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Abstract: This paper studies the structural performance of cold-formed steel (CFS) face-to-face
(FTF) built-up channel sections subjected to axial compression at high temperatures. The material
properties of G250 and G450 CFS channel sections at room and high temperatures were acquired
from the literature, and the range of temperatures was from 20 to 700 ◦C. The influences of the section
thickness, member length, screw number, and high temperature on the structural performance of such
channel sections were examined via a comprehensive parametric analysis involving 576 validated
finite element models. As the temperature increased from 20 to 700 ◦C, the mean axial capacity of the
CFS-FTF built-up unlipped and lipped channel sections decreased by 88.9% and 90.2%, respectively.
Based on the results of the parametric study, new design equations for the axial capacity of CFS-FTF
built-up channel sections at high temperatures were proposed. The mean ratio of the EWM strengths
calculated using the American standard (AISI 2016) and Australian/New Zealand standard (AS/NZS
2018) to the FE strengths was 0.77, while the mean ratio of the proposed design strengths to the FE
strengths was 1.01. Finally, a reliability analysis was conducted, and it was found that the proposed
equations could come close in predicting the axial capacity of CFS-FTF built-up channel sections at
high temperatures.

Keywords: cold-formed steel; built-up section; high temperature; finite element analysis; design guidelines

1. Introduction

The structural engineering applications of cold-formed steel (CFS) are increasing
steadily, with the use of face-to-face (FTF) built-up cold-formed steel channel sections
becoming popular as compression members. A CFS-FTF built-up channel section is built
by assembling single channels on a face-to-face basis utilising fasteners. The structural
application of CFS-FTF built-up channel sections comprises columns in portal frames,
struts, and wall studs [1,2]. Understanding the structural behaviour of CFS-FTF built-up
channel sections at high temperatures is crucial to minimising the harm brought on by
fire-associated incidents. This paper aims to study the influence of high temperatures on
the compressive performance of CFS-FTF built-up channel sections.

Regarding the studies reported in the literature on the reduced mechanical properties
of CFS sections at elevated temperatures, some researchers have focused on the structural
behaviour of different CFS sections at elevated temperatures and subjected to different
loading conditions. Researchers have so far examined the compressive performance of
CFS single columns at high temperatures. Gunalan et al. [3] experimentally and numer-
ically investigated the local buckling performance of CFS unlipped and lipped channel
sections at high temperatures. Gunalan et al. [4] also studied the combined flexural and
torsional buckling performance of CFS lipped channels under axial compression at high
temperatures. The fire code Eurocode 3 Part 1.2 was found to result in overly conservative
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predictions for CFS single columns at high temperatures subjected to local buckling [3]
and flexural-torsional buckling [4]. Ranawaka and Mahendran [5] carried out an inves-
tigation to study the distortional buckling performance of CFS lipped channel sections
under axial compression at high temperatures. The results demonstrated the importance of
using accurate mechanical properties at elevated temperatures in the fire safety design of
CFS compression members. Chen and Young [6] numerically investigated the structural
performance of CFS lipped channel sections under axial compression at high temperatures.
A full strain range expression up to the ultimate tensile strain for the stress–strain curves of
cold-formed carbon steel at high temperatures was proposed. Feng and Wang [7] studied
the compressive performance of CFS channels at room temperature and high tempera-
tures. It was observed that the failure modes of two nominally identical columns could
be different, even though the failure loads were close. Multiple investigations have been
conducted to determine the effect of high temperatures on CFS single beams. Landesmann
and Camotim [8] presented an FE investigation on the distortional buckling behaviour
of CFS single-span lipped channel beams under high temperatures. The end-support
conditions and cross-section dimensions were found to significantly affect the distortional
post-buckling response. Laim et al. [9] conducted a study to understand the structural
performance of CFS beams in fire. CFS beams can be strongly affected by the stiffness of the
surrounding structures. Kankanamge and Mahendran [10] presented a validated FE model
for determining the structural behaviour of CFS lipped channel beams under bending at
high temperatures. Fang et al. [11] carried out a numerical simulation to investigate the
structural behaviour of CFS single beams with web openings subjected to web crippling.
The average web crippling strength was found to decrease by 90% when the temperature
increased from 20 to 700 ◦C.

