal and external stiffeners) to the column
members is a retrofitting approach that has been commonly adopted to prevent this special
class of failure phenomena [3]. The stiffeners provide some additional stiffness (strength)
to the member and reduce its susceptibility to lateral deformations. The internal retrofitting
of an HSS column is generally inaccessible in practical constructions. Several practitioners

Buildings 2023, 13, 328. https://doi.org/10.3390/buildings13020328 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13020328
https://doi.org/10.3390/buildings13020328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-1848-6646
https://orcid.org/0000-0003-3270-6502
https://doi.org/10.3390/buildings13020328
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13020328?type=check_update&version=2


Buildings 2023, 13, 328 2 of 19

have adopted external stiffener systems that enable a more uniform distribution of stresses
over the local sectional areas [4,5].

Failure studies evaluating the post-retrofitted responses of HSS columns in an I-beam
to box-column connection (IBBC) area with external steel plates are reported in [6–10].
The results revealed various factors that influence the effectiveness of external stiffen-
ers in HSS column applications. These include the size and shape of the stiffeners, the
spacing between stiffeners, and the types of connections between the stiffeners and the
column section. Typically, larger (more robust) stiffeners with closer spacing and stronger
connections provide more strength and stability to a column member in an IBBC area.
Recently, Vulcu et al. [11,12] performed experimental and numerical analyses of an external
diaphragm in an IBBC area under concrete-filled column applications. They observed that
none of the designed external stiffeners provided a one-size-fits-all (universal) solution
to prevent local buckling failures of HSS columns. The fabrication of stiffeners depends
largely on the geometry (shape) of the retrofitted members, as well as on loading and
deformation conditions. The development of a design that can determine a flexible yet
optimal layout and size of stiffeners that are appropriate for HSS columns represents a
cost-effective (sustainable) retrofitting strategy for engineering applications.

Topology optimization (TO) approaches are used to determine the optimal layout of
structures from an initial ground (universal) structural domain; see Figure 1. The classical
TO approach was pioneered in the form of economical material designs by Michell [13],
who derived the optimality criteria for the least-weight layout of trusses. Rozvany and his
group [14–16] extended Mitchell’s theory to obtain the exact analytical optimal solutions for
grid-type structures. Since then, TO techniques have become important design tools and
have been adopted in various engineering applications [17]. The emergence of continuum
mechanics has enabled the TO method to be expressed in the form of discrete model (binary
design) problems, with individual elements within the structural domain consisting of
either solid materials or voids [17]. However, the binary settings for structural compliance
designs are known to be ill-posed. There exists a non-convergent sequence of admissible
designs with continuously refined geometrical details [18–21]. Bendsøe and Kikuchi [22]
proposed the homogenization theory to circumvent this difficulty by assuming the existence
of designable porous microstructures at a separate lower scale.
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Numerous TO methods have been actively developed. One of the well-established
techniques, proposed by Xie and Steven [23,24], is known as evolutionary structural opti-
mization (ESO), and its more updated version is known as bi-evolutionary structural opti-
mization (BESO) [25–27]. This method advantageously enables the recovery of deleted ele-
ments in close proximity to an area of high stress. The mesh-independent BESO method [28]
incorporates some historical information into the sensitivity filter and stabilization schemes.

Motivated by the aforementioned observations, in the present work we propose a
method for the BESO-based optimal-topology retrofitting design of HSS columns in an
IBBC region, supporting industrial crane loads. The BESO algorithm has been adopted
to determine the optimal topology of external steel stiffener plates located at the top and
bottom flange levels of the I-beam connected to the column. Elastoplastic (viz., incorpo-
rating inelastic materials and nonlinear geometry) finite-element (FE) analyses, modeled
within the commercial-purposed ANSYS framework, were comprehensively performed to
map out the pre- and post-retrofitted responses of the columns in an IBBC area. The robust
and cost-effective retrofit designs of HSS columns, including rectangular-hollow-section
(RHS) and square-hollow-section (SHS) designs, using these BESO-based optimal-topology
techniques are illustrated through comparisons with standard uniform U-shaped external
stiffeners. In essence, the elastoplastic FE analyses with large deformations capture the
premature (inelastic local buckling) failures of non-slender and slender columns connected
to I-section corbel beams. The proposed retrofitting approaches prevent the local-plate
buckling of the column in an IBBC area.

