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Abstract: High-speed videogrammetric measurements are widely used on shaking tables. However,
during progressive collapse experiments, the protective string used to ensure the safety of personnel
and the shaking table, mandated by safety considerations, can partially occlude the structural model.
To address the problem of inaccurate tracking of the ellipse targets in image sequences due to
the partial occlusion, this paper proposes a novel mutually guided tracking method for the partial
occlusion situations. Firstly, the strategy of loopback detection is proposed to eliminate the cumulative
errors with the initial tracking model and to replace the initial results of the tracking with those from
the loopback detection. Secondly, tiny offset compensation is used to solve the problem of deviations.
The experimental results demonstrate that the proposed method can achieve single-point localization
at the sub-millimeter level and interlayer localization at the millimeter level within partially occluded
environments. It is important that the proposed method meets the requirements of experimental
accuracy on shaking tables and ensures the safety of personnel and facilities.

Keywords: videogrammetry; ellipse target tracking; masonry building; shaking table; occlusion

1. Introduction

At present, there are many masonry buildings around the world, which can easily
undergo a progressive collapse during earthquakes [1]. Almost all of the damaged buildings
in the 7.6 magnitude earthquake in the northern region of Pakistan in 2005 were masonry
buildings [2]. Moreover, over the past 100 years, 77 percent of fatalities were caused
primarily by the progressive collapse of masonry buildings in earthquakes [3]. Therefore, it
is crucial to test the scaled masonry building models on a shaking table with the simulated
seismic condition before many practical applications, as this can provide the response
parameter to evaluate the tested structure model [4–6].

Displacement is a typical response parameter employed to analyze seismic perfor-
mance [7]. There are many contact-based transducers that can be used to obtain the
dynamic displacement response, such as dial gauges, fiber-based sensors and linear vari-
able differential transformers (LVDTs) [8]. However, when a structure is damaged, the
contact-based transducer may be unavailable, which also greatly depends on experts’ expe-
rience in selecting the mounting positions. In addition, in progressive collapse experiments,
contact-based transducer may be damaged due to the potential collapse risk, resulting in
some property damage. To overcome these limitations, non-contact-based transducers have
been applied to obtain the dynamic displacement response, such as the global positioning
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system (GPS), laser Doppler vibrometer (LDV) and terrestrial laser scanning (TLS) [9]. GPS
and TLS can only obtain the dynamic displacement response at lower sampling frequen-
cies, which are not suitable for application on shaking tables [10,11]. LDV is one of the
most reliable equipment for dynamic monitoring, but its high cost means be a significant
expenditure [12].

With its advantages of being non-contact and having a high frame rate, high precision
and low cost, high-speed videogrammetry has been widely used for structure monitoring
on the shaking table in civil engineering [13]. The captured video date is processed to obtain
the displacement response of the monitored target. However, in the field of progressive
collapse experiments on the shaking table, the precision of the displacement response will
be decreased because the indispensable protective facilities (e.g., protection frames [14]
to prevent the specimen from falling and foam and nylon string [15] to prevent damage
to the artifact) will occlude the monitoring targets. The monitored targets can be divided
into two categories: natural targets [16,17] and artificial targets [18,19]. The natural targets
usually disappear completely when they are occluded, making it impossible to obtain
continuous displacement. To obtain the continuous displacement response under occlusion,
the artificial targets which disappear partially are usually pasted on the surface of the
interested key location of the tested objects [20–24]. The ellipse target is widely used
as one type of artificial target in photogrammetry and computer vision, because it is
characterized by geometric and rotational invariance. Therefore, it is a fundamental
prerequisite to accurately obtain the ellipse targets under partial occlusion in order to
analyze the displacement response. The center and radius of the ellipse targets are obtained
by a detection algorithm in the first frame. The pixel-wise motion is obtained by a tracking
algorithm in image sequences. However, the detection and tracking of ellipse targets under
partial occlusion need to be discussed in more detail.

In the field of ellipse detection, there are three generalized methods without designing
for specific scenarios, including the Hough transform method [25,26], deep-learning meth-
ods [27] and point-fitting methods [28–31]. The basic idea of the Hough transform method
is that arbitrary edge pixels are voted into a 5D parameter space and then detecting the
ellipse when the local peak occurs. But this is not compatible with the characteristics of
large data owing to its heavy computation burden [31]. Deep-learning methods are still
inappropriate for direct ellipse detection due to the non-interpretability of the detection
method and the high cost associated with manual annotation. What is more significant is
its limited generalizability [31]. Point-fitting methods use the connectivity between edge
pixels and geometric constraints to fit ellipses accurately by finite edges. Furthermore, the
method is especially valuable in partially occluded conditions, as it performs well in fitting
ellipses even when supplied with limited arc segment information.

