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Abstract: Stress concentrations have become a common phenomenon in steel elements when arresting
a fracture by implementing the crack stop hole (CSH) technique. Embedding the CSH with Carbon
Fibre-Reinforced Polymer (CFRP) enhances the fatigue life by delaying fractures while achieving
stiffness recovery due to the superior mechanical characteristics of the CFRP material. Hence, the
low cyclic fatigue (LCF) behaviour of 90 strengthened and non-strengthened CSH specimens was
examined in this context. These specimens were subjected to a range of 0 to 10,000 fatigue load cycles
at a frequency of 5 Hz. At the end of fatigue exposure, the average tensile strength was measured in
each case. The application of a CFRP patch on the CSH effectively recovered the strength losses while
enhancing the strength in the range of 32% to 45% with respect to the non-strengthened specimens.
The developed numerical model based on the cyclic J-integral technique agrees with the test results.
This study introduced geometry-related design guidelines for this novel CSH hybrid technique.

Keywords: steel members; crack stop hole (CSH); CHS/CFRP hybrid composite; low cycle fatigue;
average tensile strength

1. Introduction

Aged structures are vulnerable to fatigue due to material degradation and heavy loads
resulting from increased present service demand. Fatigue usually causes fractures at the
microstructural level, which cannot be observed visually [1]. According to the previous
investigations, 90% of structural failures occur due to fatigue fractures [2]. However, fatigue
is not an engineering problem since it is related to the behaviour of any material due to
stress fluctuations. The cyclic effect causes a change in the mechanical properties of a
material, which results in failure that occurs below the yield point of the ductile material.
Interestingly, quick and sudden failure occurs without any prior warning within a very
short duration, which causes the loss of lives and properties due to fatigue. Therefore,
fatigue-related repairs to steel structures are very important to continue their services within
safety limits. Conventionally, steel plates are connected to cracked members using welding
or nuts and bolts as a repair technique. However, these methods show limitations, which
include heavy equipment, skilled labour, self-weight increase, change in the microstructure
of a material due to heat, discontinuity of the cross section, being difficult to use in an
emergency, and high downtime.

Fisher et al., in 1980, proposed a hole placement technique for crack control [3]. The
CSH technique has great potential to overcome the majority of the drawbacks mentioned
above. This technique could be considered a quick, simple, and cost-effective method. The
procedure of the CSH technique is to drill a hole at the end of the crack tip to convert the
crack into a notch. The result is a reduction in stress on the cracked structural elements.
This technique has been successfully utilized in the aerospace industry since 1950 [4], and,
at present, steel bridge repair applications have also introduced this method. However,
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the CSH starts re-cracking due to continuous service loads as well as the average strength
decline of the cross-section due to the material removal of the CSH. Therefore, there should
be a solution to improve the performance of this technique. The size of the CSH is a main
debate in regard to the CSH technique and needs an appropriate design guideline to decide
the size of the CSH.

A study carried out by Fish et al. recommended a range of the CSH diameter between
50 mm and 100 mm for effective performance [5], while Ishikawa et al. recommended
a range of diameter between 6 mm and 25 mm [6]. The minimum hole size should be
less than 25 mm for typical highway bridges [3]. Dextor and Oce have confirmed that a
minimum size of the CSH is 25 mm in diameter [7]. A formula was developed by Rolfe and
Barsom in 1977 for estimating the size of the CSH [8]. Fisher et al. introduced a co-relation
to estimate the size of the CSH [3]. This clearly indicates that the size of the CSH is a main
debate regarding this technique and that some appropriate design guidelines are needed to
decide the size of the CSH under fatigue. Brown et al. suggested that the CSH placed using
dull bits would result in fatigue, similar to that of punch holes [9]. CFRP materials have
been successfully applied to restore degraded steel structures since 1980 [10] because of
their resistance to corrosion, their light weight, and their remarkable fatigue durability [11].
Investigations conducted by Bocciarelli et al. have proven that CFRP exhibits better fatigue
performance than welded cover plates methods [10]. Yuana et al. and Liu et al. have
also confirmed the fatigue performance of a CFRP-based strengthening technique through
their research studies [12,13]. Tang and Kalavagunta et al. have affirmed CFRP’s ability
to enhance the service life and increase the fatigue capacity of structural members [14,15].
Research studies performed by Kalavagunta et al. have also investigated the steel section’s
ability to gain strength with CFRP [15]. According to Cadei et al., CFRP sheets and strips
could be effectively used in renewing the lost capacity of a material [16]. Gite et al. have
shown that CFRP is capable of reducing one third of the weight and strengthening gain by
five times with respect to steel [17]. Hence, strengthening the CSH using a CFRP material
has great potential to arrest the crack, and it may enhance the fatigue performance due to
delays in cracking by nature. This investigation focused on evaluating the fatigue behaviour
of a CSH/CFRP hybrid system while introducing a design formula for the CSH technique.

