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Abstract: This paper is in the field of elastic flexural-torsional buckling of steel beam-columns
of bisymmetric narrow-flange and wide-flange I-section shape. Investigations are focused on the
derivation of the strain components and the energy equation, based on the displacement-field
formulation in the deflected configuration. At the same time, a review of analytical solutions based on
the classical and refined energy-equations are summarized, presented and discussed. The relationship
between the maximum in-plane bending moment and the compressive force of beam-columns is
the main objective of this research investigation. Simple boundary conditions of end-sections free
to deflect and to warp are considered, together with an arbitrary loading-pattern. The principle of
superposition and the moment amplification rule for considering the second-order effects are widely
used. The main conclusions are drawn in relation to the flexural-torsional resistance-evaluation
design of steel beam-columns in modern design codes for steelwork.

Keywords: beam-column; I-section; elastic flexural-torsional buckling; energy formulation; flexural-
torsional buckling-limit curve

1. Introduction

Steel beam-columns of double-tee section shape that are initially straight and un-
twisted, and subjected to compression and bending about the major principal axis y-y,
exhibit failure-modes either in the plane of bending by deflecting along the oz axis, or out
of that plane by deflecting laterally along the oy axis and by twisting about the member axis
ox. The former failure-mode is related to the second-order bending that at the ultimate limit
state corresponds to the member in-plane buckling resistance. In contrast, the latter failure-
mode is associated with the bifurcation instability in the form of out-of-plane buckling that
at the ultimate limit state corresponds to the flexural-torsional buckling (FTB) resistance.

The in-plane behavior and flexural-torsional buckling of beam-columns have been
studied for many years, starting with the first solution obtained by Euler for flexural buck-
ling of compressed elastic members, and then extended from the in-plane field of studies
into the torsional and general flexural-torsional failure domains, including the elastic range
of steel behavior, and then taking into account the elastic–plastic properties of steel. Prob-
lems related to different aspects of beam-column stability behavior are included in many
textbooks, e.g., Timoshenko and Gere [1], Vlasov [2], Chen and Atsuta [3,4], Trahair [5],
Yang and Kuo [6], and finally Trahair et al. [7] and Kindmann and Kraus [8], which are
specifically related to the behavior of steel members and structures. For standardization
purposes, the elastic-buckling solutions based on linear-buckling analysis (LBA) derived
from the classical energy-equation are adopted.

In LBA of beam-columns under compression and major-axis bending, the small-
rotation matrix is used for the formulation and evaluation of the first order stress resultants
(the axial force and the major-axis bending moment). The displacement-field may be
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formulated in this case for the configuration being infinitesimally close to the initial one.
Adopting an RHS Cartesian coordinate system, in which the axis ox is the prismatic-member
axis passing through the section shear-center, axes oy and oz are the section principal-axes
(oy is prescribed for the section’s greater moment of inertia and for the major bending-axis,
and oz is associated with the plane of the loading system), the displacement-field takes the
form given by Pi et al. [9]: u

v
w

−
u0

v0
w0

 = R

−ωθx
′

y
z

−
0

y
z

 (1)

where u, v, and w are the displacements of an arbitrary point within the member volume,
the vector of u0, v0, and w0 contains the member-axis displacements of the bisymmetric
open section, resulting from the elongation and rotations of the member’s elemental-length
dx, ω is the section’s normalized warping-ordinate, θx is the angle of twist rotation, and
(· · · )′ = d(· · · )/dx is the derivative of the x-dependent variables.

The first-order rotation matrix, R, in the undeflected configuration is given by:

R =

 1 −θz θy
v0
′ 1 −θx

w0
′ θx 1

 (2)

where −θy = w0
′ and θz = v0

′ are the angels of flexural rotations.
Figure 1 shows the kinematics of the member elementary-length, dx, based on the

first-order rotation matrix given by Equation (2).
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Figure 1. Member’s elementary-length kinematics in reference to the first-order rotation matrix.

For the purpose of stability formulation, the second-order rotation matrix may be
adopted, in which the coupling between the twist rotation and the flexural rotations is
taken into consideration for the evaluation of the displacement-field:

R =


1− 1

2

(
v0
′2 + w0

′2
)

−v′0 − w0
′θx −w0

′ + v0
′θx

v0
′ 1− 1

2

(
w0
′2 + θx

2
)

−θx

w0
′ θx 1− 1

2

(
v0
′2 + θx

2
)
 (3)

As a result, the classical energy-equation is obtained by using such a form of the
rotation matrix as is explained in Pi et al. [9]. A closed-form solution for FTB problems
can only be obtained for the cases of uniform bending and uniform compression. For a
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symmetric-loading system, the solution is obtained by approximating globally the buckling
displacements with the use of the functions satisfying the natural boundary conditions

v0 = a1 sin
πx
L0

= a1 sin πξ (4)

θx = a3 sin
πx
L0

= a3 sin πξ (5)

in which the dimensionless coordinate ξ = x/L0 and L0 is the original length of the straight,
untwisted member.