Although the developed design framework has been implemented on the basis of an
established BESO method, the novelty of this work lies in the presentation of a retrofitting
design technique that not only captures but also prevents the challenging inelastic local-
buckling failures of column chord members in IBBC areas. Such a design is fruitful for
use in many engineering applications involving the construction and refurbishment of
industrial warehouses. Stiffener plates with optimal topologies can be fabricated by means
of the recently available state-of-the-art additive (3D printing) manufacturing processes.

The rest of the paper is organized as follows. The design guidelines, based on standard
specifications, are briefly described in order to predict the maximum load capacity of HSS
columns under combined axial compression and flexural forces in Section 2. Then, the
retrofitting design strategies (including standard uniform U-shaped plates and external steel
plates with an optimal topology) for non-slender and slender HSS columns are presented
in Section 3. The pre- and post-retrofitted responses of the columns in an IBBC area are
illustrated in Section 4, in which the premature (local buckling) failures are mapped out
for the unstiffened columns. The behaviors of the post-retrofitted column demonstrate the
cost-effective strength enhancement provided by the BESO-based optimal-topology design
method, as compared to the use of standard uniform U-shaped external stiffeners. Both
methods enable the columns to overcome local plate buckling failures in an IBBC area, and
thus improve the maximum crane load capacity that can be applied to the connected corbel.
Finally, some concluding remarks are provided in Section 5.

2. Design of RHS and SHS Columns

In this section, we describe the design guidelines, in accordance with AISC 360-16
specifications [29], that determine the load carrying capacities of standard RHS and SHS
columns under combined axial compression and flexural forces. An RHS/SHS column
supports an industrial-purpose crane load from a runway beam sitting on an I-section
corbel, which is welded directly to the column face. The geometry of a running crane
is depicted in Figure 2. The IBBC model in Figure 3 comprises the SHS column with an
I-section corbel beam, where the crane load is applied as a uniformly distributed force over
the contact area.



Buildings 2023, 13, 328 4 of 19Buildings 2023, 13, 328 4 of 19 
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The RHS/SHS column is designed to safely resist the applied crane load, which is
determined in accordance with [2,30]. The vertically applied force, transferred at the top
flange of an I-section corbel, as shown in Figure 3, is calculated as follows:

WL =
RC + HT + 0.5CW

NWb
, (1)

where WL is the maximum wheel load, RC is the rated capacity of the crane, HT is the
weight of the hoist with the trolley, CW is the weight of the crane excluding the hoist with
the trolley and NWb is the number of end truck wheels at one end of the bridge.

The AISC 360-16 specifications [29] define the capacity of RHS/SHS members under
combined compression and flexural forces. Various governing failure modes associated
with HSS columns under various applied forces are summarized in [31]. Using this ap-
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proach, we can classify the design of compression member capacities into non-slender
(λ ≤ λr) and slender (λ > λr) sections, where λ is the width-to-thickness ratio of cross-
sections (bc/tc), λr = 1.4

√
E/Fy is the associated limit for a non-slender section, E is the

modulus of elasticity and Fy is yield stress.
The nominal compressive strength for a compression member with a non-slender

section Pn is expressed as follows:
Pn = Fcr Ag, (2)

where Ag is the gross sectional area. The critical member strength Fcr is determined as
follows:

when
Fy

Fe
≤ 2.25 Fcr = Fy

(
0.658

Fy
Fe

)
, (3)

when
Fy

Fe
> 2.25 Fcr = 0.877Fe, (4)

The elastic buckling stress Fe is calculated as follows:

Fe =
π2E

(Lc/r)2 , (5)

where Lc is the effective member length and r is the radius of gyration.
Moreover, the nominal compressive strength of a slender-section compression member

is calculated as:
Pn = Fcr Ae, (6)

where Ae is an effective cross-sectional area based on a decreasing effective width, be1. The
effective width be1 is determined as follows:

when λ ≤ λr

√
Fy

Fcr
be1 = bc, (7)

when λ > λr

√
Fy

Fcr
be1 = bc

(
1 −

√
Fel
Fcr

)√
Fel
Fcr

, (8)

Fel is an elastic local buckling stress:

Fel =

(
c2

λr

λ

)2
Fy, (9)

c1 is an effective width-imperfection adjustment factor (i.e., equal to 0.2) and c2 is equal to
1.38 for RHS/SHS members.