After the initial ellipse target is detected in the first frame, target tracking methods will
be applied to obtain all the ellipse targets in image sequences. It is generally accepted that
conventional object tracking methods can be divided into two categories: discriminative
model methods and generative model methods [32–34]. Discriminative model methods
usually train samples using machine learning to track the region of detection [34–37].
However, it is difficult to determine the coordinates of the ellipse’s center at a sub-pixel
level. The generative methods model the object area in the current frame and find the
most similar area in the next frame. The methods can track ellipse targets at the sub-pixel
level. Commonly used methods are those such as the mean shift method [38] and optical
flow method. The mean shift method is only suitable for single-target tracking. The
Kanada-Lucas-Tomasi (KLT) method [39] as a type of optical flow method that is more
suitable for ellipse target tracking because its fundamentals are highly related with high-
speed videogrammetry. But under partially occluded conditions, it is still difficult for the
KLT method to track the targets accurately and effectively [17].

This study investigated the displacement response issue with the help of ellipse targets
under partially occluded conditions on a shaking table. In part, the partially occluded
condition is caused by the introduction of nylon string that is used to protect the safety
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of the expensive shaking table and to reduce the shock to the cover-plate system, which
is equipped to provide physical protection to the servo-hydraulic system in the reaction
mass from falling debris and objects [40]. Especially in the progressive collapse of masonry
buildings experiments, partial or global facades will collapse with an increase in the
seismic amplitude [41]. Therefore, it is important to utilize the nylon string for protection.
However, the introduction of the nylon string makes ellipse targets partially occluded,
which decreases the accuracy of the displacement response. To address this issue, a novel
high-speed videogrammetry framework is proposed, which mainly includes ellipse target
detection, mutually guided tracking and 3D reconstruction. Our main contribution is to
propose the mutually guided tracking method to solve the problem of ellipse target tracking
under partial occlusion. Firstly, the strategy of ellipse-target loopback detection is used to
update the initial KLT tracking model and to replace the initial result of tracking with that
from the loopback detection. Secondly, the tiny offset is calculated through robust SIFT
(scale-invariant feature transform) [42] filtering to compensate for the deviations in local
frames when the loopback detection is invalid. The sequential image coordinates of ellipse
targets are obtained by the proposed tracking method. The 3D spatial coordinates are
obtained by reconstruction of the image coordinates to analyze the displacement response
to help monitor the masonry building on the shaking table.

The rest of this paper is organized as follows: The proposed methodology is expressed
in Section 2. The results and analysis of both the simulated experiments and the structural
model experiments are delved into in Section 3. Finally, Section 4 presents the conclusions
drawn from the study.

2. Methods

The entire framework of the proposed novel high-speed videogrammetric measure-
ment method under a partially occluded environment is shown in Figure 1, which mainly
includes three key components: ellipse target detection, mutually guided tracking and 3D
reconstruction. Firstly, the ellipse targets are detected in the first frame to obtain the center
and radius using the arc-support line segment (LS) [31] method, which is one of the widely
used point-fitting methods. Secondly, after detecting the ellipse targets in the first frame,
the proposed mutually guided tracking method is applied to obtain the image coordinates
of all ellipse targets in image sequences. Finally, the 3D spatial coordinates of ellipse targets
are reconstructed to obtain the displacement response. Additional details will be presented
in the following sections.
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2.1. Ellipse Target Detection in the First Frame

To obtain a precise dynamic displacement response in the high-speed videogrammetric
measurements, the first step is to detect the ellipse targets accurately, including both the
centers and the radii. The accuracy of the detection will directly affect the image sequence
tracking and the ellipse-target 3D reconstruction results. Especially in the partially occluded
environment, it is more difficult to detect the ellipse target accurately because the edge of
the ellipse may be occluded by strings or other things. Thus, it is essential to fit a complete
ellipse accurately only under finite ellipse edge conditions. The arc-support LS method,
which is a type of point-fitting method, can be applied to fit an accurate ellipse by setting
the completeness of the ellipse and the ratio of supported edge inliers. When the string
goes through the central region of the ellipse, complete ellipses can be fitted well based on
finite edges by using this method, which can determine the center and radius of the ellipse
targets. The detected center is used to track the center of ellipse targets in image sequences
and to reconstruct the 3D spatial coordinates. Many detected ellipses are outlying due to
occlusion of the string. Thus, the radius is used to select the interested ellipse by prior
knowledge. However, when the string goes through the edge region of the ellipse, available
edges are damaged, so there will be some inaccuracy in fitting the ellipse. Thus, the first
frame does not represent the photographic moment but, rather, the moment when the
ellipse target is accurately detected. The center and radius of the ellipse target are accurate
at this point.

