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Abstract: This study explores the critical determinants impacting labor productivity in brickwork
operations within the construction industry—a matter of academic and practical significance, partic-
ularly in the era of increasing human–robot collaboration. Through an extensive literature review
on construction labor productivity, this study identifies factors affecting brickwork productivity.
Data were collected from active construction sites during brick wall construction through on-site
measurements and participatory observation, and the relative importance of these factors is deter-
mined using Principal Component Analysis (PCA)-factor analysis. The validity of the analysis is
established through the Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test of sphericity, with a KMO
value of 0.544 and significance at the 0.05 significance level. The analysis reveals four principal
components explaining 75.96% of the total variance. Notably, this study identifies the Euclidean
distances for the top factors: weather (0.980), number of helpers (0.965), mason competency (0.934),
and number of masons (0.772). Additionally, correlation coefficients were observed: wall area had
the highest correlation (0.998), followed by wall length (0.853) and height (0.776). Interestingly, high
correlations did not necessarily translate to high factor importance. These identified factors can
serve as a foundation for predictive modeling algorithms for estimating production rates and as a
guideline for optimizing labor in construction planning and scheduling, particularly in the context of
human–robot collaboration.

Keywords: factor analysis; principal component analysis; brickwork; productivity

1. Introduction

The construction sector plays a vital role in the economic progress of many countries
worldwide, making it essential for socioeconomic growth [1]. Construction materials,
including cement, bricks, and sand, constitute a significant portion of project costs, with
the materials sector being a top contributor to the Gross Domestic Product (GDP) of
the construction industry [2]. In Uganda, the construction sector’s contribution to the
country’s GDP reached over 13%, with an annual growth rate of 5% [3]. With a growing
population and an annual housing demand of 200,000 units, the construction industry
faces the challenge of meeting the high demand for housing [3]. The construction of
buildings sub-sector in the industry sector has a sales share of 37%, the largest in the
industry sector of Uganda. Small and medium enterprises (SMEs) have been tasked with
the objective of significantly reducing unemployment in Uganda and have been earmarked
as a critical player in providing decent employment by facilitating household engagement
in income-generating activities [4]. The National Labor Force Survey (NLFS) 2021 highlights
that construction SMEs in Uganda employ about 4.7% [5]. However, given the informal
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nature of the construction industry, this number is likely to be an understatement of the
true situation.

The labor productivity at a national level prior to COVID-19 witnessed a weak up-
surge but has been projected to continuously diminish into 2020 and the years ahead [6].
This projected decline could adversely affect the construction sector, which already faces
existing productivity challenges highlighted by project time and cost overruns [1]. Katende
et al. [7] identified industrialization as a solution to promote productivity in the construc-
tion industry by employing modern construction methods that are not labor-intensive
with a high return in productivity output. However, construction firms in Uganda are less
involved in investing funds in new technologies; this is mostly due to the fact that the cost
of these technologies remains high. The construction industry, unlike the manufacturing
industry, is void of such technological progress with significant stagnation; this has often
resulted in inappropriate working conditions and sub-par human conditions affiliated
with technological inadequacies. As such, a combination of human capital with capital-
intensive, non-linear technological advances promises autonomy, flexibility, and robot
systems cooperation to develop complex, industrialized products for higher productivity,
improved occupation safety, and much-needed innovation in the construction industry [8].
Malakhov and Shutin [9] highlight that the use of masonry robots reduced building costs
3–7 times based on various project-specific technical and economic factors, reduced con-
struction times, and stable quality products independent of worker competency. However,
as pointed out earlier, Ugandan construction has not expressed a sluggish adoption of
automated construction techniques; as such, this study focused on the human aspects of
human–robot collaboration, seeking to identify the significant factors influencing brick
masonry building construction.

Fired clay bricks are a commonly used masonry material in Uganda, particularly for
residential houses. However, the use of these bricks often leads to productivity losses due
to factors such as inconsistent brick sizes, poor craftsmanship, and rushed construction
schedules [4]. The brick-laying industry in Uganda exhibits a distinct lack of established
formal institutions that offer structured brick-making training. Instead, many brick-makers
acquire their skills through hands-on experience that is coupled with the utilization of
traditional wooden molds that lack precise calibration, hence inconsistent brick sizes
in the market. Furthermore, the in-field kilns used to fire the bricks are deficient in
temperature control [5]. These issues result in excessive amounts of mortar and plaster
required for bonding and achieving an even finish on the walls. Productivity losses are
a significant concern in the construction industry as they can increase labor costs and
reduce project profitability [6]. The measurement and estimation of production rates
in brickwork masonry pose challenges due to the unique characteristics of construction
projects [1]. Although benchmarking is commonly used in Uganda’s construction industry
to assess labor productivity and production rates, it lacks documentation on the effects of
weather, craftsman experience, and crew size on construction productivity. Consequently,
the specific effects of these factors on production rates, as well as their relative significance,
remain unclear.