Only limited research has been reported on the mechanical behaviour of CFS built-up
columns under fire in the literature. Fang et al. [12] performed a numerical analysis of the
structural performance of CFS built-up perforated channel sections that were connected
back to back, where the temperature varied from 20 to 700 ◦C. A decrease was observed in
the axial strength of perforated BTB channels of 87% on average [12]. Yang et al. [13,14]
conducted an experimental test to explore the fire performance of CFS-FTF gapped built-up
channel columns (see Figure 1a). The influences of the temperature distribution pattern and
heating rate on the fire response of such columns were reported. The results indicated that
the primary failure mode of the specimens was a combination of local and global flexural
buckling, which was sensitive to the longitudinally non-uniform temperature field [13,14].
Pires et al. [15] tested 10 specimens of CFS-FTF built-up channel columns (see Figure 1b).
A plasterboard hollow encasement was found to be an alternative that could improve
the performance of fire resistance for such columns. However, the cross-section shapes
of these CFS-FTF built-up channels did not comprise all of the popular cross-sections
(e.g., Figure 1c). More importantly, the current design guidelines of the American standard
(AISI 2016) [16] and the Australian/New Zealand standard (AS/NZS 2018) [17] could be
inaccurate in predicting different built-up cross-sections.

A numerical investigation is performed in this paper to study the structural perfor-
mance of CFS-FTF built-up channel sections under axial compression at high temperatures.
Figure 1d,e display the dimensions of the CFS-FTF built-up channel sections investigated
herein. Based on the Finite Element (FE) results of 576 validated models, a parametric
analysis was performed to study the influences of the section thickness, member length,
screw number and high temperature on the axial capacity of CFS-FTF built-up channel
sections. The results calculated in terms of the AISI (2016) [16] and AS/NZS (2018) [17]
design standards were compared with the numerical failure loads of CFS-FTF built-up
channel sections subjected to axial compression to examine the accuracy of the current
design standards [16,17]. Based on the parametric study results, new design equations
were proposed for CFS-FTF built-up channel sections subjected to axial compression at
high temperatures, and a reliability analysis was carried out to assess the viability of the
proposed design equations.
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Figure 1. CFS-FTF built-up cross-section shapes: (a) FTF gapped built-up section [13,14]; (b) FTF lip
connected built-up section [15]; (c) FTF flange connected built-up section [2]; (d) FTF built-up lipped
channel section; and (e) FTF built-up unlipped channel section.

2. Summary of Previous Experiments

Roy et al. [2] and Selvaraj and Madhavan [18] conducted experiments to study the
structural performance of CFS-FTF built-up channel sections subjected to axial compression
at room temperature. The experiments were carried out at ambient temperature and
included different geometric parameters that affect the axial capacity of such sections.
These parameters comprised the member length, section dimension, and number of screws.
Therefore, the test results presented by Roy et al. [2] and Selvaraj and Madhavan [18] were
utilised to validate the FE models.

3. Finite Element Analysis
3.1. General

The ABAQUS [19] was utilised to generate FE models to acquire the axial capacity of
CFS-FTF built-up channel sections at high temperatures.

3.2. Material Properties

The stress–strain curves of G250 CFS with 1.55 mm and 1.95 mm thicknesses, as well
as G450 CFS with 1.50 mm and 1.90 mm thicknesses, at room and high temperatures were
acquired from [20] and applied in the finite element modelling (FEM). Table 1 displays the
material properties considered in this study.
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Table 1. Material properties of G450 and G250 [20].