The linear-eigenvalue analysis (LEA) closed-form solution for beam-columns for the case
of equal and opposite end-moments, My, and compression, N, takes the well-known form(

My

Mcr,0

)2
=

(
1− N

Nz

)(
1− N

NT

)
(6)

where Mcr,0 = i0
√

NzNT is the critical moment for uniform bending, Nz and NT are the
lowest bifurcation forces in relation to the independent out-of-plane buckling modes of
flexural minor-axis form and torsional form, and i0 is the polar radius of gyration.

Cuk and Trahair [10] developed an improved analytical FTB-solution for elastic beam-
columns under unequal end-moments:(

My,max

Cbc Mcr,0

)2
=

(
1− N

Nz

)(
1− N

NT

)
(7)

where Cbc is the equivalent uniform moment-modification-factor and My,max is the end-
moment of greater absolute value.

Replacing the Cbc factor by Cbc,0, which is valid for any shear-center loads, not only
for unequal end-moments, the latter takes the following form:

Cbc,0 =

[
My,s,max

My,max

1
Cbs

+

(
My,a,max

My,max

)3 1
Cba

(
1− 0.575

N
Nz

)]−1

(8)

where My,s,max, My,a,max are the maximum moments related to the symmetric- and
antisymmetric-system load-components and Cbc,0 is the factor for any combination of
end-moments and shear-center loads.

The factors Cbs = 1.0 and Cba = 2.5 proposed by Cuk and Trahair [10] for unequal end-
moments correspond to those calculated from the equation provided by Serna et al. [11].

Combined-load cases need a more complex analysis that nowadays is performed using
LBA and the finite-element method leading to LEA, e.g., Papangelis et al. [12]. In parallel
investigations, a number of LEA formulations have been researched in order to obtain ana-
lytical elastic-buckling solutions for engineering applications. The approximate solutions
for moment-gradient cases may be obtained by using the following global approximation
of buckling modes:

v0 = v0s + v0a = a1 sin
πx
L0

+ a2 sin
2πx
L0

= a1 sin πξ + a2 sin 2πξ (9)

with θx given by Equation (5).
An LEA formulation and a general closed-form solution were presented by Giże-

jowski et al. [13]. Such a general solution for the shear-center span loads takes the form of
Equation (7), in which Cbc = Cbc,0:

Cbc,0 =

[(
My,s,max

My,max

1
Cbs,cem

)2
+

1− N
Nz

1− N
Nza

(
My,a,max

My,max

1
Cba,cem

)2
]−0.5

(10)
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where 1
Cbs,cem

= 2
∫ 1

0
My,s(ξ)
My,s,max

sin2 πξdξ, 1
Cba,cem

= 2
∫ 1

0
My,a(ξ)
My,a,max

sin πξ sin 2πξdξ are reciprocals
of the classical energy-method conversion-factors; My,s(ξ), My,a(ξ) are the field-moments
for the symmetric and antisymmetric components, and Nza = 4Nz is the second-lowest
flexural minor-axis bifurcation force.

The out-of-plane stability LBA formulation was further extended for the inelastic
region. Bradford et al. [14] presented a finite-element model for investigating the inelastic
behavior of beam-columns. A large-displacement inelastic in-plane analysis was combined
with the formulation of a non-prismatic elastic-line finite element with 7 degrees of freedom.
An out-of-plane inelastic-buckling analysis was carried out for the evaluation of inelastic
critical-loads for beams and beam-columns under selected in-plane loading systems. The
effect of residual stresses was taken into account in the finite-element analysis, but the
effect of geometric imperfections was not included.

Recently, a number of published papers have referred to more accurate nonlinear-
buckling-analysis (NBA) formulations that include the effect of prebuckling displacements
on the buckling state. Pi and Trahair [15,16] presented a general numerical model for
nonlinear-buckling analysis (NBA,) using a beam finite-element approach. Pi and Brad-
ford [17,18] continued these investigations, presenting an accurate rotation matrix that
satisfies the orthogonality conditions

RRT = I, (11)

detR = 1. (12)

The terms of the rotation matrix are as follows:

R (1, 1) = cos θ, (13)

R (1, 2) = −
(
v′0 cos φ + w′0 sin φ

)
(1 + 2e0)

−0.5, (14)

R (1, 3) = −
(
w′0 cos φ− v′0 sin φ

)
(1 + 2e0)

−0.5, (15)

R (2, 1) = v′0(1 + 2e0)
−1, (16)

R (2, 2) =
[
1− λv′0

2(1 + 2e0)
−1
]

cos φ− λv′0w′0(1 + 2e0)
−1 sin φ, (17)

R (2, 3) = −
[
1− λv′0

2(1 + 2e0)
−1
]

sin φ− λv′0w′0(1 + 2e0)
−1 cos φ, (18)