The AISC 360-16 specifications [29] classify the design of flexural members into three
categories, namely, compact

(
λ ≤ λp

)
, non-compact

(
λp < λ ≤ λr

)
and slender (λ ≤ λr)

sections, where λ defines the slenderness ratio of either the flange λ f or the web λw. For
flanges, λp f = 1.12

√
E/Fy and λr f = 1.40

√
E/Fy. For webs, λpw = 2.42

√
E/Fy and

λrw = 5.70
√

E/Fy.
The nominal flexural strength Mn is the minimum value calculated in Equations (9)–(12),

describing the sectional yielding (plastic moment Mp) and flange/web local buckling
failures, as follows:

For a compact section (called yielding):

Mn = Mp = FyZ, (10)
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For a section with non-compact flanges (local flange buckling):

Mn = Mp −
(

Mp − FyS
)(

3.57
bc

tc

√
Fy

E
− 4.0

)
, (11)

For a section with non-compact webs (local web buckling):

Mn = Mp −
(

Mp − FyS
)(

0.305
h
tc

√
Fy

E
− 0.738

)
, (12)

For a section with slender flanges:
Mn = FySe, (13)

where Z is plastic section modulus about the critical bending axis, S is the elastic section
modulus and Se is the effective section modulus, determined based on the effective width.
The effective width for a slender flexural element be2 is given by:

be2 = 1.92tc

√
E
Fy

(
1 − 0.38

bc/tc

√
E
Fy

)
≤ bc, (14)

where h is the depth of the web and tc is the thickness of the column.
The member capacity under the combined compression and flexure forces of a doubly

symmetric section is [29]:

when
Pr

Pc
≥ 0.2

Pr

Pc
+

8
9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0, (15)

when
Pr

Pc
< 0.2

Pr

2Pc
+

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0, (16)

where Pr is the required axial compression force; Mrx and Mry are the required flexural
forces about the x- and y-axes (e.g., Pr × la in Figure 2), respectively; and la is the center-to-
center distance between the distributed load PLM and the column. Moreover, Pc, Mcx and
Mcy are the associated design axial Pn and flexural (about the x- and y-axes) Mnx and Mny
load capacities, respectively.

3. Retrofitting Design of RHS and SHS Columns Using External Plate Stiffeners
3.1. Uniform U-Shaped External Stiffeners

A standard technique adopted to strengthen RHS and SHS columns, depicted in
Figure 4a (i.e., to prevent the premature failures involving chord deformations), is the
design of external stiffeners enclosed over an IBBC area [6,8]. For instance, as shown in
Figure 4b, two U-shaped external steel plates can be welded to the column faces, where
the top and bottom flanges of an I-section corbel are connected. The connection between
an I-section beam and a circular-hollow-section column with external stiffeners is detailed
in [32].

The parameters describing the geometry of a typical HSS column with and without
retrofitting plates are defined as follows: bc is the column width; b f and dw are the flange
width and web depth of an I-beam, respectively; tc is the column thickness; t f and tw are
the thickness of the flange and web, respectively; ts is the thickness of the external stiffener
plates; l f is the beam length; and lc is the column length.
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meshes having a typical size and a minimum thickness among all three structural (HSS 
column, I-beam and stiffener plate) components. The column was restrained at both ends 
in all directions, except for a vertical deformation (z-axis) at the top end. 

The FE analyses realistically incorporated the influences of inelastic (elastic-perfectly 
plastic) materials and large (nonlinear geometry) deformations. The responses of the HSS 
column at an IBBC area under a uniformly applied crane load over a contact surface of 20 
cm on an I-beam (see Figure 5b) were analyzed and mapped out. 

Figure 4. HSS column in an IBBC area—(a) pre-retrofitting, (b) post-retrofitting.

In this study, the responses of SHS columns pre- and post-retrofitting (using U-shaped
stiffeners) were mapped out through the implementation of nonlinear 3D FE analyses.
Three different SHS columns, having the dimensions (bc × tc) of SHS—300 × 10, 300 × 5
and 300 × 3—were considered as shown in Figure 5. The I-section corbel with the dimen-
sions

(
b f × dw × t f × tw

)
of H—300 × 300 × 10 × 10—was similarly connected to the

columns, where the lengths of lc = 1000 mm and l f = 300 mm were defined to sufficiently
describe the local buckling failures of the columns in an IBBC zone. The dimensions of the
external U-shaped stiffening plates consisted of a typical width of bs = 100 mm and plate
thicknesses ranging from ts = 3 up to 30 mm.
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The material properties of the steel employed in this study were an elastic modulus of
200,000 MPa, Poisson’s ratio of 0.3 and a yield stress of 235 MPa (for the HSS column) and
250 MPa (for the stiffening plates).