In light of these challenges, this research intends to apply factor analysis to the vari-
ables influencing brick wall construction production rate. Additionally, it aims to establish
a ranking of the relative importance of these factors, thereby highlighting their relative
significance. This research is crucial for construction planning, optimizing labor productiv-
ity, predicting labor costs and production rates, and effectively scheduling work packages.
This proposes the implementation of a PCA-based factor analysis with KMO and Bartlett’s
test of sphericity as measures for assessing the sampling adequacy of the dataset for factor
analysis. The Euclidean distance, a measure of dissimilarity, is used to extract significant
factors based on an Euclidean distance threshold of 0.7.
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2. An Overview of Theoretical Concepts
2.1. Human–Robot Collaboration

Construction automation is described as the improvement of production and mini-
mization of accident risks by employing robots to perform tasks previously assigned to
humans. This has the objective of reducing time periods and achieving better quality using
fewer resources [7]. Automation has been identified as a solution to increased operations
intensity, resulting in effective applications. However, the construction industry has been
criticized for its slow pace in the adoption of automated systems, mostly attributed to the
difficulty in designing universal and profit-oriented automated systems [8]. García de Soto
et al. [9] further attribute this slow adoption to the mostly traditional nature with resistance
to change, low industrialization of construction activities, poor collaboration and data
interoperability, and high turnovers that hinder change implementation. The adoption of
robots in brick masonry stems from bricklaying to masonry construction. Several studies
have investigated the use of robots in these aspects, with major studies in bricklaying and
brickwork construction automation. Harinarain et al. [7] investigated the use of bricklaying
robots to build and assemble brick walls with minimal human interactions; however, as of
2021, no construction company had implemented it in South Africa. This study also pro-
vides insights into the advantages, disadvantages, and the willingness to adopt automated
systems for construction tasks. Malakhov and Shutin [8] conclude that the use of masonry
robots in construction projects, though complex, will optimize the construction process in
terms of technical, social, and organizational parameters. Mitterberger et al. [10] studied
the application of augmented reality in brickwork building construction and developed a
custom-built augmented reality system for in situ construction.

2.2. Construction Productivity

Production rates and productivity play vital roles in the effective management and
estimation of construction projects. Efficient management of production rates leads to
improved project efficiency, reduced delays, and successful project outcomes [11]. Pro-
ductivity, on the other hand, focuses on optimizing resource utilization in production
activities [12]. It is measured as the ratio of output to input in the production process. Labor
productivity, particularly in the labor-intensive construction industry, holds significant
importance [13].

2.2.1. Production Rate

Production rate is the mean velocity at which construction activities proceed, and it
holds great significance in construction scheduling and management, making it important
for process scheduling [11]. Herbsman and Ellis [14] identified production rates as an
essential component of estimating the time duration of contracts when estimated accurately.
Accurate and precise estimation of production rates facilitates improved management
efficiency, which in turn cuts back delays, enabling the completion of projects on time and
within the agreed budget. The determination of production rates is facilitated by site visits,
revision of project records, and the use of estimating manuals [15].

Production Rate =
total estimated quantity of the activity

Activity Duration
(1)

2.2.2. Construction Productivity

Productivity is all about the effectiveness and efficient utilization of resources that
are needed for a production activity [12]. Productivity is usually defined as the ratio
of the output of production to the input of production factors or means and is a major
determinant of the success of construction projects. This has led to most researchers focusing
on improving construction labor productivity since the construction industry is labor-
intensive [13]. Dolage and Chan [12] identified total factor productivity, labor productivity,
and construction productivity as the commonly used productivity measurement methods
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used by researchers. Calcagnini and Travaglini [16] defined labor productivity as the actual
output, such as courses laid per labor hour worked, and it is used to estimate the work
output produced within a labor unit. Labor productivity is a quotient of an output quantity
and labor, as expressed in Equation (2).

labour productivity = output quantity÷ labour hours (2)

Syverson [17] defines total factor productivity as the ratio of total output to total input.
The total input includes labor, materials, energy, equipment, and capital. The expression of
total factor productivity is shown in Equation (3).

TFP = Total Output÷∑(Labour + Materials + Equipment Energy + Capital) (3)

Researchers employ various methods to measure productivity, including total factor
productivity, labor productivity, and construction productivity [12,16]. Labor productivity
shown in Equation (2) assesses the output achieved per labor hour, providing insights
into the efficiency of labor utilization [16]. Total factor productivity shown in Equation (3)
considers multiple factors, such as labor, materials, energy, equipment, and capital, to
evaluate the overall efficiency of the construction process [17]. Evaluating both labor
productivity and total factor productivity allows researchers and practitioners to gain a
comprehensive understanding of the construction process’s effectiveness and efficiency.
To determine production rates accurately, site visits, project record revisions, and the
use of estimating manuals are commonly employed [15]. These practices enable precise
estimation of production rates, providing crucial information for construction scheduling,
management, and resource allocation.

2.2.3. Factors Affecting Construction Productivity

Extensive research in the field of construction productivity has shed light on various
factors that influence productivity, with a particular focus on identifying and quantifying
the factors contributing to productivity loss. Lawaju et al. [18] conducted a comprehensive
study and classified the factors affecting productivity into eight categories: (1) manpower-
related factors; (2) project-related factors; (3) weather-related factors; (4) time-related factors;
(5) leadership-related factors; (6) external factors; (7) safety factors; (8) group-related fac-
tors. This categorization provides a comprehensive framework for understanding the
diverse range of factors that can impact productivity in construction projects. Another
study by Moselhi and Khan [19] further examined the factors influencing productivity and
categorized them into three distinct groups. The first category explored weather-related
factors, considering the effects of temperature, precipitation, humidity, and wind speed
on productivity. The second category focused on job-related factors, such as floor height,
work type, and work method, which can significantly impact the efficiency of construc-
tion activities. Lastly, this study investigated labor-related factors, including gang size,
labor availability, and daily quantity, as key determinants of productivity in construction
projects. By identifying and analyzing these factors, researchers and practitioners gain
valuable insights into the complex dynamics that influence productivity and production
rates in construction. Understanding the interplay between these factors allows for the
development of targeted strategies and interventions to enhance productivity and mitigate
potential disruptions.