Temperature (◦C)
G450_1.5 mm G450_1.9 mm

E (MPa) f y (MPa) E f y

20 207,490 537.1 206,328 514.5
100 189,375 526.4 196,540 521.2
200 172,000 534.4 173,337 509.9
300 157,380 508.6 148,395 483.6
400 126,030 373.3 118,533 362.2
500 96,800 193.4 77,100 197.1
600 63,126 59.1 52,536 56.6
700 47,559 32.8 24,286 34.0

Temperature (◦C)
G250_1.55 mm G250_1.95 mm

E f y E f y

20 204,385 293.5 188,220 270.51
100 191,505 279.1 179,640 267.3
200 160,555 274.4 171,745 257
300 142,470 187.8 154,330 196.4
400 128,220 144.4 121,230 147.7
500 81,096 94.8 90,631 95.8
600 62,066 66.3 57,777 54.1
700 24,851 37.3 31,363 34.4

3.3. Specimen Labels

This study utilised CFS-FTF built-up channel sections (unlipped and lipped) with
a web depth and flange width of 90 mm and 50 mm, respectively (see Figure 1d). The
investigated CFS-FTF built-up channel sections were labelled to express the cross-sectional
type, column length, section thickness, and screw numbers. For instance, the interpretations
of “BU-L300-t1.5-S2-T20” and “BL-L300-t1.5-S2-T20” are shown below:

• “BU” identifies the unlipped channel section;
• “BL” identifies the lipped channel section;
• “L300” identifies the column length (L) at 300 mm;
• “t1.5” identifies the section thickness (t) at 1.5 mm;
• “S2” indicates that the screw number (S) is 2;
• “T20” identifies the temperature (T) at 20 ◦C;

It should be noted that the screws were evenly arranged along the column, while the
distance from the side screw to the column end was 50 mm.

3.4. Finite Element Mesh

The S4R shell element was used in the FEM of the CFS-FTF built-up channel columns.
This element is a thin, shear, flexible, isoparametric and quadrilateral shell with four nodes
and five degrees of freedom per node, which utilises reduced integration and bilinear
interpolation schemes. Such a shell element can save on computational time since it allows
the modelling of thin-walled members with relatively fewer elements than solid elements,
and it was applied by past researchers for cold-formed members [21–23]. Both the bottom
and top endplates were modelled utilising R3D4 shell elements. This element is a rigid
quadrilateral with four nodes and three translational degrees of freedom per node. As the
element has no rotational degrees of freedom, the perpendicular shell elements attached
by common nodes to a rigid surface comprising R3D4 elements are free to rotate around
the attached edge. The local buckling rotations are, therefore, unconstrained. In terms of
the mesh sensitivity analysis accounting for the computational efficiency and numerical
accuracy, a 10 mm × 10 mm mesh size was applied to the channel section and endplates. A
finer mesh size was taken into account near the corners for better accuracy in the FEM, as
shown in Figure 2.
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3.5. Boundary Conditions and Loadings

Figure 3 shows the detailed boundary and loading conditions of CFS-FTF built-up
channel sections subjected to axial compression. The boundary condition of the pin-pin end
support was simulated by loading displacements to both the top and bottom endplates at
reference points. The translations in the X-axis and Y-axis were restrained to make sure that
the top nodes could only move in the Z-axis. The rotation in the Y-axis was not restrained
for the top nodes. For the bottom nodes of the endplate, the rotation in the Y-axis was
released, while it was restrained for the other directions. In Figure 3, U1, U2, and U3
represent the displacements in the X-, Y-, and Z-axes, respectively. A 10 mm displacement
was applied to all the FE models.

3.6. Contact Modelling

The “Surface-to-Surface” function was utilised to represent the relationship between
the flanges and other overlapped surfaces in the CFS-FTF built-up sections. To ensure
that no penetration occurred between the two surfaces, “Hard Contact” was set in the
normal direction.
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3.7. Modelling of Imperfections

Imperfections were taken into consideration in the FEM. Local and overall imper-
fections were considered. The first eigenmode was used for each model after a buckling
analysis was carried out to acquire the eigenmodes and eigenvalues for each CFS-FTF
built-up channel section. The CFS-FTF built-up channel section imperfection magnitudes
were scaled to the highest amplitude values in terms of the experiments [2]. Figure 4
displays the initial geometric imperfection eigenmodes of the local buckling and global
buckling of BL-L500-t1-S5.