2. Methodology

A literature review was conducted to summarize existing investigations related to a
crack stop hole as well as CFRP-strengthened techniques and to identify gaps in research. A
fatigue loading apparatus was designed and fabricated based on electro-hydraulic controls
with a 10 kN load capacity. An experimental test program was performed with four test
series to investigate fatigue related measurements of the CSH. The FEM was developed
using finite element analysis software (ABAQUS 6.14), with a similar test setup with
laboratory tests. The model was used to compare laboratory test results for the purpose
of validation. Model results were utilized to conduct a parametric study to estimate the
unknown parameter effects on the performance of the CSH. Test results and FEM results
were presented with design guidelines and recommendations for the CSH technique.

3. Test Setup and Materials

A total of ninety specimens which were categorized into seven series were tested, and
the details are listed in Table 1.

The test samples were designed in accordance with ASTM D 790 [18] with the dimen-
sions of 40 mm (width) × 5 mm (thickness) × 280 mm (span) (Figure 1).
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Table 1. Summary of the test program.

Series Geometry Conditioning Type No of
Samples

S1 strengthened CSH with varying diameter Non conditioned 24

S2 strengthened CSH with varying diameter 10,000 cycles 36

S3 non-strengthened CSH with change in position 10,000 cycles 15

S4 strengthened CSH with change in position 10,000 cycles 15
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The surfaces to be strengthened were prepared using sand blasting, and the wet 
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kN amplitude and a frequency of 5 Hz within a predefined duration according to ASTM 
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ure 2a), the sample was removed from the fatigue testing machine and fixed to the uni-
versal tensile testing machine (UTM) with a 100 kN capacity to apply tensile load, as 
shown in Figure 2b. This procedure was repeated, and the average value of the tensile 
load was measured for each specimen. The strain variation at the CSH of the specimen 
during exposure to fatigue load was recorded using a data logger. 
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Figure 2. Test setup for (a) fatigue load and (b) tensile load. 

Figure 1. Prepared specimens of strengthened and non-strengthened CSH: (a) non-conditioned,
(b) non-conditioned, (c) conditioned, and (d) conditioned.

The surfaces to be strengthened were prepared using sand blasting, and the wet layup
method was followed in the strengthening process. The prepared samples were kept
curing for 7 days before conditioning (Figure 1). A fatigue load was applied with a 2 kN
amplitude and a frequency of 5 Hz within a predefined duration according to ASTM D-790
guidance [18]. After conditioning with a predetermined number of load cycles (Figure 2a),
the sample was removed from the fatigue testing machine and fixed to the universal tensile
testing machine (UTM) with a 100 kN capacity to apply tensile load, as shown in Figure 2b.
This procedure was repeated, and the average value of the tensile load was measured for
each specimen. The strain variation at the CSH of the specimen during exposure to fatigue
load was recorded using a data logger.
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The modulus of elasticity and tensile strength of steel and the CFRP material were
determined experimentally using a coupon test. The tensile strength and elastic modulus
of the steel were measured according to the ASTM D 3039 standards [19]. In fact, a tensile
strength of 583 MPa and an average elastic modulus of 200 GPa were reported. Tensile
strength and an average elastic modulus of CFRP material were reported at 175 MPa
and 1575 MPa, respectively. The manufacturers provided data compared with measured
material properties, in accordance with ASTM D 3039/3039 M, which are listed in Table 2.

Table 2. Measured and manufacturer-provided material properties [11,20].