2.3. Factor Analysis

Factor Analysis is a powerful multivariate statistical technique utilized to identify
logical subsets of variables that are relatively independent of one another within a single
dataset. The method is based on the assumption that all variables in the set exhibit some
level of correlation and requires the variables to be measured at least at the ordinal level.
There are two primary approaches: exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA). EFA is employed to examine dimensionality and gather information
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about the interrelationships among variables during the initial stages of research. On
the other hand, CFA is a more complex and sophisticated set of techniques used to test
specific hypotheses or theories concerning the underlying structure of a variable set [20].
Exploratory Factor Analysis works similarly to a commonly used method called Principal
Component Analysis; however, the two should not be confused for one. Exploratory Factor
Analysis (EFA) and Principal Component Analysis (PCA) are distinct techniques with
different focuses. EFA emphasizes the connections between variables, using covariance
to identify factors, while PCA uses variance to identify components. PCA simplifies the
dataset by generating principal components and reducing the number of variables. In
contrast, EFA reveals underlying constructs and identifies latent factors to explain the
data. In summary, EFA explores interrelationships between variables and uncovers latent
factors, whereas PCA reduces dimensionality by creating principal components based on
variance [21]. Factor analysis in construction productivity has been implemented in various
research studies. The most common approach to factor analysis has been the use of PCA as
the chosen technique. Hiyassat et al. [22], in a case study on construction productivity in
the Jordan area, implemented PCA-based factor analysis with a KMO sampling adequacy
value of 0.529. This trend of PCA-based factor analysis was further utilized by [13,23] in
labor productivity studies. However, PCA is a variation of EFA and should not be mistaken
for EFA. There exist potential negative implications of this approach in the literature, and
despite that, there is the continued adoption of this in methodological approaches [24]. The
continued use of PCA over EFA is based on situations when PCA can be approximated
to EFA and still deliver results close to those generated by EFA. This approximation is
possible when error variances are too small to be considered significant. In addition, most
data analytical packages offer PCA as the default option for factor analysis [21]. This
is not the case with MATLAB r2023a, which offers two built-in functions, namely, the
PCA function for PCA and the factoran function for factor analysis. The factoran function
calculates the Maximum Likelihood Estimate (MLE) of the factor loading matrix in the
factor analysis model [25]. The simplest difference between PCA and EFA is based on
the fact that, unlike PCA, EFA assumes a model [26]. The application of PCA is reliant
on the presence of sufficient correlation among the original variables; in contrast, EFA is
applied in cases where there is a latent characteristic among the observed variables [21].
This study augments Principal Component Analysis, a common approach to factor analysis,
with Pearson correlation, a common approach to feature selection used to create a subset
of factors.

2.3.1. The Measure of Adequacy/Suitability of Data for Factor Analysis

The Measure of Sampling Adequacy (MSA) is a critical statistical tool used to evaluate
the suitability of data for factor analysis [27]. In the context of exploratory factor analysis,
the MSA provides valuable insights into the correlation structure of variables and their
appropriateness for factor extraction. The Kaiser–Meyer–Olkin (KMO) test is one of the
most commonly employed methods to assess the MSA [28]. The KMO test evaluates
the degree of inter-correlations among variables and computes a value ranging between
0 and 1. A value above 0.6 is generally considered acceptable, indicating that the data
exhibit sufficient commonalities for factor analysis. Moreover, Bartlett’s test of sphericity
is another fundamental measure used in tandem with the KMO test [28]. It examines the
null hypothesis that variables in the dataset are uncorrelated. A significant p-value from
Bartlett’s test (usually less than 0.05) suggests that the null hypothesis can be rejected,
reinforcing the appropriateness of factor analysis for the given dataset [27]. Together, the
KMO and Bartlett’s tests play a pivotal role in the preliminary stages of factor analysis,
assisting researchers in ascertaining the robustness and reliability of their data for further
exploration of underlying latent structures. However, there are cases where the KMO value
falls below the threshold of 0.5. This could be attributed to the small sample size or the
presence of multicollinearity in the data. The correlation coefficient in the correlation matrix
should be greater than 0.3 to demonstrate the evidence of strength between the variables.
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Furthermore, the determinant score, a measure for multicollinearity, should be greater than
0.00001; when it is less than this, variable pairs that have correlation coefficients greater
than 0.8 ought to be eliminated [20].

2.3.2. Principal Component Analysis

The prevalence of large datasets has become increasingly widespread across various
disciplines, including the real estate and construction sectors. This necessitates the devel-
opment of methods that can effectively reduce the dimensionality of these datasets while
ensuring interpretability and the preservation of essential information [29]. PCA is one of
the most widely utilized techniques to meet this end. It is simply a statistical technique
used to reduce the dimensionality of a dataset by focusing only on the data explained by
the principal components with the most variability or dispersions. Therefore, its primary
objective is to reduce dataset dimensionality while retaining as much statistical information,
often referred to as variability, as possible [29]. This is accomplished using a transformation
that yields a fresh set of variables, known as principal components (PCs), which exhibit no
correlation among themselves. This reduces the incidences of multicollinearity that result
from various factors being correlated. Moreover, these components are deliberately ordered
in a manner that prioritizes the retention of a substantial portion of the total variation
inherent in the original variables, particularly among the initial few components, i.e., the
principal components are ranked in order of the variance that each of them explains; the
first principal component explains the largest fraction of the total variance of the data, the
second explains the second largest, and so on [30].