R (3, 1) = w′0(1 + 2e0)
−1, (19)

R (3, 2) =
[
1− λv′0

2(1 + 2e0)
−1
]

sin φ− λv′0w′0(1 + 2e0)
−1 cos φ, (20)

R (3, 3) =
[
1− λw′0

2(1 + 2e0)
−1
]

cos φ + λv′0w′0(1 + 2e0)
−1 sin φ, (21)

where e0 = u′0 +
(
v′0

2 + w′0
2)/2 is the Green measure of the member-axis extension,

and φ is the angle of twist rotation in the rotated axes, θ = (1 + u′0)(1 + 2e0)
−0.5 and

λ = 1/(1 + cos θ).
Barszcz et al. [19] adopted the rotation matrix developed by Pi and Bradford [17,18]

for the lateral-torsional buckling (LTB) of beams, and showed that it allows for the LBA
solution in the form of a quadratic-eigenproblem analysis (QEA). In conclusion, it was
mentioned that the LEA buckling-moment, Mcr, needs to be modified by the factor k1

−0.5,
where k1 = 1− Iz/Iy and Iy, Iz are the principal moments-of-inertia of the cross-section.

Mohri et al. [20] used another rotation matrix for the virtual-work formulation that
allowed for the effect of prebuckling displacements on the beam-column buckling state, by
using the k1 factor. The trigonometric functions of the angle of twist rotation were retained
in the formulation for the derivation process, starting from the rotation matrix and ending
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in the calculation of strain components and the equilibrium at the buckling state. The
rotation matrix was presented in [20], in the following form:

R =

 1 −v′0 cos θx − w′0 sin θx −w0 cos θx + v′0 sin θx
v0
′ cos θx − sin θx

w0
′ sin θx cos θx

. (22)

Finally, one has to mention that for uniform bending and compression, a more accurate
expression of the critical moment was presented by Trahair et al. [7]:[

My

(k1k2)
−0.5Mcr,0

]2

=

(
1− N

Nz

)(
1− N

NT

)
(23)

where k2 = 1− 1
2
(
GIT/EIy

)[
1 + (EIw/GIT)(π/L0)

2
]
, E and G are the material’s elastic

and shear moduli, and Iw and IT are the section warping-constant for non-uniform torsion
and the Saint-Venant’s constant for uniform torsion, respectively; for typical situations in
steelwork, one may adopt k2 = 1.

The purpose of this paper is to investigate the mechanics of flexural-torsional buckling
in a different way than has been presented in the subject literature. The derivation is
based on the rotation matrix formulated in the deflected configuration with the aid of
transformation matrices, in order to represent the deformation components at buckling. A
significant element of this research is in laying down the development of a refined stability
criterion for FTB equilibrium as the second variation of the total potential energy. The
derived equations are valid for any asymmetric in-plane loading system. The stability
criterion includes the effect covered by the k1 factor, but neglects the effect covered by the k2
factor. The solution is obtained in an approximate way by using the superposition principle
of amplified symmetric and antisymmetric moment-components. The analytical solution
developed is verified for selected symmetric- and asymmetric-loading systems. Two hot-
rolled steel sections, IPE 180 and HEB 180, exhibiting the different values of k1 = 0.920 for
the former section and k1 = 0.645 for the latter section, are dealt with. For the purposes
of verification, two finite-element flexural-torsional-buckling-analysis software programs
are used, namely PRFELB, developed at the University of Sydney [12] and LTBeamN,
developed at CTICM [21], the latter available for free in the public domain. It is concluded
that the developed elastic-buckling equation for any asymmetric-loading system is an
extension of the solution presented in Mohri et al. [20]. The general solution developed
in Mohri et al. [20], based on the differential equilibrium equations and Galerkin method,
was restricted to symmetric-loading systems. The general solution developed in this paper
applies to any asymmetric-loading system and to the selected symmetric-loading patterns
proven by Mohri et al. [20].

2. Kinematics of an Open Bisymmetric-Section

Figure 2 shows the kinematics of the member’s axis length ds0 = (1 + u0
′)dx sub-

jected to membrane extension/shortening in the deflected configuration of the double-tee
bisymmetric section and the flexural deformations and torsion, during which the bowing
and warping effects are considered.
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The length of an arbitrary fiber, ds, in the configuration infinitesimally close to the
deflected configuration is defined as:

ds =
√

1 + 2edx ∼= (1 + e)dx, (24)

where e = u′0 +
1
2

[
(∂v/∂x)2 + (∂w/∂x)2

]
, u0 is the axial displacement, v and w are the

field displacements of an arbitrary material-point measured along the rotated axes in the
deflected configuration, and ∂(· · · )/∂x, ∂(· · · )/∂y, ∂(· · · )/∂z are the partial derivatives
of multi-ordinate dependent variables, herein with regard to the x, y, or z ordinate.