Material Property Steel Epoxy Adhesive CFRP

Average tensile strength (MPa) 583 25 1575

Average elastic modulus (GPa) 200 0.579 175

Average Poisson’s ratio 0.3 0.3 0.3

4. Results
4.1. Effects of CSH Diameter

A total of sixty samples were tested. Twenty-four of them were not exposed to fatigue
(non-conditioned) and considered as control samples, and the remaining were conditioned
up to 10,000 load cycles with a 2 kN amplitude and 5 Hz frequency. In both strengthened
and non-strengthened samples, the ratio between the diameter of the CSH and the width of
the member (d/b) varied from 0.1 to 0.6 in a 0.1 step by positioning the CSH at the centre
of the midspan. A 200 mm long unidirectional normal modulus CFRP fabric was used for
strength. At the end of the fatigue exposure, the test specimen was fixed with a universal
tensile apparatus to be measured, the tensile load to be determined, and the average stress
to be compared, as shown in Figure 3.
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Figure 3. Strength losses due to fatigue and strength gains by CFRP.

On average, a 14% strength loss was noted in the specimen due to fatigue effects
even without the CSH. This is mainly due to the material degradation caused by repetitive
loading and unloading actions (fatigue). On average, 13% to 25% strength loss was noted
when the d/b ratio varied from 0.1 to 0.6 at the end of fatigue exposure in the specimens
with the CSH. In general, the CSH causes a reduction in stiffness due to the removal of
materials. On the other hand, changes in the microstructure of materials near the hole are
due to fatigue effects. The change in average tensile capacity of the material is governed
by plastic flow effects, imperfections in the crystal lattice of the material, forward and
backward motions of dislocations, and plastic deformation along the slip planes of metallic
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crystals. In 1954, Coffin and Manson discovered that independently plastic strain was
responsible for cyclic damage [21]. All these factors are critically affected by a significant
strength loss during fatigue exposure to the CSH. However, the average tensile strength
was enhanced by 24% in the CFRP-strengthened CSH system at the end of fatigue exposure.
This clearly indicates the ability of CFRP to recover the strength loss with improved fatigue
performance. In the suggested system in this study, on average, 32% to 45% strength gain
was noted when the d/b ratio varied from 0.1 to 0.6 at the end of the predetermined fatigue
exposure. This is mainly due to the composite action and ability of the CFRP laminate to
dissipate stress concentrations at the CSH. This reduction can be considered the stiffness
lost due to material removal for the CSH, while the strength losses are due to fatigue.
Therefore, it has the potential to enhance stiffness as well as restore the fatigue-bearing
capacity of the material at the same time. Therefore, the proposed CSH/CFRP hybrid
repair technique has the potential to enhance the stiffness of the member as well as the
fatigue-bearing capacity of the material. Failure modes observed during the tensile testing
of these series are shown in Figure 4. The variation in strain near the crack stop hole was
monitored during fatigue load application. Conventional strain gauges are attached to the
steel surface, 5 mm away from the periphery of the CSH. The strain near the CSH at the
end of each pre-determined load cycle is plotted in Figure 5.
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Figure 5. Strain variations during conditioning when d/b is (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, and
(f) 0.6.

According to Figure 5a,b, no significant deviation was noted in strengthened and
non-strengthened samples. The contribution of the CFRP material is negligible, and the
steel substrate can withstand the effects of fatigue. When the d/b ratio increases from 0.3 to
0.6, the strain variation on the steel substrate of samples with CFRP indicates a significant
strain reduction compared to the non-strengthened CSH, as shown in Figure 5c–f. This is
due to the effective load-sharing ability of the attached CFRP layer. The results in strain
control contribution, further delaying crack propagation in the CSH. Hence, measured
strain variation indicates the effectiveness of the proposed hybrid repair technique for steel
members exposed to fatigue over the traditional CSH technique.

4.2. Effects of the Offset Distance of CSH

A total of 36 steel specimens with a change in position of the CSH were conditioned
up to 10,000 load cycles with a 2 kN amplitude and 5 Hz frequency. Eighteen of them were
reinforced with a 200 mm long CFRP layer. The remaining samples were non-strengthened
and taken into consideration as controlled specimens. In these two test series, the distance
from the loading point to the CSH was considered the main variable, and a CSH of a 16 mm
diameter was placed at the pre-determined locations of the member. The distance to the
CSH from the midspan varies from 20 mm to 100 mm in 20 mm steps. At the end of fatigue
loading, the average tensile strength of the samples was determined using a universal
tensile testing apparatus, and the results are plotted in Figure 6.