However, when performing Principal Component Analysis, one is often confronted
by two dilemmas: the choice between a correlation or covariance matrix for extraction of
eigenvalues and eigenvectors, and secondly, the number of Principal Components to select.
According to Valle et al. [31], a critical consideration in the development of a principal
component analysis (PCA) model pertains to the selection of an appropriate number of
principal components (PCs) to represent the system optimally. Optimal selection of PCs
is vital, as an inadequate number of PCs will yield a subpar model and an incomplete
portrayal of the underlying process. Conversely, choosing an excessive number of PCs
leads to over-parameterization of the model, introducing noise and detracting from its
accuracy and interpretability. Furthermore, achieving success in Principal Component
Analysis (PCA) typically involves retaining a small number of components that explain a
significant portion of the variability, typically around 70% to 80%. This criterion of retaining
a good proportion of explained variability is widely accepted in PCA practice [32].

The second challenge, according to Valle et al. [31], is the choice between a correlation
matrix-based PCA and a covariance matrix-based PCA for Principal Component modeling
in statistics. In the process of conducting Principal Component Analysis (PCA), it is crucial
to achieve a dimensionless state while simultaneously retaining information on marginal
variabilities. Deliberately and artificially excluding marginal variability would shift the
objective of PCA towards seeking optimal linear combinations of data that account for
variability rather than focusing on variability as conventionally emphasized. According
to Jolliffe and Cadima [29], the choice between the covariance matrix-based PCA and the
correlation matrix-based PCA depends on the units of measurement of the variables in the
dataset. When variables have different units of measurement, the covariance matrix-based
PCA may yield undesirable outcomes due to its dependence on unit-specific variance. In
contrast, conducting PCA on standardized data using the correlation matrix resolves this
issue. However, the correlation matrix-based PCA typically requires more principal compo-
nents to explain the same proportion of variance compared to the covariance matrix-based
PCA. Hence, the correlation matrix-based PCA is advantageous for handling variables with
different units of measurement. PCA has been applied in knowledge management studies
to assess the factors influencing the success of knowledge management in quantity survey-
ing firms [33], project management studies to assess the project management competencies
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for the Ghanaian construction industry [34], in sustainable construction to identify barriers
to sustainable construction in the US [35].

2.3.3. Pearson Correlation

The Pearson correlation coefficient, a statistical metric within the field of statistics,
quantifies the strength and direction of the linear relationship between two variables within
a set of variables. It assumes values ranging from −1 to +1, where a value of +1 signifies a
perfect positive linear correlation, a value of 0 indicates the absence of a linear relationship,
and a value of −1 indicates a perfect negative linear correlation [36]. The correlation
matrix plays a crucial role in the selection of pertinent features. In the context of this
research, emphasis was placed on identifying highly correlated input and output attributes.
The primary advantage of correlation analysis lies in the fact that it is simple and easy
to implement, providing a quick initial assessment of the potential relevance of features.
This is essential as it guides the analyst to focus their attention on the most promising
variables. However, it is important to note that correlation analysis has limitations as it only
captures linear relationships and may overlook nonlinear associations between variables.
This implies that altering the variables through linear or scale transformations, whether
for input, output, or both, will not impact the correlation coefficient. The correlation
coefficient is further influenced by the range of observations, with larger data result in
a larger correlation coefficient. This calls for caution when analyzing sets of data with
different ranges of observations. Additionally, correlation does not imply causation and
a high correlation does not necessarily indicate a strong predictive relationship. Much as
there may be a causal effect of one variable on another, correlation analysis overlooks other
explanations, such as the phenomenon of confounding [37]. To mitigate these limitations,
it is recommended to combine correlation analysis with other feature extraction methods,
such as PCA, as a validation benchmark. This allows for a more comprehensive evaluation
of feature importance and enhances the robustness of the selected features. Pearson
correlation has been utilized in construction studies as a measure of the magnitude of
strength and direction of factors in a linear dimension [38,39].

2.4. Data Collection

The dataset used for modeling productivity in this study was collected through direct
field observations and interviews from residential sites located in the areas of Kampala and
Wakiso districts during the period between January and March 2023. A total of 20 sites
were visited, employing both stratified and purposeful random sampling techniques to
identify a suitable sample size. The study area was composed of the five divisions of
Kampala Figure 1 and Kira Sub-County, Wakiso district. Through a reconnaissance visit,
the study sites were organized according to their location in these five divisions and Wakiso
district and grouped by their parishes. The parishes sampled were chosen randomly,
and a minimum of three parishes were chosen per division or sub-county illustrated in
Table 1. Based on the sites identified through the reconnaissance visits, one site was chosen
randomly from each parish to ensure that materials were sourced from different locations.
Extra parishes were chosen for Kampala Central and Kawempe, as they are some of the
smallest divisions in Kampala City necessary for statistical significance.

Though sites using concrete blocks were identified during the reconnaissance visits,
purposive sampling considering only active sites that were using bricks was used to
eliminate sites using concrete blocks as the masonry unit. This study only tracked one
operation, brick wall construction, taking into account several parameters such as the
number of masons and helpers, the area of the wall constructed, the amount of mortar used
for bonding the bricks, and the brick dimensions.