2.1. Displacement-Field

Using small-rotation measurements, and including the vector of rigid body translations
u0, v0 and w0 of the member’s elemental-length dx, having a different meaning than the
vector of those displacements in Equation (1), the matrix relationship for the displacement-
field in the deflected configuration is proposed to be written as follows:u

v
w

−
u0

v0
w0

 = R

dx
y
z

−
ωκx

y
z

 (25)

where κx is the twist measured in the deflected configuration, and u is the axial-displacement
of an arbitrary material-point measured along the rotated axes in the deflected configuration
and the rotation matrix

R =

 e −φz φy
φz cos φx − sin φx
−φy sin φx cos φx

. (26)

The first-column terms of R are to be multiplied by dx in order to obtain the arbi-
trary fiber incremental-elongation in the deflected configuration edx = ∂s

∂x dx− 1 and the
incremental transverse-displacement measures along the member-section rotated axes:
φzdx = v0

′dx, −φydx = w0
′dx, and φx is the angle of twist rotation about the rotated-
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member x-axis. The relationship relating the displacements along the rotated axes to those
along the axes in undeflected configuration is as follows:u0

v0
w0

 =

1 0 0
0 cos φx − sin φx
0 sin φx cos φx

u0
v0
w0

 (27)

Since the first column of the rotation matrix, after multiplying by ds, represents the
vector of displacements along the rotated axes, Equation (25) may be restructured in the
following form:u

v
w

−
u0

v0
w0

 =


{

u′0 −ωκx
′ + 1

2

[
(∂v/∂x)2 + (∂w/∂x)2

]}
dx

v0
w0

+ Rφ

[
y
z

]
(28)

where the curvature-related rotation submatrix Rφ is

Rφ =

 −φz φy
cos φx − sin φx
sin φx cos φx

 (29)

The vector of rotation angles in the deflected configuration may be referred to those
measured along the unrotated axes, as follows:φx

φz
φy

 =

1 1
2 w0

′ 1
2 v0
′

0 cos φx − sin φx
0 sin φx cos φx

θx
θz
θy

 (30)

where θy = −w0
′/(1 + u0

′), θz = v0
′/(1 + u0

′).
The curvatures in the deflected configuration are expressed asκx

κz
κy

 =

1 1
2 w0

′ 1
2 v0
′

0 cos φx − sin φx
0 sin φx cos φx

κx
κz
κy

 (31)

where κx = θx
′ is the twist curvature for the axes of the twisted, straight member, and

κy = −[(1 + u0
′)w0 ′′ − u0 ′′w0

′] and κz = (1 + u0
′)v0 ′′ − u0 ′′ v0

′ are the flexural-curvature
measures for the deflected untwisted-axes.

The formulation developed herein maintains coupling between the membrane state of
deformation and all the other deformation states, namely torsion as well as flexure, about
both sectional axes. It is a similar formulation to that of Pi and Bradford [17,18] except that
the latter neglect the coupling between the membrane- and torsion-states. Both formula-
tions correspond to the so-called third-order member theory (large-displacement theory).

In the so-called second-order theory, the membrane strain, u0
′, is taken as a constant

value for all the section fibers along the member axis; therefore, u′′0 = 0 while ds0/dx =
1 + u0

′ may be taken as equal to unity in the developed final relationships. As a result,
the curvatures become κy = κy = −w0 ′′ , κz = κz = v0 ′′ . Furthermore, when neglecting
the nonlinear terms of the twist curvature, i.e., taking κx = κx = θx

′, the formulation
corresponds to that of Mohri et al. [20]. Although all the above formulations lead to a
slightly different FEM model for nonlinear-buckling analysis (NBA), they result in the
same non-classical energy-equation that constitutes the basis for allowing the effect of
prebuckling deflections to be taken into account in the linear-buckling analysis (LBA).

The classical energy-equation may be obtained by replacing, at the early stage of
derivation, the trigonometric functions with the first terms of the Taylor series expansion,
i.e., sin φx ∼= φx, cos φx ∼= 1.



Buildings 2023, 13, 307 8 of 16

2.2. Strain and Total-Potential-Energy Components

The strain-energy stored in an open-section member results from two nonzero strain-
components, normal ε and shear γ (the subscripts are left out for the convenience of
notation). They are dependent upon the displacement gradients, in particular the cur-
vatures, for bending about the sectional principal-axes and for torsion. Retaining the
trigonometric functions of the twist rotation and neglecting terms of a higher order than 2,
the displacement gradients with regard to the x-ordinate may be expressed in the deflected
configuration, as follows:

∂u
∂x
∂v
∂x
∂w
∂x

 =

u′0 −ωκx
′ + 1

2

[(
∂v
∂x

)2
+
(

∂w
∂x

)2
]

φz
−φy

+

(
∂

∂x
Rφ

)[
y
z

]
(32)

where

∂

∂x
Rφ =

κz − φyκx κy + φzκx
0 −κx
κx 0

. (33)

The nonzero normal and shear-strain measurements in the deflected configuration are
defined as follows:

ε =
du
dx

= u′0 − κzy + κyz−ωκx +
1
2

[(
v0
′)2

+
(
w0
′)2

+ (i0)
2(κx)

2
]

(34)

γ = −2nκx (35)

where n is the section coordinate across the wall thickness measured from the mid-surface
line, and being normal to it.