3.8. FE Validation

The comparison results of the axial capacities determined via the FEA with the experi-
mental data in [2,18] are shown in Table 2. A sensitivity analysis of the initial imperfection
was carried out on the specimen “BL75-L500-1” reported by Roy et al. [2]. For the FE model
of this specimen, considering and neglecting the initial imperfections, the axial capacities of
such a CFS-FTF built-up section are 132.0 kN and 132.6 kN, respectively. Hence, the initial
imperfections were found to decrease the axial capacity of this specimen by around 0.5%.
In comparison with the test data presented in [2], the average ratio of the axial capacities of
PTEST/PFEA was 0.98 and the coefficient of variation (COVs) was 0.05 (see Table 2). Figure 5
displays the deformed shape of the section BL75-L500-t1-S5, as presented by the FEA, and
the experimental failure mode was found to match reasonably well with the numerical one.
The FE models show good accuracy in predicting the axial capacity of the CFS-FTF built-up
channel sections reported in [2,18].



Buildings 2023, 13, 305 7 of 16Buildings 2023, 13, x FOR PEER REVIEW 7 of 18 
 

  
(a) (b) 

Figure 4. Initial geometric buckling modes for BL-L500-t1-S5: (a) local buckling; and (b) overall 
buckling. 

3.8. FE Validation 
The comparison results of the axial capacities determined via the FEA with the ex-

perimental data in [2,18] are shown in Table 2. A sensitivity analysis of the initial imper-
fection was carried out on the specimen “BL75-L500-1” reported by Roy et al. [2]. For the 
FE model of this specimen, considering and neglecting the initial imperfections, the axial 
capacities of such a CFS-FTF built-up section are 132.0 kN and 132.6 kN, respectively. 
Hence, the initial imperfections were found to decrease the axial capacity of this specimen 
by around 0.5%. In comparison with the test data presented in [2], the average ratio of the 
axial capacities of PTEST/PFEA was 0.98 and the coefficient of variation (COVs) was 0.05 (see 
Table 2). Figure 5 displays the deformed shape of the section BL75-L500-t1-S5, as pre-
sented by the FEA, and the experimental failure mode was found to match reasonably 
well with the numerical one. The FE models show good accuracy in predicting the axial 
capacity of the CFS-FTF built-up channel sections reported in [2,18]. 

The validation in this section was conducted at ambient temperature. The modelling 
procedure of the CFS-FTF built-up columns at high temperature was kept the same as in 
the ambient temperature condition, although the material properties were changed to ac-
count for the lower yield stress and other material properties from the ambient to high 
temperatures. 

Figure 4. Initial geometric buckling modes for BL-L500-t1-S5: (a) local buckling; and (b) overall buckling.

Table 2. FE validation.

Roy et al. [2] Web
Depth Flange Lip Length

Local
Imper-fection

Magnitude

Overall
Imperfection
Magnitude

Axial Capacity of
Tests [2]

PTEST

Axial Capacity
of FEA
PFEA

PTEST/PFEA

bw
(mm)

bf
(mm)

bl
(mm)

L
(mm) (mm) (mm) (kN) (kN)

BL75-L500-1 76.1 39.8 15.1 500.4 0.54 0.16 124.8 132.0 1.06
BL75-L500-2 75.2 38.5 14.2 498.7 0.54 0.18 127.5 130.5 1.02
BL75-L500-3 74.7 41.6 14.8 499.6 0.54 0.15 130.5 132.2 1.01
BL75-L500-4 77.2 40.2 14.2 502.4 0.54 0.17 129.7 130.1 1.00
BL75-L1500-1 77.4 41.2 14.4 1500.9 0.54 0.23 88.4 87.2 0.99
BL75-L1500-2 76.4 40.6 14.6 1502.6 0.54 0.21 89.7 85.0 0.95
BL75-L1500-3 75.4 39.7 15.3 1507.4 0.54 0.20 91.4 86.3 0.94
BL75-L1500-4 75.2 38.7 15.1 1511.4 0.54 0.18 92.7 83.2 0.90

Mean 0.98
COV 0.05

Selvaraj and
Madhavan [18]

Web
Depth Flange Screw

Spacing Length
Local

Imperfection
Magnitude

Overall
Imperfection
Magnitude

Axial Capacity of
Tests [18]