The main purpose of this test series was to compare the retained tensile strength after
fatigue load exposure to quantify the effectiveness of CFRP on the distance to the CSH
from the mid-span. A trend of average retained tensile strength variation deviation with
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respect to the ratio between the diameter and offset distance of CSH was noted from both
strengthened and non-strengthened samples. When the offset distance increases the stress
concentrations near the CSH are reduced. The graphs also provide convincing evidence of
such behaviour. The CFRP layer helps to reduce the stress concentration while enhancing
the tensile strength of the specimen. As a result, the CSH/CFRP hybrid system showed a
significant strength gain compared to similar non-strengthened specimens, which restored
the strength loss due to the opening of the CSH. The fatigue-sensitive zone is near the
loading point, and this region can be considered a high-stress area of the specimen because
the flexural cyclic load helps to increase the stress intensity near the midpoint. This clearly
indicates the extension of the fatigue performance of steel members when applying the
suggested hybrid repair technique in this study, irrespective of the location of the CSH,
with guaranteed performance compared to the conventional CSH technique. Failure mode
was observed as the de-lamination of the CFRP layer.
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Figure 6. Comparison of average strength variation with CSH position.

Strain gauges were fixed near the specimens, as shown in Figure 7. The average
strain variation during fatigue was measured at the end of each pre-determined load cycle,
as shown in Figure 8, based on the distance to the CSH from the mid-point. When the
CSH is near the midspan, it is subjected to heavy stresses, which dissipate through the
CFRP sheet. As a result, there is a comparatively lower strain in the steel substrate of the
hybrid arrangement when compared with the conventional CSH arrangement. When the
position of the CSH moves from the centre to the support, the fatigue stress also reduces.
Hence, similar strain variations were observed in both strengthened and non-strengthened
samples. This clearly indicates that the proposed CSH/CFRP hybrid arrangement could
successfully accommodate the strain near the CSH.
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Figure 7. Strain gauges attached, (a) non-strengthened and (b) CFRP-strengthened specimen with
offset CSH.
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Figure 8. Strain variations with offset distance of CSH when x is (a) 20 mm, (b) 40 mm, (c) 60 mm,
(d) 80 mm, and (e) 100 mm.

5. Finite Element Modelling (FEM)

Elastic plastic fracture mechanics (EPFM) could be considered as an alternative fracture
mechanics model. This theory is used to analyse fractures caused by large deformations at
the crack initiation stage. When the large plastic zone is formed in front of the crack end, the
theory of EPFM can be applied, which explains the crack tip plasticity. In addition, elastic
plastic fracture mechanics implies time-independent materials, and the plasticity effect on
the crack tip is taken into account in this approach. A numerical model was developed
to simulate the performance of the CSH/CFRP hybrid technique using of commercially
available finite element software (ABAQUS 6.14). The geometrical configuration, boundary
conditions, material properties, and attributes were the same as in the test program. A
general contact standard option of the ABAQUS was utilized with mechanical friction to
simulate the interfaces between two supportive rollers and the bottom surface of the plate
and the loading nose on the mid-plane of the steel plate. Each specimen model was loaded
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with the LCF mode using a direct cyclic option and an input of 10,000 cycles. When the
size of the mesh is very small, it results in the generation of a singularity point. The stress
at the singularity points is theoretically considered to be infinity. Therefore, considering all
of the above factors, a FEM result of 2 mm mesh size was selected as an appropriate size in
this analysis, as shown in Figure 9.
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Figure 9. The assembly model of the specimen.