2.2. Mutually Guided Tracking in Image Sequences

After detecting the initial ellipse targets in the first frame, the KLT method, which is a
type of tracking method at the pixel level, is used to obtain the center in image sequences.
But in a partially occluded environment, the accuracy of the KLT method is unsatisfactory.
To overcome the inaccuracy of the KLT method in a partially occluded environment, a
mutually guided tracking method is proposed to track ellipse targets accurately in image
sequences. It includes three key components: the initial KLT tracking model, loopback
detection and tiny offset compensation. The initial tracking model is built using the KLT
method. When the protective string goes through the ellipse target, this will produce
cumulative errors in the initial tracking model due to the different moving trends between
the string and the ellipse target. Hence, the strategy of loopback detection is introduced
in this study to eliminate these cumulative errors by updating the tracking model and
replacing the initial tracking results with those from the loopback detection. The center of
the ellipse targets is then compensated for by calculating the tiny offset through robust SIFT
filtering to solve the problem of deviations when the loopback detection is invalid. The
methods of KLT, loopback detection and tiny offset compensation are discussed as follows.

2.2.1. Initial Tracking Model Using the KLT Method

After detecting the ellipse targets in the first frame, the initial tracking model is also
built according to KLT using the first frame. The assumptions of the KLT method are highly
related to the high-speed videogrammetry. It assumes that the brightness is invariable in
consecutive frames. In addition, it assumes that the movement of the object is very slow in
consecutive frames. Since the exposure time of high-speed cameras is extremely short, the
captured object exists in an instantaneous state during each frame. In the instantaneous
state, the brightness is invariable, and the object (ellipse target in this study) is nearly
stationary. Moreover, the method also assumes that the object has the same trends in
mobility as the surrounding pixels. This is a highly consistent hypothesis because the
ellipse target occupies an image block.

The specific process of the KLT method is expressed as follows. Under the assumptions
of brightness invariance and mobility instantaneity, an obtained grayscale feature point
I(x, y) at frame t will be I(x + dx, y + dy) at the t + dt frame:

I(x + dx, y + dy, t + dt) = I(x, y, t). (1)
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The Taylor expansion of the first-order term on the left-hand side is

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt. (2)

Based on the assumption of the brightness invariance,

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt = 0. (3)

Divide both sides simultaneously by dt,

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

= −∂I
∂t

, (4)

where dx/dt and dy/dt are the moving speed along the x-axis and y-axis, respectively.
They can be denoted as u and v, respectively. ∂I/∂x and ∂I/∂y are the gradients along the
x-axis and y-axis, respectively, which can also be denoted as Ix and Iy, respectively. ∂I/∂t
can be interpreted as the degree of change in the image gray level over time, denoted as It.
Equation (4) can be rewritten as

[Ix Iy]

[
u
v

]
= −It. (5)

Considering the third assumption, which states that all pixels within the image block
of w ∗ w has the same motion trends, there will be w2 formulas.

[Ix Iy]k

[
u
v

]
= −Itk, k = 1, . . . . . ., w2. (6)

Then, it can be rewritten as

A =

[Ix, Iy]1
. . .

[Ix, Iy]k

, b =

 It1
. . .
Itk

. (7)

The least square equation can be listed as[
u
v

]∗
= −(AT A)

−1
ATb. (8)

The sequential image coordinates of the ellipse targets’ center are obtained using the
KLT method. However, in the initial tracking model that is built using the first frame,
matrix A, which belongs to ellipse targets, will be substituted by some string grayscales[

Ix Iy
]

k′ , where k′ represents the number of the string grayscale. The substitution of the
string grayscale leads to inaccuracy due to different moving trends between the string and
the ellipse target because they are not rigidly connected. If the initial tracking model is used
for tracking, errors must be eliminated or they will accumulate gradually. To overcome the
inaccuracy of the KLT method due to the substitution problem caused by partial occlusion,
loopback detection and tiny offset compensation are proposed.