The HSS column (with and without stiffeners) and the I-beam in an IBBC area were
discretized according to the FE model as shown in Figure 5, comprising eight-node solid
elements (called SOLID185) running within the commercial ANSYS Parametric Design
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Language (APDL) software environment. The model contained a series of uniform FE
meshes having a typical size and a minimum thickness among all three structural (HSS
column, I-beam and stiffener plate) components. The column was restrained at both ends
in all directions, except for a vertical deformation (z-axis) at the top end.

The FE analyses realistically incorporated the influences of inelastic (elastic-perfectly
plastic) materials and large (nonlinear geometry) deformations. The responses of the HSS
column at an IBBC area under a uniformly applied crane load over a contact surface of
20 cm on an I-beam (see Figure 5b) were analyzed and mapped out.

3.2. External Stiffeners Designed via Topology Optimization

The standard U-shaped external stiffeners, while providing a simple retrofitting so-
lution for SHS/RHS columns, do not efficiently work throughout the entire area of the
materials. In essence, a better (more economical yet sufficiently strong) design considers the
removal of some ineffective stiffener areas, where the low intensity of stresses is developed
under applied load regimes. This, in essence, forms the focus of this study.

In the TO technique for the design of external stiffeners, the optimal layout is devel-
oped on the basis of the ground (U-shaped) design of the external stiffener plates. The
compliance function fc is minimized under constraints describing the stiffness formulations
of the column and beam, as well as the volume fraction V∗ of the designed steel plates. The
governing minimization problem is written as:

Minimization : fc(x, u) =
1
2

uTKu (17)

Subject to : Ku = F (18)

V(x) =
Ne

∑
e=1

xeve = V∗ (19)

where K and u are the global stiffness matrix and the displacement vector at degrees of
freedom, respectively; ve is the element volume; V(x) and V∗ are the total and controlled
material volumes, respectively; and Ne and xe are the total number of discrete elements
and the material design variable, respectively.

Various optimization algorithms have been developed to solve the problem stated
in Equations (17)–(19). A conventional “hard-kill” ESO method involves the complete
elimination of some inefficient discrete elements in the design domain, but this method
often encounters the theoretical difficulties in obtaining the optimal layout [33].

As an alternative approach, certain elements can be subjected to a modulus reduction,
resulting in very small values. This method was then applied to an ESO [34,35]. Huang
and Xie [28] replaced virtual void elements with soft members having very small Young’s
modulus values and referred to this method as “soft-kill” BESO. One of the main features
of the BESO algorithm is its simplicity in terms of its mathematical formulations. The
optimization process can be described by means of a set of simple equations that can be
simply implemented. In terms of efficiency, the algorithm is able to produce high-quality
solutions within a relatively short amount of time. This is especially true when the material
used in the structure is described in a binary form, meaning that it can only be either solid
or void. The use of binary materials makes it easier to analyze and optimize the structure,
as the only material properties that need to be considered are the stiffness of the solids.

The technique uses an artificial material interpolation scheme with penalization, which
is similar to the solid isotropic material with penalization (SIMP) model, to guide the
solution towards the design of near-solid voids [36–38]. The elastic modulus of each
intermediate material is calculated based on the element density as follows:

E(xe) = E0xp
e , where xe = xmin or 1, (20)
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where E0 is the modulus of elasticity of a solid material and p the penalty exponent. The
binary variable xe signifies the presence (xe = 1) or absence (xe = xmin) of the element,
where xmin is defined artificially by a small value (e.g., 0.001). The Poisson’s ratio is
assumed to be unrelated to the design variables, and the stiffness matrix K is assembled
using standard finite-element procedures by multiplying elemental stiffness matrices K0

e
with design variables xp

e :

K =
Ne

∑
e=1

xp
e K0

e . (21)

In the current lth design iteration, the target volume V(l) is predetermined at the
beginning of each design stage. The amount of material required can be more or less than
the initial trial design volume. The target volume continues to decrease or increase in
successive iterations until the desired volume constraint is met. The changes in the volume
can be described as follows:

V(l) = V(l−1)(1 ± cer), (22)

where an evolutionary ratio cer is used to determine the percentage of material to be added
or removed in relation to the previous design iteration. Once the desired material volume
Vreq (within some certain tolerance) has been reached, the optimization process only adjusts
the topology, while maintaining the total design volume. The sensitivity of the structural
compliance associated with the change in the eth element is evaluated using the adjoint
function [39]:

∂ fc

∂xe
= −pxp−1

e

(
1
2

uT
e K0

e ue

)
, (23)

where ue denotes the displacement vector of each element. The optimization of the structure
considers discrete design variables xe, constrained to the two bounds of the materials in the
design process, as specified in [40]. To determine the sensitivity of each structural element,
the BESO method employs the relative ranking of a sensitivity number associated with an
individual element. This ranking identifies the elements having the greatest impact on the
overall optimization of the structure, and guides the design process towards the optimal
solution:

αe = − 1
p

∂ fc

∂xe
= xp−1

e

(
1
2

uT
e K0

e ue

)
. (24)

To ensure that the optimization process is not influenced by checkerboard patterns
or mesh dependency, the sensitivity numbers are smoothed using the filter scheme. This
mitigates the potential of these factors to have an undue influence on the optimization
process, and allows for more reliable and consistent optimization outcomes:

αe =
∑Ne

j=1 wejαj

∑Ne
j=1 wej

, (25)

where the weighted average sum of all individual compliances αe requires a weight factor
wej. This weight factor is determined by the prescribed filter radius rmin and the elemental
center-to-center distance ∆ej between elements Ωe and Ωj, as follows:

wej = max
(
0, rmin − ∆ej

)
. (26)

To improve the convergence of an optimization process, the filtered sensitivity num-
bers are averaged with those from the previous design iteration. This incorporates the
lessons learned from the previous iteration and allows the optimization process to build
upon its previous progress, leading to the more efficient optimization:

α
(l)
e =

(
α
(l)
e + α

(l−1)
e

)
2

. (27)
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The BESO algorithm optimizes the structure through the removal and addition of
elements within the ground structure domain. This process uses two discrete values,
namely, xmin for void elements and 1 for solid elements. The elemental sensitivity numbers
for solid and void materials are represented as follows:

αe =


1
2 uT

e K0
e ue when xe = 1

xp−1
e

(
1
2 uT

e K0
e ue

)
when xe = xmin

. (28)

Clearly, the sensitivity numbers of solid elements are independent of the penalty
exponent p, whereas the sensitivity numbers of soft elements are influenced by p. This
means that the optimization process takes into account the relative stiffness of elements
and how they contribute to the overall stability and strength of the structure.

The BESO approach has been recently developed to provide the optimal topologies for
a wide range of engineering applications, incorporating multi-materials [41,42], additional
displacement constraints [43], stiffness and frequency optimization [44,45], nonlinear ma-
terials and large deformation [46–48] and uncertainties in load directions [49,50]. In this
study, we have developed the BESO algorithm for the determination of the optimal layout
of two external plate stiffeners welded directly onto the SHS/RHS column faces at the top
and bottom flange locations of an I-section beam. The initial ground structure specifically
employs simple double U-shaped plates, as depicted in Figure 4b.

The BESO-based pseudocode for the optimal-topology design of two external steel
stiffeners is summarized in the flowchart in Figure 6 and can be described as follows.

Step 1: Construct the discrete model (i.e., eight-node SOLID185 FEs consisting of the
uniform dimensions of 10, 5 and 3 mm associated with the different employed SHS
column thicknesses) of the design structure, as shown in Figure 5a. The thickness
(ts = 30 mm) of two initial U-shaped stiffener plates is preset.

Step 2: Assign the initial BESO parameters, including the objective volume V∗, the evolu-
tionary ratio cer = 5%, the radius of the filter rmin = 3 times the element size and the
penalty exponent p = 3.

Step 3: Perform the FE analyses. The BESO schemes are used to design only the topologies
of two stiffening plates, whereas the models of the SHS/RHS column and I-beam are
suited to their individual geometry.

Step 4: The target volume of the next design iteration is determined. When the current
volume V(l) exceeds the prescribed objective volume V∗, the target volume for the
next design can be calculated using Equation (22).

Step 5: In Equation (25), the elemental sensitivity numbers of the design variables are
evaluated. The sensitivity numbers in the whole design domain are filtered by means
of Equations (26)–(28).

Step 6: The elimination and addition processes are carried out by switching the elemental
density. If αe ≤ αth, the elemental density of a solid element is changed from 1 to
xmin, representing the elimination of a member. If αe > αth, the elemental density of a
void element is changed from xmin to 1, representing the addition of a member. The
threshold αth is a lower limit for the sensitivity number, based on the target material
volume V(l+1) and the relative ranking of the sensitivity numbers in [28].