The magnitude of pressure applied on top of the loading nose was selected as
1.25 N/mm2 (2 kN), and the frequency of the loads was fixed at 5 Hz. When consid-
ering the boundary conditions, two supportive cylinders were fixed to avoid both rotation
and translation. The loading rate was kept constant at a fixed rate of 0.2 mm/min through-
out the analysis. The Hashin damage option was used to model the CFRP fabric. The
coefficient of the friction value was taken as 0.15 between each surface. Special options
were used to create the crack, while the extension direction was selected using the q vector
option. The model had the same configurations as the laboratory test setup. Each specimen
module was loaded with the LCF mode using a direct cyclic option. An 8 mm radius
loading nose was used to apply loads at the mid-plane of the specimen. The steel plate
with the CSH was modelled using elastic–plastic option with isotropic hardening condi-
tion. Three-dimensional eight-node solid brick elements (C3D8R) were used to model the
steel plate. All the material properties assigned to the model were the same as in the test
procedure explained in Table 2. Therefore, computing the time and improving the level of
accuracy with mesh size should be optimized in this situation. Mesh refinement is the most
vital method of judging the mesh size, and it can be classified as coarse mesh, medium
mesh, or fine mesh. Reducing the element size is the easiest mesh refinement strategy, with
element sizes reduced throughout the modelling domains. This approach is attractive due
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to its simplicity, but the drawback is that there is no preferential mesh refinement in regions
where a locally finer mesh may be needed. Therefore, the need to select a fairly good
mesh size for the proposed FEM with the required level of accuracy becomes important. In
industrial practice, a fine mesh is introduced only around sensitive regions of high stress
concentrations, and the remaining area, which has a lesser importance, is introduced to a
coarser mesh. The convergence test is another way to check whether the size of the mesh is
worth it or not for the FEM. In this method, half of the mesh size is selected and compared
with the previous analysis, and the program is re-run with the new analysis. If the results
are insignificant when compared to the previous mesh size, it is considered an appropriate
mesh size. This could be repeated until the level of acceptance. However, there are no
definitions regarding the mesh size when starting this convergence test, and it should be
repeated at least three times with different mesh sizes until there are insignificant variations.
High stress near the CSH area displays a higher level of convergence than other areas.
During analysis, attention should be on the stress singularity because it does not allow it to
converge. When the size of the mesh is very small, it results in the generation of a singular-
ity point. Stress at the singularity points is theoretically considered to be infinity. Therefore,
considering all of the above factors, an FEM result of 2 mm mesh size was selected as an
appropriate size in this analysis. It was confirmed by the mesh sensitivity analysis and
the results of the mesh sensitivity analysis. The composite lay-up option of the material
property model was utilized to embed the CFRP layer in this regard. The conventional
shell elements and material type were selected as the lamina type. The Hashin damage
option was used to model the CFRP fabric, and a tie constraint was used to represent the
bond between steel and the CFRP. The assembled mesh model was run for analysis, and
the results were collected from the ODB file in the visualization module at the end of the
analysis. FEM results were compared to validate the developed model. The contours of
stress variation with diameter for non-strengthened and CSH/CFRP hybrid systems are
shown in Figure 10a,b, respectively.
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Figure 10. Contours of stress variation with diameter-to-width ratio for (a) non-strengthened,
(b) CSH/CFRP hybrid: (i) 0, (ii) 0.1, (iii) 0.2, (iv) 0.3, (v) 0.4, (vi) 0.5, and (vii) 0.6.

The effect of the diameter-to-width ratio of the CSH was taken into consideration
as a primary variable in this analysis. The predicted results for non-strengthened and
CSH/CFRP hybrids (after fatigue exposure) were compared with relevant laboratory test
results, as shown in Figure 11. Contours of stress variation with offset distance for non-
strengthened and CSH/CFRP hybrid systems are shown in Figure 12a,b, respectively.
According to the graphs, the model results and experimental results were reasonable for
the selected range of the diameter-to-width ratio of the CSH. On the other hand, the strain
variation due to the diameter-to-width ratio of CFRP-strengthened CSH test results agreed
well with the FEM results, as shown in Figure 11.
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Figure 11. Comparison between experimental and FEM results.

The effect of the offset distance of the CSH was taken into consideration as a primary
variable, and it varied from 0 to 80 in 20 mm steps. The predicted results belonging to
non-strengthened and CFRP-strengthened groups (after fatigue exposure) were compared
with relevant experimental results, as shown in Figure 13.
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The model-predicted results of the conditioned CSH samples indicate, on average,
a 5% and 7% difference to tested results for non-strengthened and CFRP-strengthened
samples, respectively, in Figure 13. When the distance to the CSH from the mid-point
varies, the average deviations between the predicted and tested results of non-strengthened
and CFRP-strengthened samples are 7% and 8%, respectively. This clearly indicates the
accuracy of the developed models that could be used to further simulate the behaviour of
the suggested CSH/CFRP hybrid system.

5.1. Validation

The mechanical properties of the material play a vital role when considering fatigue.
Yield strength and tensile strength are the two main material properties considered in
the fatigue analysis of ductile material. These material properties represent resistivity to
failure due to deformation and fracture, respectively. Yield strength and tensile strength
represent different meanings related to fatigue. Yield strength represents maximum stress
just before permanent deformation, and tensile data represent maximum stress prior to
material fracture. When considering the ductile material yield value, it is prominent, and
the brittle material deals with tensile strength. As brittle material does not achieve the yield
load, when performing tensile loads, it suddenly recedes to fractures. Hence, this study
used a tensile test to determine the yield strength (fatigue stress) of the CSH at the end of
the condition to measure any retained yield strength.