The total potential energy Π is composed of the positive strain-energy U and the
negative work of the conservative load-system during the member deformations, W. The
strain-energy for the elastic beam-column is given by

U =
1
2

∫ V0

0

[
σ τ

](
δ

[
ε
γ

])
dV =

1
2

∫ V0

0

[
ε γ

][E 0
0 G

](
δ

[
ε
γ

])
dV (36)

where V0 is the volume of the straight, untwisted member.
The work, W, of a conservative loading-system of applied loads and moments from

the straight, untwisted state, may be written as

W = 1
2

∫ L0
0

[qx qy qz
]uq

vq
wq

+
[
mapl,x mapl,y mapl,z

]θx
θy
θz

dx+

∑

[Qx Qy Qz
]uQ

vQ
wQ

+
[
Mapl,x Mapl,y Mapl,z

]θx,M
θy,M
θz,M

.

(37)

where qk, Qk for k = x,y,z—applied distributed and concentrated conservative-loads, uq,vq,wq—
displacement-field components corresponding to the conservative distributed-load com-
ponents, uQ, vQ, wQ—displacement-field components corresponding to the conservative
concentrated-load components, mapl,k, Mapl,k—applied distributed- and concentrated-
moments, θx, θy, θz and θx,M, θy,M, θz,M—rotation-field components corresponding to the
distributed and concentrated conservative-moments, respectively.

Equating the first variation of Π to zero gives the variational equilibrium equation
that may be used for the establishment of the differential equilibrium equations as well as
the sets of natural-boundary conditions and stress resultants. Considering that A is the
cross-section area, and retaining the terms belonging to the flexural-torsional buckling of
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beam-columns under bending about the major axis and compression, the in-plane stress
resultants at the buckling state were predicted by Mohri et al. [20]:

N = EAu′0, (38)

My = −EIyw′′0 , (39)

Mz = EIzw′′0 θx. (40)

Consider a special loading system, composed of transverse-span loads along the oz
axis and unequal end-moments about the section’s principal major-axis, producing bending
in the plane of the section’s greater moment-of-inertia, as well as equal and opposite end-
loads along the ox axis producing tension/compression. Loads qz are composed of “i”
distributed qz,i components and loads Qz of “j” concentrated Qz,j components. All the
components are unequal in the member half-lengths, as shown in Figure 3. The load-system
asymmetry in both member half-lengths is represented by the load factors ψq,i and ψQ,j, as
well as by the factor ψM for end-moments. For the convenience of further calculations, this
in-plane loading system is decomposed into symmetric and antisymmetric components, as
is also shown in Figure 3.
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2
+ 𝐸𝐼𝑧(𝜅𝑦)

2
+ 𝐺𝐼𝑇(𝜅𝑥)

2
+ 𝐸𝐼𝑤(𝜅𝑥′)

2
+ 𝐸𝐴𝑢0

′ [(𝑣0′)
2 +

𝐿0
0

(𝑖0)
2(𝜅𝑥)

2
]} 𝑑𝑥 + 𝛿 {∑ ∫ 𝑞𝑧,𝑖𝑧𝑞,𝑖[𝜃𝑥,𝑖(𝑥)]

2
𝑑𝑥

𝑥𝑞2,𝑖
𝑥𝑞1,𝑖

𝑖 +∑ 𝑄𝑧,𝑗 𝑧𝑄,𝑗[𝜃𝑥,𝑗(𝑥𝑄,𝑗)]
2

𝑗 +
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Considering the described in-plane loading system, the variational equilibrium equa-
tion at the FTB state becomes

1
2 δ
∫ L0

0

{
EIy(ky)

2 + EIz(ky)
2 + GIT(kx)

2 + EIw(kx
′)

2
+ EAu′0[(v0

′)2+

(i0)
2(kx)

2]
}

dx + δ
{

∑i
∫ xq2,i

xq1,i
qz,izq,i[θx,i(x)]2dx+∑j Qz,jzQ,j[θx,j(xQ,i)]

2+

∑i
∫ L0−xq1,i

L0−xq2,i
ψq,iqz,izq,i[θx,i(x)]2dx+∑j ψQ,jQz,jzQ,j[θx,j(L0 − xQ,j)]

2
}
= 0.