PTEST

Axial Capacity
of FEA
PFEA

PTEST/PFEA

bw
(mm)

bf
(mm)

sp
(mm)

L
(mm) (mm) (mm) (kN) (kN)

B70-L1400-S140 70.0 50.1 140 1400.1 3.01 5.40 120.6 127.2 0.95
B70-L1400-S175 70.0 50.1 175 1400.5 2.99 5.41 118.9 129.5 0.92
B70-L1400-S233 70.1 50.0 233 1400.1 3.01 5.41 112.0 127.3 0.88
B70-L1000-S100 70.1 50.1 100 999.8 2.98 3.81 125.3 127.4 0.98
B70-L1400-S125 70.2 50.0 125 1000.1 2.97 3.79 120.9 127.2 0.95
B65-L1800-S180 65.2 55.1 180 1799.9 2.90 6.31 120.2 129.4 0.93
B65-L1800-S225 64.9 55.0 225 1799.6 2.90 6.29 118.9 129.0 0.92
B65-L1800-S300 65.0 55.1 300 1800.1 2.90 6.31 104.8 121.4 0.86
B50-L1200-S150 50.0 65.1 150 1199.8 2.40 4.10 111.1 122.3 0.91
B50-L1200-S120 50.9 58.0 120 1200.1 2.40 4.71 111.5 118.7 0.94
B50-L1200-S300 50.0 57.9 300 1200.1 2.39 4.70 110.3 115.5 0.96
B50-L1000-S167 50.0 50.0 167 999.9 2.42 4.29 103.4 114.3 0.90

Mean 0.93
COV 0.04
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The validation in this section was conducted at ambient temperature. The modelling
procedure of the CFS-FTF built-up columns at high temperature was kept the same as
in the ambient temperature condition, although the material properties were changed
to account for the lower yield stress and other material properties from the ambient to
high temperatures.

4. Parametric Study

A parametric study was performed to study the influences of the thickness, member
length, screw number, and high temperature on the structural performance of CFS-FTF
built-up unlipped and lipped channels subjected to axial compression. The dimensions of
the investigated sections are shown in Figure 1d,e.

4.1. Influence of the Thickness (t) on Axial Capacity (P)

Figure 6 depicts the influence of t on the axial capacity of the CFS-FTF built-up channel
sections at high temperatures. For the FTF built-up unlipped channel columns made
from G450 CFS, when t changes from 1.9 to 1.5 mm, the mean axial capacity changes
from 148.6 kN to 93.2 kN (decrease of 37.3%) at high temperatures. Similarly, for the FTF
built-up unlipped channel columns made from G250 CFS, when t changes from 1.95 to
1.55 mm, the mean axial capacity changes from 106.4 kN to 70.8 kN (decrease of 33.5%) at
high temperatures.

For the FTF built-up lipped channel columns made from G450 CFS, when t changes
from 1.9 to 1.5 mm, the mean axial capacity changes from 243.0 kN to 170.2 kN (decrease of
29.9%) at high temperatures. Similarly, for the FTF built-up lipped channel columns made
from G250 CFS, when t changes from 1.95 to 1.55 mm, the mean axial capacity changes
from 147.9 kN to 113.5 kN (decrease of 23.3%) at high temperatures.
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Figure 6. Influence of section thickness (t): (a) axial capacity of CFS-FTF built-up unlipped channel
columns with different thicknesses; and (b) axial capacity of CFS-FTF built-up lipped channel columns
with different thicknesses.

4.2. Influence of the Column Length (L) on Axial Capacity (P)

Figure 7 presents the influence of L on the axial capacity of the CFS-FTF built-up
channel sections. For the FTF built-up unlipped channel sections, when L increases from
300 to 1500 mm, the mean axial capacity changes from 113.6 kN to 95.3 kN (decrease
of 16.1%) at high temperatures. For the FTF built-up lipped channel columns, when L
increases from 300 to 1500 mm, the mean axial capacity changes from 174.9 kN to 155.8 kN
(decrease of 10.9%) at high temperatures.
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Figure 7. Influence of column length (L): (a) CFS-FTF built-up unlipped channel columns with
different lengths; and (b) CFS-FTF built-up lipped channel columns with different lengths.