2.2.2. Loopback Detection

Ellipse target loopback detection is a redetection strategy conducted after the KLT
approach. The typical strategy of tracking is to build the initial tracking model in the first
frame and to track the ellipse target in the current frame. However, the initial tracking
model will generate cumulative errors due to the introduce of the string. In terms of
modelling methods, KLT utilizes the image gradient of the interested image block to track
the center of ellipse targets. However, when the string occludes the central region of the
ellipse target, the image block that should belong to the ellipse target will be substituted by
the string. The phenomenon of image block substitution leads to the problem of inconsistent
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gradient-calculation changes due to the moving trend inconsistency between the string
and the ellipse target. Hence, cumulative errors will be produced when using the initial
tracking model. These can be eliminated by updating the tracking model using the loopback
detection strategy. When the string goes through the central region of the ellipse target,
the edges of the ellipse are at their clearest. As a result, it is opportune for accurate ellipse
detection in the current frame. The tracking model is updated using the new image block in
the current frame to track subsequent ellipse targets if the loopback detection is successful.
And the initial result of the KLT approach will be replaced with the loopback detection
result too. Cumulative errors will not be generated using the loopback detection strategy.

2.2.3. Tiny Offset Compensation

If the string occludes the edge of the ellipse target to some extent but the central region
of the ellipse target is clear, the ellipse target loopback detection maybe invalid because
finite edges are like straight line segments without curves. The invalid case only occurs in
local frames due to the dynamic string. Although the image block of the tracking model
is established around the center of ellipse targets, sub-pixel deviations may be generated
because the phenomenon of image block substitution occurs in the region of the edges,
not the center. Tiny offset compensation is proposed for the problem of deviations at
the sub-pixel level in local frames using the updated tracking model. Figure 2 illustrates
the schema of the tiny offset compensation using SIFT. Scale-invariant feature transform
(SIFT) is a very stable local feature for image matching. Particularly in the consecutive
image sequences where rotations, scales and brightness are all constant, SIFT is especially
effective. In Figure 2a, the left picture is the ellipse target in frame i, and the right picture
is in frame i + 1. It illustrates the image matching between neighboring frames. The blue
and green points are the center of the ellipse target obtained by the KLT method. A little
deviation of the center points is generated due to partial occlusion. The yellow and red
points correspond to SIFT features that can still be detected accurately, either on the ellipse
target or on the string. The red lines represent the moving string. In Figure 2b, the tiny
offset is calculated by the average of the overall shift value SIFT seed points because the
motion of SIFT features on the ellipse target are the same as the center of the ellipse. If there
are N inliers for matching, the average of shift values can be calculated by:

dx =

N
∑

i=1
dxi

N

dy =

N
∑

i=1
dyi

N

, (9)

where dx and dy are the tiny offset values of the ellipse’s center along the x-axis and y-axis,
respectively. dxi and dyi are the tiny offset values of the inliers on the x-axis and y-axis,
respectively. The offset direction is determined by dx and dy. The center direction is
determined by dxKLT and dyKLT , which are obtained through neighboring frames using
the KLT method as shown in Figure 2c. The condition of the compensation of the center
is judged by the direction and numerical value. In image coordinates, the direction can
be decomposed into x and y. If the signs of dx and dxKLT are opposite, the value of
compensation along the x-axis, dxcom, is obtained by dxcom = dxKLT + dx. If the signs of
dx and dxKLT are the same, the value of dxcom is equal to the smaller of dxKLT and dx. The
reason for selecting the smaller value as the compensation value is that the ellipse target
will not have a large coordinate difference when it is captured by the high-speed camera.
The condition of judgement in the y direction is same as with the x direction. The dxcom
values are added to the KLT result in i + 1. Thus, to compensate for the deviations, effective
filtering of SIFT features is proposed. As shown in Figure 2b, the outliers will be eliminated.
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Typically, the RANSAC (Random Sample Consensus) method is used to filter SIFT
features. Nevertheless, numerous mismatches still exist after RANSAC, especially for
the ellipse targets. Therefore, this study proposes the distance constraint (DC) and rigid
constraint (RC) to filter robust SIFT features. The DC is defined as the maximum shift value

