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Abstract: Rural buildings have high optimization potential as a major source of carbon emissions.
However, the current research on carbon reduction in rural buildings is rough and lacks categorization
and geographic studies. Coastal villages are more economically developed than other types of villages
and have greater potential for energy saving. Therefore, this study takes the carbon emission data
of buildings and life in 409 villages in typical coastal provinces of China as the basis and proposes
optimization strategies for carbon reduction in coastal village buildings via cluster analysis and
correlation analysis. The results show that the carbon emission characteristics of coastal villages can
be categorized into three scenarios: for scenario 1, villages, their population, and village cultivated
area are the core influencing factors of carbon emission, while for scenarios 2 and 3, the most central
influencing factors are coal and electricity consumption. Therefore, different types of villages should
be guided differently when studying carbon sinks and carbon emission projections in coastal villages.
This study aims to establish a low-carbon performance quality assessment and optimization pathway
for coastal villages, and the analysis of carbon emission influencing factors and the assessment and
optimization provide theoretical support and quantitative methods for the optimization of carbon
reduction in villages.

Keywords: low-carbon planning; coastal villages; carbon emission components; k-means

1. Introduction

As the global climate crisis intensifies, carbon-reducing development in various in-
dustries is becoming the mainstream of academic research in various countries [1]. The
Sixth Assessment Report (AR6) of the United Nations Intergovernmental Panel on Climate
Change (IPCC), released on 27 February 2023, is the most up-to-date and comprehensive
analysis of global climate change, which builds on the Fifth Assessment Report (AR5),
comprehensively evaluates the current status and trends of changes in the global climate
system, and further clarifies the strong linkages between human activities and global
warming [2]. As the most basic form of settlement in human society, the countryside has
attracted a lot of attention; rural settlements carry a series of important functions, such
as production and life of rural residents, and are the concentrated manifestation of the
intensity of human activities in the process of human-land relations and social development
in the rural areas [3]. On 21 January 2023, the World Bank released data showing that
the global rural population reached 4526.1 million people in 2022, accounting for more
than half of the world’s total population and that the building sector in rural areas has
more potential for carbon reduction [4]. Therefore, the study of rural carbon emissions is
particularly important and necessary. China is a typical agricultural country, and according
to the data from the 2022 China Statistical Yearbook, the area of various types of land in
the countryside accounts for 94.7% of the country’s total area. The energy consumption of
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rural buildings accounts for 24.5% of the total energy consumption of buildings in China,
and the carbon emission scale accounts for about 35% of the total carbon emission scale
in China, so the countryside has more space and potential for carbon reduction than the
cities [5].

Production and life in rural areas are important components of carbon emission drivers,
and the buildings that carry these behaviors are even more important carbon emission
spaces. Accompanied by the gradual advance of global urbanization and the gradual
transfer of high-carbon functions from cities to lower-level villages on the basis of urban
building clusters and urban building clusters, the carbon emissions from villages have
gradually become an important part of carbon emissions from human activities in recent
years [6]. Relevant studies show that there are differences in energy consumption and
industrial layout in villages of different regions, which leads to the different composition
of carbon emissions, but according to the currently available papers, it can be found that
scholars have carried out some calculations, evaluations and predictions of single-factor
carbon sources and sinks in rural production activities, such as building operation [7],
agricultural production [8], animal husbandry [9], photovoltaic carbon sinks, and so on [10].
The results have proved that rural buildings are important carriers of carbon emissions in
production and life, and the energy use and production activities generated therein are
one of the main sources of global greenhouse gases [11,12]. Due to its characteristics, rural
development often lags behind urban development [13], and the same is true for energy
use. Compared with cities that have basically completed the electrical transformation,
rural buildings are more efficient than urban buildings. Most rural areas in developing
countries use a mix of energy sources, namely, electricity, natural gas, coal, and biomass
energy. The carbon emissions of coal and biomass energy are several times the carbon
emissions of electric energy and natural gas, but the energy efficiency generated is hardly
equal to that of electric energy and natural gas [14]. In the industrial field, there is no
agriculture and animal husbandry in cities and more service industries, which also proves
that there is a large space for optimizing the industrial proportion in rural areas [15]. To
emphasize the carbon emissions of the rural system, it is necessary to clarify its calculation
boundaries and influencing factors. Due to the difficulty of obtaining data in the field
and the impracticality of conducting a census, few researchers in the relevant fields have
studied the systematic carbon emissions in rural areas. The current research results mainly
focus on the following aspects: Firstly, carbon emissions are closely related to agricultural
production activities, such as agricultural waste treatment, and the impacts of carbon
emissions on the rural system [16], agricultural production inputs [17] and land use and
use conversion [18]. Secondly, they analyzed the carbon emissions of different types of
agricultural production activities, such as animal husbandry [19,20] and agriculture [21,22];
the literature demonstrates that both have a large share of carbon emissions and need to be
matched by a systematic optimization scheme. From the perspective of rural households, in
some rural areas, residents are resistant to the implementation of rural energy efficiency and
emission reduction policies due to a lack of basic knowledge about carbon emissions and
climate change [23]. This can lead to a lack of understanding of the environmental impact
of their energy use habits and, thus, a failure to realize the importance of reducing carbon
emissions [24]. For different geographical characteristics of the village carbon emissions,
differences in the current study are still relatively small; interdisciplinary analysis of the
problem can often be better to dig into the problem of the status quo, and rural low-carbon
planning from the perspective of geography can be analyzed from a new perspective to
obtain the differences between different geographic villages and explore the impact of the
relationship between them so that the optimization strategy can be more clearly sorted
out. From the relevant literature, it is known that the types of villages with different
geographical characteristics generally include four types, i.e., plain villages [25], mountain
villages [26], coastal villages [27], and plateau villages [28,29]. Among them, coastal
villages have advantages compared with other villages due to their geographical location,
convenient transportation, foreign trade activities, good economic foundation, relatively
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complete infrastructure, and prerequisites for low-carbon optimization, so they have better
carbon emission reduction potential [30].