4.3. Influence of the Screws on Axial Capacity (P)

Figure 8 shows the influence of the screw number on the structural performance of the
CFS-FTF built-up channel sections. For the FTF built-up unlipped channel columns, when
the screw number (S) increases from two to five, the average axial capacity changes from
102.9 kN to 109.4 kN (increase of 6.3%) at high temperatures. For the FTF built-up lipped
channel columns, when S increases from two to five, the average axial capacity changes
from 170.1 kN to 192.8 kN (increase of 13.3%) at high temperatures.
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screw spacings; and (b) CFS-FTF built-up lipped channel columns with different screw spacings. 
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Figure 10 shows the influence of T on the axial capacity of the CFS-FTF built-up chan-
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Figure 8. Influence of screw numbers (S): (a) CFS-FTF built-up unlipped channel columns with
different screws; and (b) CFS-FTF built-up lipped channel columns with different screws.

The screws were evenly arranged along the column, and the distance from the side
screw to the column end was 50 mm. Figure 9 shows the influence of the screw spacing on
the structural performance of the CFS-FTF built-up channel sections. For the FTF built-up
unlipped channel columns with a 300 mm length, the average axial capacity changes from
119.0 kN to 109.9 kN (decrease of 7.6%) at high temperatures when the screw spacing
increases from 50 mm to 200 mm; while for the built-up lipped channel columns, the
average axial capacity changes from 175.7 kN to 174.7 kN (decrease of 0.6%). For the FTF
built-up unlipped channel columns with a 1000 mm length, the average axial capacity
changes from 107.7 kN to 104.1 kN (decrease of 3.3%) at high temperatures when the screw
spacing increases from 225 mm to 900 mm; while for the built-up lipped channel columns,
the average axial capacity changes from 172.6 kN to 171.0 kN (decrease of 0.9%). For the
FTF built-up unlipped channel columns with a 1500 mm length, the average axial capacity
changes from 99.3 kN to 93.4 kN (decrease of 5.9%) at high temperatures when the screw
spacing increases from 350 mm to 1400 mm; while for the built-up lipped channel columns,
the average axial capacity changes from 157.4 kN to 156.6 kN (decrease of 0.5%). The effect
of the screw distribution on the FTF built-up unlipped channel columns is more obvious
than that on the lipped channel columns.
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4.4. Influence of the High Temperatures (T) on Axial Capacity (P)

Figure 10 shows the influence of T on the axial capacity of the CFS-FTF built-up
channel sections. For the FTF built-up unlipped channel columns, as T increases from 20 to
700 ◦C, the mean axial capacity changes from 174.6 kN to 19.4 kN (decrease of 88.9%) at
high temperatures. For the FTF built-up lipped channel columns, as T increases from 20 to
700 ◦C, the mean axial capacity changes from 270.2 kN to 26.6 kN (decrease of 90.2%) at
high temperatures.
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Figure 10. Influence of high temperatures (T): (a) CFS-FTF built-up unlipped channel columns at
different temperatures; and (b) CFS-FTF built-up lipped channel columns at different temperatures.

4.5. Failure Modes

Figure 11 displays the failure modes of the CFS-FTF built-up channel sections. For
the short and intermediate columns (L = 300 mm and 1000 mm, respectively), a coupled
local and distortional buckling mode was the primary failure mode at room and high
temperatures. For the slender columns (L = 1500 mm), a coupled distortional and flexural
buckling mode was found to be the main failure mode.
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Figure 11. Buckling modes of CFS-FTF built-up columns: (a) BL−L300−t1.5−S5−T200;
(b) BL−L300−t1.5−S5−T600; (c) BL−L1000−t1.5−S5−T200; (d) BL−L1000−t1.5−S5−T600;
(e) BL−L1500−t1.5−S5−T200; and (f) BL−L1500−t1.5−S5−T600.