of SIFT feature points, calculated using the Euclidean distance (denoted as
√

dx2 + dy2)
in the image coordinates between neighboring frames. A high-speed camera has a very
high frame-per-second (fps) rate. So, objects in the image are almost nearly static between
neighboring frames. When represented as image coordinates, the shift value between
neighboring frames is exceedingly small, basically at the sub-pixel level. The DC between
the i frame and the i + 1 frame is shown in Figure 3. The shift value of C to C’ exceeds the
DC, while the values of A to A’ and B to B’ fall within it. Consequently, the matching of A
to A’ and B to B’ exhibits greater robustness compared with C to C’. They are considered
inliers. Only SIFT features with shift values less than the DC can be classified as inliers.
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After using the DC to filter the SIFT features, a few features still exist on the string. The
rigid constraint (RC) is proposed to filter them based on the notion that the ellipse target
can be considered rigid with regard to the structural model on the shaking table because
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of the powerful adhesion of the nanoglue. In contrast, the string is flexible with regard to
the structural model when interacting. Due to the disparity in rigidity between the target
and string, the direction of the shift values of SIFT features on the ellipse targets along
the x-axis and y-axis is same as the center of the ellipse targets. In contrast, the direction
is different when features are on the string. The features located on the ellipse target are
inliers, while the features on the string are outliers. An efficient and simple way known
as Otsu [43], which is a binarization method, is used to reject outliers. Observing that the
string is commonly brighter than the background, an adaptive threshold is obtained by
Otsu for binarizing the string and the ellipse target. SIFT features located on the string are
rejected based on their affiliation with either the prospects or background in the binarized
image. The retained SIFT features through RANSAC, DC and RC processing are considered
the robust SIFT seed points. They are used to calculate the tiny offsets for compensating for
the deviations.

2.3. 3D Reconstruction and Displacement Response

After mutually guided tracking, the centers of the ellipse targets are obtained in
image sequences. The corresponding tracking points in stereo images can be further
matched manually. The reconstruction of 3D spatial coordinates of the tracking points
can be calculated using techniques such as camera calibration [44], PnP [45] and bundle
adjustment [46]. The displacement means the distance from the current position of a
tracking point relative to its initial position. It is calculated by

DXn = Xn − X1
DYn = Yn −Y1
DZn = Zn − Z1

, (10)

where DXn , DYn and DZn denote the displacement of the ellipse target in the X, Y and Z
direction and n frame, respectively. X1, Y1 and Z1 are the spatial coordinates in the first
frame. Xn, Yn and Zn are the spatial coordinates in the n frame.

3. Results
3.1. Simulated Experiments in a Partially Occluded Environment

To verify the accuracy of the proposed novel high-speed videogrammetric measure-
ment method in a partially occluded environment, a simulated indoor experiment was
designed as shown in Figure 4. In the simulated experiment, ellipse targets were static while
the string was dynamic, as shown in Figure 4a. As shown in Figure 4b, by observing the
object with two stationary high-speed cameras called Cyclone-16-300, the impact of string
sway on ellipse detection could be verified. The key parameters of the Cyclone-16-300
camera are provided in Table 1.

Table 1. Key parameters of Cyclone-16-300.

Parameters Value

maximum resolution 4672 (H) × 3416 (V) pixels
pixel size 3.9 um

frame full resolution 293 fps
active area 18.221 mm × 13.322 mm

shortest exposure time 2 ms

3.1.1. Ellipse Target Detection

To validate the accuracy of ellipse detection using the arc-support LS, a partially
occluded ellipse target was selected for the experimental data. Figure 5 shows the process
of ellipse detection. The edges of the image were detected by the Canny detector [47],
as shown in Figure 5a. Through calculating the direction and the polarity of the arc-
support LS, the arc-support LS was built, as shown in Figure 5b. After ellipse clustering
and candidate verification, some ellipse candidates were obtained, as shown in Figure 5c.
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The interested ellipse target was retained after applying a radius-based qualification, as
shown in Figure 5d. Although the string passes through the region of ellipse, it can still be
detected accurately.
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Figure 5. Process of ellipse target detection. (a) Edge detection by the Canny detector. (b) Detected
arc-support LS image. (c) Ellipse candidates. (d) Interested ellipse.

3.1.2. Mutually Guided Tracking in Image Sequences

To verify the accuracy of the proposed mutually guided tracking method, the typical
single-point tracking methods, KLT and LSM [48], were selected to make a comparison.
In the simulated experiment, the cameras and ellipses are both static. Thus, the image
coordinates will not change. The detection result of the first frame is used as a reference
value for comparison. Figure 6 shows the tracking results using KLT, LSM and the proposed
method, respectively. Table 2 shows the comparison of the three methods for the left-image
coordinates. The results indicate that the method proposed in this study is more accurate
and stable compared with the KLT and LSM methods. The LSM method has larger errors
than the KLT approach. The errors of the proposed method is no more than 0.05 pixels
compared with the references. The proposed method and reference are in approximate
agreement in Figure 6 due to their very close proximity.
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Table 2. Maximum displacement residual and RMSE values in left sequences from the three methods.