This study retained an average yield stress of the material (ratio of yield load to
cross-section area), which was estimated at the end of the fatigue loads as retained yield
strength, which indicates the effects of fatigue on the CSH specimen. The developed FEM
also estimated yield strength at the end of fatigue, and it was measured using stress at the
edge of the CSH. This value is nearly three times the applied load on the specimen. This
approximation is an extension of the theory developed by Inglish in 1913. The author has
introduced a stress calculation technique closer to the hole. In addition, the stress–strain
curve under the visualization model in the field output data could also be utilized to
estimate the yield stress. The strain distribution near the CSH was measured and compared
with FEM results, as shown in Figures 11 and 13. According to the graphs, the model
results and experimental results were reasonable for the selected range of the CSH. The
strain variation in CFRP-strengthened CSH test results agreed well with the FEM results.

5.2. Parametric Study

A numerical model was utilized to investigate the parametric influences on the CSH.
In this study, member thickness, crack length, and offset distance were selected as criti-
cally influencing the geometrical parameters in the range considered. According to the
experimental program, the diameter of the CSH and the position of the CSH effects were
experimentally investigated, and test results have confirmed significant effects for those
parameters. The results from this study could be summarized as follows:

• This investigation reported the strength losses which were in the range of 13% to
25% compared to the non-conditioned CSH with the diameter ranging from 4 mm to
25 mm.

• This investigation reported the tensile strength enhancement with CFRP which is in
the range of 32% to 45% compared to the non-strengthened CSH with the diameter
range change from 4 mm to 25 mm.

• This study recorded a strength increase with respect to off-set distance, which was in
the range of 36% to 131% compared to the CSH at the midpoint.

• CFRP-strengthened CSH reported significant strength gain and it’s variation were
recorded as 19% to 42% with respect to offset distance.

• Failure mode was observed as de-lamination of the CFRP layer with the fatigue load
as well as the tensile load.
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• A sound numerical model was developed based on material properties capable of
simulating the fatigue behaviour of the CSH subjected to cyclic flexural loading.

• Design guidelines for the CSH technique summarized in Table 3.

Table 3. Fatigue-related design guidelines for CSH.

Category Parameter Range of Operation

Geometry

Diameter to width ratio (d/b) d
b ≤ 0.2

Thickness to diameter ratio (t/b) t
d ≤ 0.5

Diameter to crack length ratio (d/L) d
L ≥ 0.4

Diameter to offset distance ratio (d/x) d
x ≤ 0.2

6. Engineering Implications

According to results from the laboratory test, the FEM results used to implement
design guidelines for the CSH technique. This method could replace conventional fatigue
repair techniques and re-install the strength losses of aging structures. Ultimately, it
may contribute to delays in repairs or replacements as well as inspection intervals. In
addition, this may overcome drawbacks related to conventional repair methods. As a
result, it contributes to saving money with continuous service demands according to the
present demand.

7. Conclusions and Recommendations

The detailed experimental and numerical simulations conducted on the developed
novel hybrid technique to control cracks in steel elements in civil engineering infrastructures
yielded the following conclusions:

• Introduced design guidelines to decide the appropriate size of the CSH for crack
control on steel structures due to fatigue.

• The CSH effectively recovers the strength losses in the range of 32% to 45% with
respect to the non-strengthened condition.

• The proposed method exhibits a significant capacity enhancement for crack controls,
and it is strongly recommended to improve the service life of steel infrastructures
under fatigue load.

• This developed numerical model can be effectively utilized to estimate the effects of
unknown parameters of the CSH under a fatigue response.

8. Future Works

Fatigue is governed by the microstructure of a material due to external or internal
stress. Therefore, there should be a microscopic analysis regarding grain arrangement,
dislocation, and information regarding the missing atoms of the material with critical
parameters. The finite element model does not have the facility to model the effects of
environmental factors on bond performance. This could be considered a significant gap
in FEM techniques. Furthermore, evaluating the long-term bond performance-related
investigations of the CSH/CFRP hybrid system to confirm the durability of this technique
could also be carried out in the future.
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