5. Design Guidelines
5.1. Effective Width Method (EWM) for CFS-FTF Built-Up Channel Sections

The axial capacities acquired from the experiments and FEA were compared with
those calculated using the AISI (2016) [16] and AS/NZS (2018) [17]. The EWM in [16,17]
was utilised to obtain the axial capacity of such sections. The design strengths of the
CFS-FTF built-up columns were acquired in terms of the AISI (2016) [16] and AS/NZS
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(2018) [17]. This can be referred to clause E2 of the AISI (2016) [16] and clause 3.4.1 of the
AS/NZS (2018) [17].

PAISI (2016) & AS/NZS (2018) = AeFn (1)

where Ae represents the cross-sectional area. The critical elastic buckling stress (Fn) was
acquired in terms of Equations (2) and (3).

For λc ≤ 1.5, Fn = (0.658λc
2
) fy (2)

For λc > 1.5, Fn = (
0.877
λc2 ) fy (3)

where f y stands for the yield strength. The slenderness (λc) was obtained in terms of
Equation (4).

λc =

√
fy

foc
(4)

where f y stands for the yield strength and f oc stands for the buckling stress.
Equation (5) was utilised to consider the influence of the screws.

(
KL
r

)
m
=

√(
KL
r

)2

o
+

(
a
ri

)2
(5)

where (KL/r)m represents the modified global slenderness ratio, (KL/r)o represents the
initial global slenderness ratio, K represents the boundary condition coefficient, a represents
the screw spacing, and ri represents the radius of gyration.

5.2. Comparison of FE Results with Design Strength

Figure 12 shows a comparison of the FE results with the design strengths calculated in
terms of [16,17] for the CFS-FTF built-up columns. For the FTF built-up unlipped channel
columns, the design strengths obtained from the EWM are conservative compared with
the FEA axial capacities of different lengths. For the short columns (300 mm) of the FTF
built-up lipped channel sections, the EWM is reasonably accurate in the prediction of the
axial capacities at different high temperatures. Nonetheless, the design strengths obtained
from the EWM are conservative compared with the FE results for the intermediate and
slender columns (1000 mm and 1500 mm, respectively).
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Figure 12. Comparison of FE strengths with design strengths: (a) PAS/NZS/PFEA against modified slen-

derness for FTF built-up unlipped channel sections; and (b) PAS/NZS/PFEA against modified slender-

ness for FTF built-up lipped channel sections. 
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where fy20 and fyT represent the yield strength at room and high temperatures, and le rep-

resents the effective column length.  
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Figure 12. Comparison of FE strengths with design strengths: (a) PAS/NZS/PFEA against modified
slenderness for FTF built-up unlipped channel sections; and (b) PAS/NZS/PFEA against modified
slenderness for FTF built-up lipped channel sections.
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6. Proposed Design Equations
6.1. New Equations

New design equations were proposed based on the FE results of the CFS-FTF built-up
sections at high temperatures. The proposed equations comprise the relevant variables,
including (le/r)m and fyT/fy20. A regression analysis was carried out, and different equations
were proposed for the CFS-FTF unlipped and lipped channel sections as follows:

For the CFS-FTF built-up unlipped channel sections (20 ◦C ≤ T ≤ 700 ◦C):

Rprop = 0.015
(

le
r

)
m
+ 0.076

fyT

fy20
+ 1.08 (6)

For the CFS-FTF built-up lipped channel sections (20 ◦C ≤ T ≤ 700 ◦C):

Rprop = 0.011
(

le
r

)
m
+ 0.106

fyT

fy20
+ 0.878 (7)

where fy20 and fyT represent the yield strength at room and high temperatures, and le
represents the effective column length.

Figure 13 shows the ratios of the design strengths to the FE strengths of the CFS-FTF
built-up channel sections at various high temperatures. In addition, a comparison of the
prediction accuracy is presented. The mean ratio of the EWM strengths calculated using
the AISI (2016) [16] and AS/NZS (2018) [17] to the FE strengths is 0.77, while the mean
ratio of the proposed design strengths to the FE strengths is 1.01.
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Figure 13. Comparison of FE strengths with proposed design strengths: (a) PAS/NZS/PFEA of FTF built-

up unlipped channel columns; and (b) PAS/NZS/PFEA of FTF built-up lipped channel columns. 