The sites were visited twice a day: first in the morning to ascertain the initial site
conditions and in the evening to record the amount of work completed. The collected
data were classified into three groups: weather, crew, and project. Data related to mason
and helper numbers and wages were categorized as crew data, while data related to



Buildings 2023, 13, 3087 8 of 20

wall dimensions, area, and location were classified as project data. The weather category
included precipitation and temperature. Data from 10 factors were classified into three
categories, as shown in Table 2. The independent variables included the number of masons
and helpers, the mason and helper wages, crew competency, weather, and man-hours,
and the dependent variables comprised the wall length, height, and area constructed. The
cofounding variables consisted of the variables in the project data. The productivity factors
tracked were informed by Lawaju et al. [20] with a focus on manpower and project-related
factors. Moselhi and Khan [21] added weather-related factors, including humidity and
wind; however, this study focused on temperature and precipitation, classifying weather
as sunny, cloudy, or rainy.
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Table 1. Parishes from which Study Sites were Sampled.

Division/
Sub-County Parishes Chosen Division/

Sub-County Parishes Chosen Division/
Sub-County Parishes Chosen

Kampala Central Kamwokya 1 Kawempe Kyebando Nakawa Banda
Kisenyi 1 Bwaise 3 Mbuya 1

Kamwokya 2 Kawempe 3 Mbuya 2
Kisenyi 3 Makerere 2 Kira Sub-County Kireka

Rubaga Kawaala Makindye Kisugu Kyaliwajala
Kasubi Kibuli Kirinya

Naankulabye Nsambya Central

The numbers 1–3 serve to differentiate the parishes.

Table 2. Labor productivity factors.

Crew Data Project Data Weather Data

Mason Number Wall Length Sunny/rainy (temperature and precipitation)
Helper Number Wall Height
Mason Wages Wall Area
Helper Wages

Crew Competency
Work Duration
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2.5. Measure Adequacy/Suitability of the Dataset for Factor Analysis

This is an essential preliminary step in factor analysis. It evaluates whether factor
analysis is necessary before the analyst can embark on it. Two tests are employed, namely,
KMO and Bartlett’s test of sphericity.

2.6. Principal Component Analysis

Principal Component Analysis (PCA) served as the method for conducting Exploratory
Factor Analysis (EFA), as depicted in Figure 2. A custom MATLAB code was developed,
utilizing the built-in MATLAB PCA function, resulting in four essential matrices for further
analysis: the coefficient, score, latent, and explained matrices. The coefficient matrix, also
known as the loading matrix, illustrates the contributions of each original variable to
the principal components, aiding in understanding their influence. On the other hand,
the score matrix contains transformed data, representing observations projected onto the
principal components, facilitating data representation in a lower-dimensional space. The
latent matrix encompasses eigenvalues, signifying the variance explained by each principal
component, thus revealing their significance. Lastly, the explained matrix expresses the
proportion of total variance explained by each principal component, helping to assess
their respective contributions to the overall variability. Together, these matrices constitute
the basis for comprehending the underlying structure and dimensionality of the data,
as revealed through PCA. The number of PCs considered was based on the cumulative
variance explained. A threshold of 70% variance, as established in the literature review,
was used to identify the factors that had a high correlation with individual PCs. A factor
loading threshold of 0.4 was considered. Therefore, factors whose loadings were greater
than 0.4 were considered to be heavily correlated with the PCs.
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2.7. Pearson Correlation

Pearson correlation analysis was conducted using the Microsoft Excel data analysis
tool pack. A threshold of 0.5 was set as the cutoff point to identify factors worthy of
consideration. Consequently, a subset of factors was selected based on the strength of their
correlation with the production rate. By applying Pearson correlation, this study identified
and focused on those factors that demonstrated a substantial and meaningful relationship
with the production rate, thereby allowing for a more targeted and effective analysis of
potential influential variables, with the interpretation of coefficients presented in Table 3.
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Table 3. Interpretation of Pearson Correlation Analysis Results.

Range of Coefficients Interpretation

[−1,−0.5] ∪ [0.5,1] a strong negative or positive correlation
[−0.5,−0.3] ∪ [0.3,0.5] a moderate negative or positive correlation
[−0.3,−0.1] ∪ [0.1,0.3] a weak negative or positive correlation

[−0.1,0.1] no correlation

3. Results
3.1. Descriptive Statistics

Table 4 shows the descriptive statistics of the collected data, which can provide a
summary of the dataset. Descriptive statistics are quantitative measures that offer valuable
insights into the central tendency, variability, and distribution of the dataset.

Table 4. Collected Data Descriptive Statistics.

Variable Mean StDev Variance Skewness Kurtosis

Mason Size (no) 2.6 0.8 0.7 0.5 −0.4

Helper Size (no) 2.4 1.1 1.2 0.3 −1.1

Mason Wages (UGX) 31,000 3839 14,736,842 0.4 0.4

Helpers Wages (UGX) 16,750 3354 11,250,000 −0.6 −0.6

Wall Length (m) 8.1 4.49 20.2 1.0 1.1

Wall Height (m) 1.5 0.3 0.1 0.3 −0.4

Wall Built (m2) 11.6 6.3 39.9 1.0 1.1

Duration (h) 7.9 0.7 0.5 −4.5 20

Production Rate (m2/h) 1.5 0.8 0.6 0.9 1.2
UGX means Ugandan Shillings.