Methods KLT LSM Proposed Method

Max-res (pixel) 0.323 1.789 0.05
RMSE (pixel) 0.143 0.515 0.05

Figure 7 shows the process of filtering robust seed points for tiny offset compensation.
The initial SIFT matching is shown in Figure 7a. There are many mismatches. Figure 7b
shows the RANSAC process. While many significant mismatches are rejected, there are
still some SIFT points with small errors. Robust seed points are retained after DC and RC
filtering, as shown in Figure 7c. Table 3 shows the number of features from the initial SIFT
matching to DC and RC filtering.
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Table 3. The number of SIFT features after filtering.

Methods SIFT RANSAC DC and RC

number 313 157 41

3.1.3. 3D Reconstruction

Ideally, the coordinates of static target points captured by static high-speed cameras
should be constant. However, the results of reconstruction may fluctuate to some extent
due to the swaying of the string. Thus, the stabilization of the results can directly reflect the
effectiveness of the methodology. The displacement response is obtained by reconstructing
the image coordinates obtained from the three methods. Figure 8 shows the comparison of
coordinate reconstruction results with total station measurements, which can be treated as
reference values. The simulated experimental results show that the proposed method can
obtain both sub-millimeter accuracy and stabilization. Table 4 shows the comparison of
spatial coordinates from the three methods. The RMSE values calculated by the proposed
method are closest to the references. The point error is no more than 0.8 mm compared
with the references.
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Figure 8. Comparison of 3D reconstruction results with total station reference results. (a) Coordinates
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Table 4. RMSE values in 3D reconstruction from the three methods.

Methods KLT LSM Proposed Method

RMSE-x (mm) 0.048 0.361 0.043
RMSE-y (mm) 0.242 1.976 0.167
RMSE-z (mm) 0.932 2.759 0.812

point error (mm) 0.964 3.412 0.830

3.1.4. Discussion

Since the static ellipse targets were captured by static high-speed cameras, the results
of the tracking and 3D reconstruction should be constant. The proposed method was able
to achieve these goals. The influence of the string could be eliminated, and sub-millimeter
accuracy could be achieved in simulated experiments.

3.2. On-Site Experiments and Analysis

The 5 m by 5 m shaking table, located at the Beijing University of Civil Engineering
and Architecture, was used in the study. The table had a single load of 60 tons, a maximum
horizontal acceleration of 1.5 g and a maximum vertical acceleration of 1.5 g. Its walls were
constructed using monolithic wall masonry. The size of the bricks was 230 × 105 × 42 mm
and the model had a 2.6 m height and 5.0 m width. Figure 9a shows the tested shaking
table structure model and Figure 9b shows the actual experimental scene. A binocular
high-speed camera system is used to monitor the structure model. Total station is used to
obtain the initial spatial coordinates. Figure 10 shows the distribution of target points that
are used to monitor the important locations of interest. Points 1, 2 and 3, highlighted within
red boxes, served as example points in this experiment. To ensure the safety of personnel
and the shaking table due to the progressive collapse of masonry building, protective string
is used. Figure 11 shows ellipse targets partially occluded by thicker strings. The key
parameters of the used CP80-4-M-500 camera are presented in Table 5.
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Table 5. Key parameters of CP80-4-M-500.

Parameters Value

maximum resolution 2304 (H) × 1720 (V) pixels.
pixel size 7 um × 7 um

frame full resolution 500 fps
active area 16.13 mm × 12.04 mm

shortest exposure time 2 ms

3.2.1. Ellipse Target Detection

To validate the accuracy of ellipse detection using the arc-support LS, point 1 was se-
lected for the experimental data. Figure 12 shows the steps of detection on a pre-defined ROI.
Many edge line segments were extracted by the Canny detector, as shown in Figure 12b.
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But they were not suitable for ellipse detection because the ellipse’s segments were dis-
tributed like a curve. Figure 12c shows the arc-support LS image. Figure 12d shows the
interested ellipse after radius-based qualification. The center’s coordinates and radius were
obtained after detection.
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3.2.2. Mutually Guided Tracking in Image Sequences