6.2. Reliability Analysis 

The feasibility of the proposed design equations was evaluated via a reliability anal-

ysis. In terms of [16], when the reliability index of (β) is not less than 2.5, the equation is 

considered to be reliable, as per the guidelines of the AISI (2016) [16]. Equation (8) (as 

given below) [16] was used to calculate the reliability indices of the proposed design equa-
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Figure 13. Comparison of FE strengths with proposed design strengths: (a) PAS/NZS/PFEA of FTF
built-up unlipped channel columns; and (b) PAS/NZS/PFEA of FTF built-up lipped channel columns.

6.2. Reliability Analysis

The feasibility of the proposed design equations was evaluated via a reliability analysis.
In terms of [16], when the reliability index of (β) is not less than 2.5, the equation is
considered to be reliable, as per the guidelines of the AISI (2016) [16]. Equation (8) (as given
below) [16] was used to calculate the reliability indices of the proposed design equations.
In Equation (8), the values of Mm and Vm were taken as 1.1 and 0.1, respectively, which
were determined based on the mean and COV values of the material factor. The values
of Fm and Vf were 1.0 and 0.05, respectively, which were determined based on the mean
and COV values of the fabrication factor. The value of Vq was set at 0.21, which again
was determined based on the coefficient of variation (COV) value of the load factor. Cp
represents the correction factor. The resistance factor ϕ was taken as 0.85 in terms of the
AISI (2016) [16]. Pm represents the mean ratio of the proposed design strength to the
FE strength.

ϕ = CMmFmPmexp(− β
√

V2
m+V2

f +CpV2
p+V2

q) (8)
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Table 3 shows that the proposed reliability indexes are greater than 2.5 according to
the AISI (2016) [16] for the CFS-FTF built-up channel sections at high temperatures. It also
shows that the proposed equations are reliable in calculating the axial capacity of CFS-FTF
built-up unlipped and lipped channel columns at high temperatures.

Table 3. Reliability analysis results.

Proposed Equations

Rprop (Equation (6))/RFEA Rprop (Equation (7))/RFEA

Pm 0.986 0.996
COV 0.058 0.054
ϕ [16] 0.85 0.85
β [16] 2.71 2.76

7. Conclusions

This study conducted a numerical study of the structural performance of CFS-FTF
built-up channel columns at high temperatures subjected to axial compression. In total,
576 FE models were created, which were validated with the existing test data. A parametric
investigation was performed to study the influences of the section thickness, member
length, screw number and high temperature on the structural performance of these sections
subjected to axial compression. Based on the numerical results, the following conclusions
are reached.

The axial capacities of the investigated CFS-FTF built-up channel columns decreased
as the temperature increased. As the temperature increased from 20 to 700 ◦C, a decline
was observed in the axial capacity of the FTF built-up unlipped and lipped channels by
88.9% and 90.2% on average, respectively.

The EWM is conservative for the CFS-FTF built-up unlipped channel columns at
various high temperatures. For the CFS-FTF built-up lipped channel columns, the EWM
could provide close predictions for the strength of the columns with low modified slender-
ness. Nonetheless, the EWM cannot provide accurate predictions for the strengths of the
intermediate and slender columns at room and high temperatures.

The local–distortional buckling mode was the main failure mode for the short and in-
termediate columns. For the slender columns, a coupled flexural buckling and distortional
buckling mode were the main failure modes.

Based on the results of the numerical study, new equations were proposed to calculate
the axial capacity of the CFS-FTF built-up channel sections at high temperatures. A reli-
ability analysis was then performed, and the proposed equations were found to provide
accurate predictions for the axial capacity of the CFS-FTF built-up channel sections at
high temperatures.

Further research is required to include a heat transfer analysis in the FE modelling.
The modelling procedure for CFS-FTF built-up channel columns at high temperatures is
the same as that at ambient temperature, and only the material properties were changed to
account for the lower yield stress and other material properties from the ambient to high
temperatures. In addition, the simulation of fasteners at high temperatures should be taken
into account in future studies.
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