Step 7: Steps 3 to 6 are repeated. The algorithm is terminated when the optimal topology of
the steel stiffening plates is achieved. The optimal design is obtained, and no further
improvement is made. This is referred to as the solution convergence.

It is worthwhile to note that in this study we considered various volume fraction
parameters (ranging from V∗ = 0.5 down to 0.05) associated with the optimal-topology
designs. This enabled us to directly define the percentage of the controlled design volume
that remained from the initial ground structure, viz., V∗ = 0.5, indicating that the optimal
topology contained 50% of the volume of the original U-shaped plate domain.
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Figure 6. Topology optimization framework for optimal stiffener plate designs.

The designed external steel plates with the optimal layout were assigned to the
SHS/RHS column and the I-beam model such that the elastoplastic analyses of the design
structure could be carried out in full using ANSYS software to validate the structure’s
strength capacity under applied crane loads. The BESO algorithm was encoded within the
MATLAB environment. The application interface between these two environments was
accessible through files of the format “*.dat”, thus enabling the transparent data transfers
in the collection of structural geometry data and analysis responses.

We assumed that the connections between the two stiffening plates, the I-section corbel
and the SHS column were full fillet welds (full rigidity), where the premature failures at
the weld sections were not established prior to those of the inelastic SHS column. For the
sake of simplicity, none of the interface (debonding) model was considered at an IBBC zone.
The von Mises constitutive model with a nonlinear geometry was adopted to describe the
inelastic (elastic-plastic) ductile steel materials and hence to capture inelastic local buckling
failures. Although under proportional load regimes the failures associated with initial
imperfections are not considered, the influences of these can be taken into account, for
example, in [51,52], for structures under cyclic/seismic loadings.

4. Results and Discussions
4.1. Responses of SHS Columns without Stiffeners

Nonlinear FE analyses were performed to trace the complete load and displacement
responses of three SHS column sizes (i.e., SHS-300 × 10, 300 × 5 and 300 × 3). The inelastic
responses captured loads and associated displacements (positive in a downward direction)
at the end of an I-section corbel, as shown in Figure 7. The constitutive model employed
was a ductile (von Mises) material. As expected, increasing the column thickness enhanced
the maximum load capacity of the column.
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The total maximum loads PNL (tons) applied to an I-beam, such that the SHS column
in an IBBC area could sufficiently resist, were captured and these are listed in Table 1. More-
over, the AISC360-16 specifications [29] determined the maximum crane load PLM (tons)
applied to an I-beam complying with the nominal ultimate strength capacity, defined by
Equations (15) and (16), of the unstiffened SHS columns under combined axial compression
and flexural forces, transferred from an I-section corbel. The results of these calculations
are also summarized in Table 1.

Table 1. Maximum crane loads of unstiffened SHS columns.

SHS
Column

Slenderness of
Compression Member

Slenderness of Flexural Member PLM
(Tons)

PNL
(Tons)Flange Web

300 × 03 Slender Slender Non-compact 10.708 8.901
300 × 05 Slender Slender Compact 27.172 21.413
300 × 10 Non-slender Compact Compact 67.844 58.487

The maximum crane loads PLM complying with the failures of SHS columns described
by the AISC360-16 specifications [29] were (some 15% to 20%) greater than those PNL given
by the elastoplastic FE analyses. This illustrated the premature failures resulting the high
von Mises stresses that developed at the interfaces between the column face and the I-beam;
see Figure 8. For a similar column width, the thinner section limited the stress distribution
from the interface into the column area, and vice versa the developed von Mises stress
reached the yield limit over a wider sectional area of the thicker columns.