3.2. Correlation Method Results

Pearson correlation coefficient is used to examine the strength and direction of a
linear relationship between two variables in a database. The correlation coefficient ranges
between −1 and +1. A larger absolute coefficient value results in a stronger relationship
between variables. In the case of a Pearson correlation, an absolute value of 1 specifies
a perfect linear relationship, and a value of 0 indicates a nonlinear relationship between
variables. Table 5 shows the correlation coefficients of the study variables.

Table 5. Pearson Correlation Matrix for Input and Output Parameters.

Variable Coefficient

Number of Masons 0.5434
Number of Helpers 0.0234

Mason Wages −0.0238
Helper Wages −0.1254

Mason Competency −0.3464
Weather −0.0607

Workday Duration 0.0628
Wall Length 0.8527
Wall Height 0.7764
Wall Built 0.9978

Production Rate 1.0000

3.3. Suitability for Factor Analysis

The findings from the initial analyses, aimed at evaluating the correlation among
the variables under investigation, are presented in Table 6. The extent of correlation of-
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fers valuable insights into the underlying data structure and can reveal indications of
multicollinearity. Multicollinearity arises when the independent variables exhibit strong
interconnections, often resulting in a diminished Kaiser–Meyer–Olkin (KMO) value. Con-
sequently, the correlation matrix serves as a means to identify potential multicollinearity,
prompting the removal of variables with correlation coefficients exceeding 0.8.

Table 6. Correlation Matrix of the Study Variables.

Mason
Numbers

Helper
Numbers

Mason
Wages

Helper
Wages

Mason
Competency Weather Man

Hours
Wall

Length
Wall

Height
Wall
Area

Mason Numbers 1.000
Helper Numbers −0.064 1.000

Mason Wages 0.062 −0.054 1.000
Helper Wages −0.122 −0.001 −0.007 1.000

Mason Competency −0.018 0.097 0.051 −0.019 1.000
Weather −0.013 0.193 −0.169 0.144 0.070 1.000

Man Hours −0.010 0.220 −0.025 −0.019 0.099 0.160 1.000
Wall Length 0.507 0.095 −0.130 −0.003 −0.200 0.028 0.195 1.000
Wall Height 0.557 −0.104 0.125 −0.178 −0.385 −0.141 −0.078 0.407 1.000
Wall Area 0.536 0.037 −0.026 −0.123 −0.336 −0.050 0.127 0.861 0.764 1.000

Table 7 presents a summary of the results from the KMO and Bartlett’s tests. This
summary includes the Chi-statistic, degrees of freedom, p-value, and the KMO for two
scenarios: one where the highly correlated wall area factor was deleted from the dataset
and the other where it was considered in testing for sampling adequacy.

Table 7. Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test.

Kaiser–Meyer–Olkin of Sampling Adequacy
With Wall Area Without Wall Area

0.4739 0.5448

Bartlett Test of Sphericity Chi-Statistic 268.2827 81.6787
Degrees of Freedom 45 36

Significance 0.000 2.11 × 10−5

3.4. The Result of the PCA Method

Figure 3 illustrates the proportion of variance of each principal component. Based on
the overall result, PC1 and PC2 explain 49.54%, which is more than half of the variance
explained by PC1 to PC7, corresponding to 93.958% of the total variance. To construct a
collection of selected highly correlated features with a high loading contribution on a factor
(equal to or greater than 0.4), the highly correlated factors in PC1, PC1 to PC2, and PC1 to
PC5 were grouped into feature sets B, C, and D, respectively. Set B consisted of weather
and wall height; set C was composed of the number of masons and helpers, wall length,
height, area of wall built, weather, and duration. Set D consisted of all input variables.

3.5. Choice of Principal Components

The optimal number of PCs was chosen based on a 2D scree plot (Figure 2) and a
literature-backed threshold of 70% variance [32]. Feature selection when constructing
a PCA-biplot is illustrated in Figures 4–7, and the features were chosen based on their
relationship with labor productivity. The direction of the feature vector indicates whether
the correlations are positive or negative. When a feature exhibits a direction that closely
aligns with the productivity vector, displaying the smallest angle between the two vectors,
it signifies strong positive correlations. Conversely, when the feature vector points in the
opposite direction, negative correlations are indicated. Vectors that are nearly perpendicular
to the productivity vector, however, demonstrate weak correlations.
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Based on the PCA-biplot, the selected feature set E, which includes the number of
masons, number of helpers, weather, and crew competency, the summary of the subset of
selected features based on PCA is provided in Table 8. Principal Component Analysis (PCA)
is a valuable method in multivariate analysis, revealing data patterns. The PCA biplot
(Figure 3) combines observations and variables in a reduced-dimensional space, showing
relationships and similarities. Observations are points, variables are vectors, and their
directions highlight variable influences. The proximity between points signifies similarity.
The loading plots (Figures 4–6) focus on variables and depict their significance on principal
components. High loadings imply strong correlations. Interpreting PCA biplots and
loading plots unveils data structures, aiding in variable selection and pattern recognition.



Buildings 2023, 13, 3087 13 of 20

Table 8. Summary of Results from PCA.