To verify the accuracy of the tracking methods, the KLT and LSM methods and our
proposed method were selected to make a comparison. When the ellipse target is partially
occluded by the string, the verification of the methodology requires further discussion to
clarify both the magnitude value and the trend of the curves. The right-image coordinates
of tracking point 1 is shown in Figure 13. The tracking results are similarly constant in the x
direction. However, there are variations in the y direction. The KLT method has pixel-level
offsets in the y direction, while the LSM method consistently produces results that are
approximately 0.5 pixels higher than the proposed method. From the actual situation of
shaking, the seismic waves input had stopped at that time and the shaking due to inertia
was nearly negligible at point 1. It needs to be further explained why the curvilinear
motions of the KLT and LSM methods are consistently similar from a principle point of
view. Both the KLT and LSM methods rely on the principle of establishing a grayscale-
based equation for the image blocks in neighboring frames. For example, KLT builds on
the grayscale Equation (1) and LSM builds on the grayscale equation

g1(x, y) + n1(x, y) = h0 + h1 ∗ g2(a0 + a1x + a2y + b0 + b1x + b2y) + n2(x, y). (11)

The KLT approach considers that the moving trend is the same as the surrounding
pixels in image blocks of neighboring frames. So, the change in image points can be
represented as x + δx. The LSM method considers that the moving trend has geometric
transformations. So, the change in image points can be represented as a0 + a1x + a2y.
Therefore, similar computational logic and similar image blocks result in similar trends.

By comparing the results of the visual interpretation in Figure 14, the proposed method
is shown to be more accurate than the others. (a)–(d) in Figure 14 represent keyframes 1782,
1828, 1916 and 2035, respectively. The red, blue and green points in Figure 14 represent
the KLT, LSM and proposed methods, respectively. By qualitative comparison, the red
point has shifted upward, and blue point has shifted rightward. Thus, the results from the
proposed method are closer to the real values and more consistent with the real physical
laws of motion.

All the RMSE values acquired from the proposed method are the lowest compared
with the other two methods, as shown in Table 6. Consequently, from the quantitative
perspective, the proposed method is more stable than the others.
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Table 6. RMSE values in right-image sequences from the three methods.

Methods KLT LSM Proposed Method

RMSE-x (mm) 0.661 0.656 0.648
RMSE-y (mm) 1.682 0.375 0.132
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The process of tiny offset compensation is shown as follows. In Figure 15, ellipse target
1 was selected as the example attached on the model. Figure 15a shows the initial SIFT
matching results. Many feature points are distributed on the ellipse target, and one feature
point also appears on the string. Figure 15b shows the RANSAC results. Many outliers are
rejected compared with Figure 15a. DC is used to reject the outliers, as shown in Figure 15c.
Considering that the experiment was designed using a high-speed camera with 200 fps,
the shift value of the movement should be small in neighboring frames. The DC was set to
0.3 pixels by referring the value of the movement at the ellipse’s center when it was not
occluded by the string. RC can be used to reject the SIFT features on the string as shown in
Figure 15d. SIFT feature points located on the strings, especially at string crossings, can
be effectively filtered out by evaluating the value of the feature point on the binary image
(0 or 1). The binary image is shown in Figure 16. Table 7 shows the obtained number of
SIFT features.
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3.2.3. Accuracy Verification of Displacement in the Seismic Wave Direction

The displacement response is obtained by reconstructing the image coordinates ob-
tained from the KLT, LSM and proposed methods. Table 8 shows the accuracy of point
coordinates using the proposed method. By comparing this with the total station measure-
ments, the photogrammetric network could achieve sub-millimeter accuracy. The RMSE
values in the X, Y and Z directions are 0.83 mm, 0.87 mm and 0.57 mm, respectively.

Table 8. Accuracy of point-coordinate network configurations.

ID
Results of Videogrammetry (m) Results of Total Station (m) Difference (mm)

X Y Z X Y Z X Y Z

1 2.1339 −5.0240 −0.5374 0.2734 −5.0237 −0.5370 0.5 −0.3 0.4
2 2.9973 −5.0277 −0.5306 2.9979 −5.0269 −0.5304 −0.6 −0.8 0.4
3 2.5013 −0.5031 0.6495 2.5016 −0.5033 0.6494 −0.3 0.2 −0.1

RMSE 0.83 0.87 0.57

Firstly, the comparison of reconstruction results for point 3 without anything occluded
is shown in Figure 17. The red, blue and green lines are the results using the KLT, LSM and
proposed methods, respectively. KLT and LSM could achieve sub-millimeter accuracy on
the shaking table [7,49]. Meanwhile the proposed method has the same level of accuracy as
these two methods.
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Figure 18 shows the displacement at point 1 in the direction of the seismic waves.
Results from the KLT method are not shown because its trend of tracking motion does not
match reality. Results from the LSM and the proposed method have the same trend before
2500 frames. But after 3000 frames, their trends start to diverge. The proposed method is
more accurate because there is no significant displacement of the structural model after the
seismic wave ends.