(41)

3. Stability Condition in Deformed Configuration

The stability condition at member equilibrium in the deflected configuration is derived
by calculating the second variation of Π and equating the result to zero. This can be done
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by performing the variation of Equation (41) and substituting the definitions of stress
resultants that yield the criterion based on the so-called refined energy-equation:

1
2

∫ L
0 δ2

{
EIz(v

′′
0 )

2
+ EIw(θx

′′ )2 + GIT(θx
′)2 − N[(v′0)

2 + i20(θx
′)2]+

k1Myθx(2v′′0 −
Mz
EIz

)
}

dx + δ2
{

∑i
∫ xq2,i

xq1,i
qz,izq,i[θx,i(x)]2dx+

∑j Qz,jzQ,j[θx,j(xQ,j)]
2 + ∑i

∫ L−xq1,i
L−xq2,i

ψq,iqz,izq,i[θx,i(x)]2dx+

∑j ψQ,jQz,jzQ,j[θx,j(L0 − xQ,j)]
2
}
= 0.

(42)

Equation (42) is hereafter called a refined energy-equation for FTB/LTB-stability
problems. One may notice that a variety of elastic-buckling solutions existing in the subject
literature may be related to this refined energy-equation. Taking k1 = 1 in the above
equation, and moreover, the in-plane moment, My, calculated from the linear analysis (LA)
denoted hereafter by MI

y, as well as making the simplification of Mz = 0, leads to the LEA
classical form of the energy equation; cf. Trahair [5], Pi et al. [9]. The general solution is
that of Equation (7), with the equivalent uniform moment-modification-factor Cbc replaced
by Cbc,0 of Equation (10).

4. Improved Solution Based on the Refined Energy-Equation

The improved solution of Equation (42) results from assuming the minor-axis curva-
ture calculated from the differential equilibrium equation, as in the Timoshenko energy
method; cf. Trahair [5]:

v′′0 = −
Myθx

EIz
(43)

Using the principle of superposition, the in-plane moments are taken as the sum of
symmetric MI I

y,s and antisymmetric MI I
y,a moment components, corresponding to symmetric

and antisymmetric load-components. In the proposed solution, the second-order in-plane
moments MI I

y,s and MI I
y,a are approximated by amplifying the symmetric and antisymmetric

first-order in-plane moment components, MI
y,s and MI

y,a, respectively. In a similar way,
the second-order moments MI I

z,s and MI I
z,a are approximated by amplifying the symmetric

and antisymmetric first-order out-of-plane moment components, MI
z,s = −MI

y,sθx and
MI

z,a = −MI
y,aθx, respectively. Hence, the moment term in Equation (42) becomes

k1

MI
y,sθx

1− N
Ny

+
MI

y,aθx

1− N
Nya

(2v′′0 −
Mz

EIz

)
= − k1

EIz

MI
y,sθx

1− N
Ny

+
MI

y,aθx

1− N
Nya

(MI
y,sθx

1− N
Nz

+
MI

y,aθx

1− N
Nza

)
, (44)

where Ny, Nya are two lowest bifurcation forces about the y axis, corresponding to symmet-
ric and antisymmetric buckling-modes.

Substituting Equation (44) into Equation (42), the buckling problem converts to a
nonlinear-eigenproblem analysis (NEA). For the shear-center loading system, the
solution becomes (

My,max

Cbc,0Mcr,0

)2
=

(
1− N

Ny

)(
1− N

Nz

)(
1− N

NT

)
. (45)

The equivalent uniform moment-modification-factor takes the form

Cbc,0 =
√

k1

(My,s,max

My,max

1
Cbs,rem

)2
+

(
1− N

Ny

)(
1− N

Nz

)
(

1− N
Nya

)(
1− N

Nza

) (My,a,max

My,max

1
Cba,rem

)2
−0.5

(46)

where
(

1
Cbs,rem

)2
= 2

∫ 1
0

[
My,s(ξ)
My,s,max

]2
sin2 πξdξ,

(
1

Cba,rem

)2
= 2

∫ 1
0

[
My,a(ξ)
My,a,max

]2
sin2 πξdξ are re-

ciprocals squared of the refined-energy-method conversion-factors.
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One may notice that for laterally and torsionally unrestrained members, for which
Nz ≤ Ny, the following relationships hold:

1− N
Ny

= 1− (1− k1)
N
Nz

, (47)

1− N
Nya

= 1− (1− k1)
N

Nza
. (48)

For all the other solutions in which the applied loads are the off-shear center loads,
the factor Cbc,0 is to be replaced by Cbc, where the latter is related to the former as

Cbc =
Cbc,0√

ζ
. (49)

The parameter ζ, representing the effect of off-shear span load Fz, distributed qz and/or
concentrated Qz, applied at a distance zF from the shear centre, zq or zQ, respectively, takes
the form

ζ = 1 +
CbFzF

i20NT

(
1− N

NT

) . (50)

In Equation (50), the off-shear load-dependent factor CbFzF is calculated as follows:

CbFzF =


2L2

π2 ∑
i
[
∫ ξq2,i

ξq1,i

(1+ψq,i)qz,izq,i
2 sin2(πξ)dξ +

∫ 1−ξq1,i
1−ξq2,i

(1−ψq,i)qz,izq,i
2 sin2(πξ)dξ] for distributed loads,

2L
π2 ∑

j

{
(1+ψQ,j)Qz,jzQ,j

2 sin2(πξ j) +
(1−ψQ,j)Qz,jzQ,j

2 sin2[π(1− ξ j)]
}

for concentrated loads.
(51)

The coefficient CbF, representing the effect of off-shear span loads on the FTB state is
not dependent upon the formulation of the strain-energy equation.