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7

Number of Masons −0.392 0.478 0.443 −0.134 −0.176 0.144 −0.499
Number of Helpers 0.201 0.176 0.106 0.922 −0.033 −0.094 −0.066

Mason Wages −0.090 −0.037 0.192 0.032 0.903 −0.100 −0.285
Helper Wages 0.101 0.045 −0.045 −0.005 0.245 0.851 0.251

Mason Competency 0.386 −0.115 0.828 −0.155 −0.067 −0.082 0.317
Weather 0.576 0.719 −0.226 −0.249 0.115 −0.152 −0.005

Workday Duration 0.063 0.111 0.104 0.162 0.106 0.187 0.160
Wall Length −0.170 0.257 0.072 0.133 −0.191 0.315 0.012
Wall Height −0.524 0.359 0.019 0.035 0.164 −0.269 0.689

Latent 0.304 0.252 0.179 0.117 0.087 0.068 0.047
Mu 0.470 0.424 0.505 0.541 0.477 0.439 0.955

Explained 27.072 22.47 15.954 10.464 7.789 6.029 4.180
Cumulative Variance 27.072 49.542 65.496 75.96 83.749 89.778 93.958

The three-dimensional biplot portrays the factor scores and loading in three planes:
PC1, PC2, and PC3. However, for ease of interpretability, two-dimensional biplots are
provided, as they are easier to visualize the relationship between PCs and individual factors
in a 2-dimensional plot. Biplot of PC1 versus PC2 Figure 5, represents the relationship
and relative contributions of variables to these principal components. It showcases the
directional influence of variables on the plotted components, aiding in the understanding
of their correlation and impact within the dataset.
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Comparing PC3 against PC2 in a biplot Figure 6, illustrates the interaction and sig-
nificance of variables in these respective principal components. This visualization demon-
strates how variables contribute differently to these dimensions, shedding light on their
relationships and distinctions within the dataset.
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A biplot of PC3 against PC1 Figure 7, visualizes the interplay and relative importance
of variables in these principal components. This graphical representation offers insights
into how variables contribute distinctly to these dimensions, revealing their association
and impact within the dataset.
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A comparison between the subset of factors derived from the Pearson correlation and
Principal Component Analysis is presented in Table 9. The purpose of this comparison is to
gain a deeper understanding of the feature subsets of essential variables influencing labor
productivity in brickwork based on the Pearson correlation, PCA, and Biplot Methods of
feature extraction.
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Table 9. Summary of Feature Selection Comparison.

Productivity Factor
Correlation Principal Component Analysis

Pearson Correlation
Set A

PC1
Set B

PC1–PC2
Set C

PC1–PC5
Set D

Biplot
Set E

Number of Masons x x x x
Number of Helpers x x

Mason Wages x
Helper Wages

Mason Competency x x
Weather x x x x

Workday Duration
Wall Length x
Wall Height x x x x

Total Features Selected 3 2 3 6 4

x implies that this variable is an element of that set.

The analysis explores the selection of productivity factors and various sets of features
using Pearson correlation and Principal Component Analysis (PCA). Sets A, B, C, D, and
E were studied based on the factors that were heavily correlated with the PC based on a
threshold of 0.4, with Set D having the highest number of selected features (6). The results
shed light on a comparison between Pearson correlation and PCA based on the significant
factors impacting labor productivity selected by each method. The factors forming the
subset of selected factors were chosen based on the Euclidean distance across the nine
PCs in Table 10. The Boolean returned true for factors that scored a Euclidean distance
greater than 0.7 and false for factors that did not meet this threshold. The selection of
significant factors was determined based on the Euclidean distance of the component
loadings. This approach allows us to assess the extent to which individual factors play
a substantial role in the variability of the dataset, warranting focused attention. The
calculation of Euclidean distance for factor loadings provides a quantitative measurement
of the dissimilarity between the factors and the principal components. A larger magnitude
of this difference indicates a greater contribution of that specific factor to the dataset’s
variability, signifying its pronounced significance. In line with this study’s objectives, a
threshold for selection is typically established. In this study, a minimum cutoff of 0.7 was
adopted as the chosen threshold.

Table 10. Summary of Selected Factors Based on Euclidean Distance.

Variable Boolean Euclidean Distance

Number of Masons TRUE 0.772
Number of Helpers TRUE 0.965

Mason Wages FALSE 0.218
Helper Wages FALSE 0.120

Mason Competency TRUE 0.934
Weather TRUE 0.980

Workday Duration FALSE 0.231
Wall Length FALSE 0.344
Wall Height FALSE 0.637

The scatter plot shown in Figure 8 of the first two principal components (PC1 and
PC2) shows that these two principal components can capture the most important variation
in the dataset. The clusters are well-separated in the two-dimensional space of PC1 and
PC2, which suggests that these two principal components can be used to cluster the data
effectively. This demonstrates the effectiveness of PCA for dimensionality reduction and
clustering of data.
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4. Discussion of Results
4.1. Pearson Correlation Results

The examination of Pearson Correlation values demonstrates that the number of ma-
sons, wall length, height, and area of wall built had the highest association and dependency,
based on a threshold value of 0.5, grouped in feature set A, and the other factors had the
lowest association. Therefore, it is possible to model brickwork labor productivity as a
function of the number of masons, wall length, height, and area of the wall built.