Figure 19 shows the comparison of the displacement in the direction of the seismic
waves using the proposed and LSM methods at points 1 and 2. Since point 1 and point 2 are
on the same floor slab that consists of an 80 mm thick cast-in-place concrete structure with
internal steel mesh reinforcement, the trend and magnitude of the motion of the two points
should be the same. The proposed method can also meet this requirement, as shown
in Figure 19a, while the LSM approach does not achieve the same level of consistency,
as shown in Figure 19b. Hence, the LSM method is susceptible to the impact of string
occlusions at various points, whereas our method exhibits greater robustness in handling
such occlusions.
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Figure 20 shows a comparison of the displacement between layers calculated by point
1 and point 3. The relative displacement between the upper and lower floors was calculated
by subtracting the displacement of point 3 from the displacement of point 1. The references
were obtained by means of displacement gauges placed between the upper and lower
floors through the diagonal tension. The datum of the horizontal coordinate is standardized
to absolute time to solve the problem of frequency inconsistency. Unfortunately, because
points 3 and 1 were not perfectly aligned with the direction of the seismic waves, as
shown in Figure 10, there were variations of a few millimeters compared with the reference.
Additionally, the progressive collapse of the structural model can result in errors introduced
by the displacement gauges. But the trend of the proposed method is more similar to the
reference. Table 9 shows the quantitative results, including the RMSE value and the
correlation coefficient. The correlation coefficient is used to describe the similarity to the
reference. The RMSE value of the proposed method is lower than LSM. And the proposed
method is closer to the reference than that of the LSM method.
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Table 9. Evaluation of results.

Results LSM Proposed Method

RMSE (mm) 3.505 3.371
Correlation Coefficient 0.933 0.980

3.2.4. Discussion

In summary, our proposed method can satisfy the health monitoring of masonry build-
ings on the shaking table. It is important that the proposed method meets the requirements
of experimental accuracy and ensures the safety of personnel and facilities. Through the
comparison of reconstruction results for point 3 without anything occluded, our proposed
method was able to achieve precision at the sub-millimeter level. Through the comparison
of displacement on the same floor and in different layers, our proposed method is more
accurate and robust.
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4. Conclusions

The dynamic displacement response is used to analysis the seismic performance of
masonry buildings in progressively collapsing environments. For safety reasons, our exper-
iments need to be surrounded by protective string to ensure the safety of the experimental
environment. In this case, optically based non-contact measurements would be rendered
ineffective due to occlusion by the protective string. To solve the limitation of partial
occlusions in high-speed videogrammetric measurement, a new methodology is proposed
to obtain the displacement response.

In this study, the experiments were conducted on a shaking table at the Beijing Uni-
versity of Civil Engineering and Architecture. The experimental structural model was
observed by two high-speed cameras. To obtain an accurate displacement response, a novel
high-speed videogrammetry framework was proposed, which mainly includes ellipse
target detection, mutually guided tracking and 3D reconstruction. Our main contribution
is the proposal of this mutually guided tracking method to solve the problem of ellipse
target tracking under partial occlusion. The results presented in this paper clearly highlight
the following points:

(1) The strategy of loopback detection is used to eliminate cumulative errors by updating
the tracking model and replacing the initial results of tracking with those from the
loopback detection.

(2) The ellipse target is compensated for to solve the problem of deviations at the sub-
pixel level in local frames by conditional judgement about the center direction and
tiny offsets when the loopback detection is invalid. The tiny offset is obtained through
robust SIFT filtering.

Based on the two points mentioned above, this study can achieve the accurate sub-pixel
location of ellipse targets in image coordinates. This ensures single-point displacement mea-
surement accuracy at the sub-millimeter level and interlayer displacement measurement
accuracy at the millimeter level. It satisfies the health monitoring of masonry buildings
on the shaking table. In a progressive collapse experimental environment, the proposed
methodology prioritizes the safety of personnel and the shaking table. It reduces the poten-
tial economic losses that could be caused by using contact transducers, all while ensuring
high measurement accuracy. There are some limitations of the proposed method herein:
(a) the ROIs needed to be manually selected; (b) the result of detection is demanding for
imaging, especially in the occluded experiments; (c) the solving efficiency needs to be
improved. Future studies are still required to improve the robustness and intelligence of
the method.
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