4.2. Responses of SHS Columns with Uniform U-Shaped External Stiffeners

The responses of three SHS columns with uniform U-shaped external stiffeners were
mapped through a series of inelastic FE analyses. Various stiffener thicknesses, ranging
from ts = 3 to 30 mm, were considered. The associated post-retrofitted maximum load
capacities (PNL) of the columns applied at an I-beam are reported in Table 2. The load and
displacement responses at the corbel for ts = 3, 6, 9 and 15 mm are plotted in Figure 9. As
expected, an increase in the thickness of the external stiffeners enhanced the maximum
load capacity of the column at an IBBC area (by up to two times for ts = 30 mm).
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Table 2. Maximum crane loads of SHS columns with uniform external stiffeners.

ts (mm) Volume (cm3)
PNL (Tons)

SHS 300 × 03 SHS 300 × 05 SHS 300 × 10

3 780 20.072 31.649 68.146
4 1040 24.565 35.214 71.508
5 1300 28.693 39.018 74.907
6 1560 31.979 42.756 78.319
7 1820 34.668 46.322 81.479
8 2080 35.058 49.800 85.220
9 2340 35.172 53.255 88.753
10 2600 35.541 56.658 91.888
15 3900 35.681 67.032 107.890
30 7800 36.001 67.830 126.690
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For the two SHS-300 × 03 and 300 × 5 columns which had slender sections, an increase
in the stiffener thickness decreased the column’s ductility. This was at variance with the
non-slender SHS-300 × 10 column, of which the ductility was maintained at the higher
load capacity. Moreover, the small-section columns did not exhibit significant strength
improvements with overdesigned stiffeners. For example, a change in stiffener thickness
from 9 to 15 mm did not increase the post-retrofitted column capacity.



Buildings 2023, 13, 328 14 of 19

4.3. Responses of SHS Columns with External Stiffeners Designed via Topology Optimizaiton

The final design developed using the state-of-the-art BESO method [46] to determine
the optimal topology of non-uniform steel stiffener plates is plotted in Figure 10. The design
process was implemented for different volume fractions ranging from V∗ = 0.5 down to
0.05, defining the fractions of the remaining design volume based on that of the initial
ground structure (viz., in this case, two uniform U-shaped plates with ts = 30 mm).
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Clearly, the BESO process removed the inefficient discrete elements of two steel plates,
while maintaining only those with active von-Mises stresses that developed under the
applied forces. At V∗ = 0.5, the elements around the four corners of the steel plates were
eliminated, with the introduction of voids on the back column’s face. The lower value of
V∗ yielded an optimal stiffener layout by maintaining only the discrete elements located
close to the contact face with an I-beam in an IBBC area.

The maximum crane loads PNL, such that the SHS columns in an IBBC area could
sufficiently carry the loads after retrofitting using the optimal-topology design of the
external stiffeners, are summarized in Table 3. The total design volumes associated with
the controlled volume fractions are also reported. It was evident that for a similar targeted
maximum crane load PNL, the total required volume of the optimal-topology stiffeners was
less than that of the standard uniform U-shaped plates for SHS columns. For instance, for
the SHS-300 × 05 column to sufficiently support PNL ≥ 48 tons, the BESO approach was
used to design the optimal layout of stiffeners shown in Figure 9e, with V∗ = 0.1, for which
the total volume of 773 cm3 (viz., yielding PNL = 48.611 tons) was significantly less than
that of the uniform U-shaped plates (namely, 2080 cm3 for PNL = 49.800 tons).

The nonlinear load and displacement responses of the I-section corbel associated with
the SHS column in an IBBC area are mapped out in Figure 11 for various optimal-topology
designs. It was clear that the optimal-topology stiffeners with higher volume fractions
provided greater maximum crane load capacities to the columns. The strength enhancement
was apparent in non-slender compression columns (e.g., SHS-300 × 10). The advantages
of optimal retrofitting were not as evident when the slender columns (SHS-300 × 03 and
SHS-300 × 05) were considered. The slenderer compression members gained less strength
enhancements from the retrofitted designs presented here.
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Table 3. Maximum crane loads of SHS columns with optimal-topology stiffeners.

V∗
SHS-300 × 03 SHS-300 × 05 SHS-300 × 10

Volume
(cm3) PNL (Tons) Volume

(cm3) PNL (Tons) Volume
(cm3) PNL (Tons)