4.2. Descriptive Statistics

The results of the analysis revealed valuable insights into the dataset and its relation-
ship with labor productivity. Table 3 provides descriptive statistics, offering a comprehen-
sive summary of the collected data, including measures of central tendency (averages) and
variability (spread of data points). The mean number of masons and helpers was three and
two, respectively, working for an average daily wage of UGX 31000 and UGX 16750 at a rate
of 1.476 square meters per day. This implies that, on average, the ratio of mason to helper
was 1:2, meaning for every mason hired, two helpers were employed for assistance. It was
frequently noticed that while one helper aided in the construction process, the other helper
participated in the continued supply of materials. Notably, the Pearson correlation coef-
ficient was utilized to examine the strength and direction of linear relationships between
variables in the database (Table 4). The correlation matrix demonstrated that the number of
masons, wall length, height, and area of the wall built exhibited the highest associations
and dependencies with the production rate. These factors were grouped into feature set A,
indicating their potential significance in modeling brickwork labor productivity.

4.3. Adequacy of Data for Factor Analysis and PCA

Table 5 indicates the correlation coefficient of the study variables; the wall area is highly
correlated with wall length, exhibiting a correlation coefficient of 0.861. This signifies a
high inter-correlation between wall area and wall length. Consequently, the wall area
variable was eliminated to remove any bias. Upon elimination of wall area from the dataset,
the KMO value of 0.544 indicated a moderate degree of common variance, supporting
the appropriateness of factor analysis. The significant result from Bartlett’s test further
validated the dataset’s suitability for factor analysis, providing confidence in the exploration
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of underlying latent structures. Principal Component Analysis (PCA) was then performed
to explore the dataset’s dimensionality and reveal the proportion of variance explained
by each principal component (Figure 2). The number of PCs chosen was based on a
threshold that explained 70% of the dataset variance, resulting in four PCs (PC1 to PC4)
being chosen out of the nine generated. Notably, PC1 and PC2 jointly explained 49.54%
of the total variance, with PC1 to PC7 cumulatively explaining 93.96%. Based on factor
loadings, feature sets B, C, and D were derived, with a set of selected features comprising
the number of masons, number of helpers, mason competency, and weather. These feature
sets highlighted the significant variables influencing labor productivity. The PCA-biplot
provided further insight into feature selection (Figure 3), with feature set E confirming the
importance of the number of masons, number of helpers, mason competency, and weather
in modeling labor productivity.

4.4. Selected Features

The summary of selected features for different sets, obtained from Pearson correlation
and PCA, was compared in Table 9, with the weather and wall height heavily contributing
to PC1 with coefficients of 0.576 and 0.524, respectively, as summarized in Table 7. As
demonstrated in Figure 2, the first principal component (PC1) explains the most variance in
the dataset, while the second principal component (PC2) explains the second most variance.
This means that PC1 and PC2 capture a significant amount of the information in the original
dataset together. The fact that the clusters are well-separated in the two-dimensional space
of PC1 and PC2 suggests that these two principal components can effectively distinguish
between the different clusters. This is important because it means that we can use PCA
to reduce the dimensionality of the dataset while still being able to identify the different
clusters. Figure 9 shows the selection of variables based on their Euclidean distance.
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5. Conclusions and Recommendations
5.1. Conclusions

The analysis successfully identified pivotal factors that influence labor productivity
within the realm of brickwork. The investigation has underscored the significant contribu-
tions of variables such as the number of masons, number of helpers, mason competency,
and weather conditions in shaping productivity patterns, such as the optimal crew size
where too many or too few could result in productivity dips. The insights garnered from
this study provide invaluable direction for decision-makers aiming to optimize brickwork
procedures and enhance labor efficiency.

The utilization of Principal Component Analysis (PCA) to condense a subset of four
factors from the original nine, as discerned from PC1 and PC2, has demonstrated the
efficacy of this dimension reduction technique. This approach has effectively disregarded



Buildings 2023, 13, 3087 18 of 20

extraneous variables such as wall dimensions and work duration, which may have exhib-
ited high Pearson correlation values but lack relevance in labor productivity modeling.
This sheds light on the fact that variables with strong correlations might not always hold
paramount importance in comparison to other feature extraction methodologies like PCA.

5.2. Recommendations

The MATLAB PCA algorithm devised in this study incorporated two techniques for
optimal Principal Component (PC) selection: the graphical scree plot and a literature-based
criterion that identifies PCs explaining over 70% of the variance. An additional Boolean
function based on the average coefficients of individual factors was also employed. How-
ever, it is imperative to explore more intricate methodologies to assess the applicability of
the scree plot and the 70% threshold. While this study employed Principal Component
Analysis for dimension reduction, which led to a subset of variables (k < p) analogous to
factor analysis, it is essential to distinguish between PCA and Exploratory Factor Anal-
ysis. These two data science methodologies are distinct and should not be mistakenly
conflated, a common occurrence facilitated by certain statistical packages. Furthermore,
a comprehensive understanding of PCA’s prerequisites and relevance is vital before its
implementation, thereby necessitating thorough research to determine the suitability of
PCA for a given dataset. Professionals in the field should regard the subset of factors
identified here as a benchmark when strategizing and scheduling construction activities.
This informed approach can potentially contribute to improved operational efficiency and
decision-making processes. The results of the selected factors will serve as the foundation
for the development of a neural network model. This model will be constructed based
on these critical features, offering predictive insights that can guide resource allocation
strategies and human-robot collaboration within the construction industry. With the global
industry advancement towards construction automation, Ugandan professionals’ perspec-
tives on human collaboration and local adoption should warrant future research to inform
the sector-appropriate building construction policy reviews.
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