Table 1 presents a summary of these coefficients and the equivalent uniform moment-
modification-factors developed for the classical energy-method Cbs,cem and Cba,cem as well
as Cbs,rem and Cba,rem, based on refined versions of the classical energy-method. This
refinement is based on the inclusion of an additional term, Mz/EIz, in the strain-energy
definition; cf. Equation (42).

One may notice that the moment conversion-factors Cbs,cem and Cba,cem are generally
greater than those of Cbs,rem and Cba,rem, especially for the antisymmetric component of
asymmetric-loading systems. Equation (8) with the factors Cbs = Cbs,rem and Cba = Cba,rem
are used hereafter as a generalized Cuk–Trahair solution [10] for asymmetric-loading
systems other than those with unequal end-moments.

Table 1. Equivalent uniform moment-modification-factors for non-uniform bending under symmetric
and antisymmetric components of asymmetric-loading systems.

Loading System Cbs,cem Cbs,rem Cba,cem Cba,rem CbF

Concentrated moments *
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Table 1. Cont.

Loading System Cbs,cem Cbs,rem Cba,cem Cba,rem CbF

Concentrated load at L0/2
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1.42 1.37 - - 2QzL/π2

Concentrated loads at 3L0/8
from the supports ** 1.17 1.14 1.76 1.49 3.414QzL/π2

Concentrated loads at L0/3
from the supports ** 1.12 1.10 1.74 1.56 3QzL/π2

Concentrated loads at L0/4
from the supports ** 1.05 1.04 1.81 1.73 2QzL/π2

Concentrated loads at L0/6
from the supports ** 1.01 1.01 2.01 1.98 QzL/π2

Concentrated loads at L0/8
from the supports ** 1.01 1.01 2.15 2.14 0.586QzL/π2

* Unequal at supports; ** Unequal in half-lengths.

5. Verification of Results

The developed analytical solution, based on the refined energy-equation, seems to be a
generalization of that developed by Mohri et al. [20] for the symmetric-loading systems. In
order to prove this, the scope of this verification exercise covers two selected loading cases
from those presented in Table 1. The first one is concerned with a shear-center uniformly
distributed load over the entire length of the member (Case 1: i = 1 and ψq,i = 1) and
the second one deals with a concentrated load applied at the shear center one quarter of
the beam-column length from both supports (Case 2: j = 1 and ψQ,j = 1). The results are
presented in Figures 4 and 5 for two hot-rolled steel beam-columns with sections IPE 180
(Figures 4a and 5a) and HEB 180 (Figures 4b and 5b), both of length 6 m. The verification
allows for the illustration of a buckling-state dependence upon the section type and the
effect of prebuckling deflections.
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Figure 4. Verification of results from the present study with those of Mohri et al. [20] and computer
programs LTBeamN and PRFELB for Case 1 of the in-plane loading system: (a) beam-column of
section IPE 180; (b) beam-column of section HEB 180.

The results obtained from the analytical solutions (solid black line of the present study
of the refined energy-method and Mohri et al. [20] (for symmetric loads), solid red line of
the classical energy-method [13] and blue for the generalized Cuk–Trahair solution [10]),
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are compared with those of the finite-element software (circles from LTBeamN [21] and
squares from PRFELB [12]).
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Figure 5. Verification of results from the present study with those of Mohri et al. [20] and from
computer programs LTBeamN and PRFELB for Case 2 of the in-plane loading system: (a) beam-
column of section IPE 180; (b) beam-column of section HEB 180.

The solution of the present study is valid for the in-plane loading systems that are
not necessarily symmetric, in reference to the member mid-length cross-section. Since
the greatest difference between the LEA equivalent uniform moment-modification-factors
and those from NEA of the present study are identified for asymmetric-loading systems,
the antisymmetric in-plane loading systems are of concern for the verification. The same
member length as well as the loading and section types are concerned. A shear-center
uniformly distributed load over the half length of the member (Case 3: i = 1 but ψq,i = −1)
and a concentrated load applied at the shear center one quarter of the beam-length from
both supports (Case 4: j = 1 but ψQ,j = −1) are dealt with. The results are presented in
Figures 6 and 7, respectively.
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and PRFELB for Case 4 of the in-plane loading system: (a) beam-column of section IPE 180; (b) beam-
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6. Discussion of Results

The results presented in the previous section, reinforced by their verification with
results obtained from the analytical solution of Mohri et al. [20] and from the computer
programs LTBeamN and PRFELB show that for the considered symmetric-loading systems
and for the steel section of IPE 180:

1. Results from the analytical models of the present study coincide with those of
the analytical solution of Mohri et al. [20]. Moreover, they are verified positively by the
finite-element results from both computer programs, LTBeamN and PRFELB.