0.05 390 26.597 383 39.477 382 82.450
0.10 780 30.864 773 48.611 772 91.305
0.15 1170 35.109 1163 57.950 1162 95.858
0.20 1560 35.278 1554 63.609 1552 98.126
0.25 1950 35.655 1944 64.912 1932 99.872
0.30 2340 35.718 2335 65.787 2336 105.220
0.35 2730 35.728 2725 66.741 2726 105.420
0.40 3120 35.801 3116 66.912 3116 107.290
0.45 3510 35.809 3506 66.938 3504 110.760
0.50 3900 35.835 3896 67.045 3896 113.600
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tain strength enhancements early in the process, when the total plate volumes had not yet 
reached their individual thresholds. The increase in the volume fractions (or the plate 
thicknesses of uniform stiffeners) did not clearly provide a higher column load capacity, 
as the premature failure (local buckling at the interface with the I-beam) was no longer 
governing the ultimate strength of the column in the IBBC zone. In all cases, the optimal-
topology BESO-based design enabled a more effective retrofitting procedure with a more 
quickly increasing rate of maximum crane loads for the columns, as compared to standard 
uniform U-shaped external stiffeners. 
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The similar conclusion can be drawn on the basis of the results presented in Figure 12
regarding both the optimal-topology and uniform U-shaped stiffener designs, depicting the
relationship between the maximum crane loads PNL and the total design stiffener volumes
(which were in direct relation to the plate thickness ts and design volume fraction V∗).
More specifically, the non-slender SHS-300 × 10 column progressively gained a higher
strength capacity with increases in the total volume of the stiffeners. On the contrary,
the two non-slender SHS-300 × 03 and SHS-300 × 05 columns were only able to obtain
strength enhancements early in the process, when the total plate volumes had not yet
reached their individual thresholds. The increase in the volume fractions (or the plate
thicknesses of uniform stiffeners) did not clearly provide a higher column load capacity,
as the premature failure (local buckling at the interface with the I-beam) was no longer
governing the ultimate strength of the column in the IBBC zone. In all cases, the optimal-
topology BESO-based design enabled a more effective retrofitting procedure with a more
quickly increasing rate of maximum crane loads for the columns, as compared to standard
uniform U-shaped external stiffeners.
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5. Conclusions 
The BESO-based optimal-topology approach has been presented here as a cost-effec-

tive retrofitting method for HSS (viz., RHS and SHS) columns supporting industrial crane 
loads. The technique enabled significant volume reductions for the external steel retrofit-
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5. Conclusions

The BESO-based optimal-topology approach has been presented here as a cost-effective
retrofitting method for HSS (viz., RHS and SHS) columns supporting industrial crane loads.
The technique enabled significant volume reductions for the external steel retrofitting plates
(as compared to standard uniform U-shaped external stiffeners) connected to the column
at the top and bottom flange locations of an I-section corbel under running cranes. The
columns examined here included both non-slender and slender compression members. The
nonlinear responses of pre- and post-strengthened columns under various applied forces
were mapped as part of a comprehensive FE analyses, incorporating inelastic material
and nonlinear geometric properties, simultaneously. The robustness and accuracy of the
proposed retrofitted scheme were demonstrated through comparisons with AISC 360-16
specifications in the case of pre-retrofitted column applications and the use of uniform
U-shaped double plate stiffeners in the case of post-retrofitted designs. Three pertinent
conclusions can therefore be drawn as follows.

• The premature local buckling failures of column chords connected to an I-section
corbel supporting crane forces were captured by the combined elastoplastic and large
deformation analyses performed in this study. In this study, we depicted the high von
Mises stress intensity as well as the buckling shape of the column in an IBBC area. The
nonlinear responses of pre-retrofitted columns showed reductions of 15% to 20% in
the maximum crane load capacities as compared to those defined by the AISC 360-16
specifications. The local buckling failures were more pronounced in the slenderer
section columns.

• The standard uniform U-shaped external stiffeners enhanced the strength capacity of
the columns. The maximum crane loads increased in proportion to the thickness of
the steel plates employed. The use of external plates enabled the columns to overcome
premature local buckling failures at an IBBC area and hence more stress distributions
developed throughout the column faces. Moreover, the post-retrofitted behaviors of
slender section columns only gained a higher strength capacity with the increasing of
the thickness of stiffeners up to certain thresholds, at which thicker plates could not
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provide benefits to the columns’ capacity. These thresholds were more concerning in
relatively slender columns.

• The BESO-based retrofitting method provided the optimal layout of two stiffener plates
welded to the column at an IBBC area. The post-retrofitted responses of the column
with the optimal-topology stiffeners were mapped out and used to demonstrate the
cost-effective design of the (non-slender and slender sectional) columns to overcome
premature local buckling failures. For similar crane-load capacity targets, the steel
stiffener plates designed via the proposed retrofitting scheme exhibited significantly
lower (and thus more economical) total volumes than those required for the uniform U-
shaped plates. The strength enhancement was more efficient for non-slender columns.
For slender columns, the benefits of external plate stiffeners were limited at some
certain thresholds, at which the local buckling failures were no longer pronounced.
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