2. The section exhibits a low value of k1, which means the out-of-plane instability
appears at relatively small prebuckling deflections. Therefore, the prebuckling deflections
do not play an important role in the attainment of the LTB state. As a consequence, the prob-
lem of critical-moment assessment for the symmetric-loading cases may follow LEA, for
which k1 is not included in the classical LEA-based formulations of the buckling criterion.

3. The computer programs considered herein are based on LEA; therefore, they give
results slightly lower than those from the present study and from Mohri et al. [20].

On the other hand, for the considered symmetric-loading systems and for the steel
section of HEB 180, the following is observed:

1. Results of the present study coincide with those of Mohri et al. [20], since both
include the effect of prebuckling deflections on the critical-state assessment.

2. The section exhibits a distinctively higher value of k1 than that of IPE 180, which
means the out-of-plane instability appears for larger prebuckling deflections. Therefore,
the prebuckling deflections play an important role in the attainment of the LTB state. As
a consequence, the critical moment for the symmetric-loading cases evaluated by LEA is
much lower than that calculated with the inclusion of both prebuckling stress-resultants
and the prebuckling deflected profile in the analytical formulation of the buckling criterion.

3. The computer programs LTBeamN and PRFELB give results that do not coincide
with those from the analytical solutions of the present study and from Mohri et al. [20].
The results of the maximum-moment and the axial-compressive force at the buckling state,
evaluated from the computer simulation, are well below those from the analytical models.

The other observations and discussions may be formulated on the basis of the results
obtained for the asymmetric-loading systems. To the best of the authors’ knowledge,
results for such loading cases have not yet been reported in the subject literature. Based
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on the results presented in this paper for the antisymmetric-loading cases, the following
observations may be presented:

1. Results based on the LEA solution of Giżejowski et al. [13] and of the present study
constitute for antisymmetric-loading systems the bi-line curves. This indicates that the
analytical models reflect a rather weaker interaction between the LTB mode in bending and
the lowest buckling modes in compression than is indicated by the results of the computer
simulations.

2. The LEA analytical solution presented in Giżejowski et al. [13] and that of the
present study give the results constituting the upper bound for the computer results; all of
the results become rather comparable for such a loading asymmetry, in which the loads of
both half-lengths of the beam-column are being described by positive values of ψi.

3. The finite-element results from both the computer programs LTBeamN and PRFELB are
identical or close to each other, but placed well below those from the present study analytical
model that includes the effect of the prebuckling deflected-profile on the buckling load.

4. The general analytical solution derived in the present study and valid for any
asymmetric in-plane loading system may be suggested for practical applications when
the load asymmetry factor is positive. The solution presented needs an introduction of
a semi-analytical buckling-modes interaction factor calibrated with the use of the results
obtained from finite-element simulations and carried out with the use of the LTBeamN and
PRFELB programs.

7. Concluding Remarks

In the design of steel beam-columns, the basic condition associated with the verification
is the member buckling-resistance check. Modern design codes, cf. Simoes da Silva
et al. [22], introduce the so-called general method (GM) for the verification of a multiple-
stress-resultant buckling state. In such methods, the prebuckling-inelastic solutions are
connected with the elastic-buckling solutions in the same way as for the design procedures
valid for a single stress-resultant, i.e., for compression or major-axis bending. For details,
the reader is directed to the paper by Gizejowski et al. [23]. The present paper is devoted to
the derivation of a general solution for the prediction of the elastic-buckling response of
bisymmetric open-section beam-columns under compression and major-axis bending.

In formulating an elastic-buckling model, different analytical approaches may be used.
The derivation in this paper was performed in a different way than is usually presented and
discussed in the subject literature. It was based on the small-rotation matrix formulated
in the member deflected-configuration and used straightforwardly for the description of
the displacement-field and nonzero strain-components. A non-classical energy equation,
with key refinements to the classical one was derived and discussed. It is used for the
development of a general solution for the elastic FTB of beam-columns subjected to any
asymmetric in-plane loading system.

The proposed analytical solution was verified with the use of the other analytical
solutions existing in the literature, and also using results of numerical finite-element
simulations based on the Vlasov theory of thin-walled members. The results were widely
discussed and summarized, which allows for a conclusion that the analytical general
solution developed in this paper may be postulated for use in GM as a modern tool
for steelwork design, provided that the load-asymmetry factor in the two beam-column
half-lengths is characterized by a positive value of ψi.

Further investigations are underway in order to calibrate a semi-analytical buckling-
modes interaction factor for use in the antisymmetric-loading-system component of the
applied asymmetric-load-pattern.
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