By summarizing and combing the existing academic achievements, it is not difficult
to see that there are few relevant studies on rural carbon emission differences from the
perspective of geographical differences, and there is a great space for relevant studies on
rural carbon emission structure, influence mechanism, carbon reduction potential, and
other fields in coastal areas. Therefore, in this paper, using field research and remote
sensing data summarization of coastal villages, the core influencing elements of carbon
emission in three types of villages were extracted, and the influencing mechanism between
each element and carbon emission was established. We finally summarize the research
system for the analysis of the composition of the carbon emission and the potential of
carbon reduction in geographically different villages and put forward the characteristics of
the carbon emission of coastal villages in line with the study area and the carbon emission
patterns of different scenarios. It also proposes the carbon emission characteristics of coastal
villages and the carbon emission composition patterns of different scenarios for different
types of villages in the study area.

This paper provides practical ideas for the follow-up research on rural carbon emis-
sions in coastal areas and proves with examples that coastal villages have good low-carbon
research prospects and high demand. Secondly, the research ideas of other rural areas
with different geographical conditions can be extracted from the study of coastal rural
areas, which greatly expands the research space of rural carbon emission structure. Finally,
by proposing low-carbon optimization suggestions for different types of coastal villages,
this paper can provide a better theoretical basis for policy formulation for professional
researchers related to urban and rural planning.

2. Materials and Methods
2.1. Outline

The purpose of this paper is to analyze the carbon emission characteristic composition
and carbon reduction potential of coastal villages; the acquisition of carbon emission
composition needs to be carried out via the design of the questionnaire based on the current
existing relevant research foundation; this paper determines the questionnaire content
via the expert interviews and the literature combing [31–33] and determines the overall
research steps using the result orientation based on the carbon emission characterization
method of coastal villages; the research is specifically carried out in four steps, as shown
in Figure 1.

The first step is to obtain real sample data on coastal villages; this stage is to obtain the
basic data of rural carbon emission activities in villages via field research, questionnaires,
remote sensing maps, and other ways, including the data on residents’ life, agricultural
production, carbon sinks, and so on. Please refer to the table of contents for the part of
the questionnaire survey. The main interviewees should be residents living in the target
villages all year round, and the methods are mainly online filling and interviewing so as to
prevent the tension of the interviewees from affecting the survey results.

Secondly, the different carbon emissions of all sample villages are measured and
processed via the carbon emission calculation model to obtain the carbon emission data
of different segments. Before the data processing, the rationality of the data is basically
judged, and the data are screened in advance.

In the third step, the carbon emission results of different villages are classified by clus-
tering algorithm, the samples affecting the quality of the data are analyzed and processed,
and the type of carbon emission and the number of samples of the villages to be finally
analyzed are determined according to the elbow analysis and so on.

Finally, correlation analysis and multiple regression analysis are carried out according
to the results of the calculation and analysis in the third step and the basic situation of the
villages to analyze the characteristics of the samples, the structure of carbon emissions,
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and the carbon reduction potential of different villages and ultimately form the carbon
reduction paths of different types of villages.
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Figure 1. Overall research steps.

2.2. Questionnaire Preparation and Data Collection
2.2.1. Sample Selection

Hebei, one of the most rural provinces in China, can provide a large number of case
samples for the research and practice of low-carbon rural communities because of its large
rural area, long coastline, more coastal villages than in other regions, and more developed
economy within the coverage of China’s national urban agglomeration, the Beijing–Tianjin–
Hebei urban agglomeration. The coastal villages are characterized by diversified industrial
patterns and wide distributional differences, which make the villages in the coastal areas
of Hebei highly representative. Hebei Province is located in the north of the Yellow River
and is an important winter heating area. Therefore, the types of rural energy use in this
area are more comprehensive than those in the south of China. In addition, since the
population density of China is higher in the south than in the north, the rural areas in
the north tend to have more farmland and animal husbandry area, so there is more room
for research adjustment, so it has higher research value. In order to better describe the
location relationship of the research samples in a wide-area environment and to show
the relationship between the selection of rural sites and the coastline, it can be seen from
Figure 2a,b that the locations of the research samples selected in this paper are the coastal
parts of eastern Hebei Province, mainly the selection of villages along the coastline, and
their main ground locations are relatively flat and open. It is far away from the hilly areas
and plateau areas in the north.

Firstly, the villages in Hebei Province were screened and Z-standardized to reduce
the influence of extreme values. The processing method is commonly used in the analysis
of data with different data types and large differences, and the data can be simplified for
subsequent analysis [33]. The items, such as the number of populations, cultivated land
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area, number of livestock, and energy consumption in the raw data, were calculated by the
following Formula (1):

Zi,j =
xi,j − xj

σj
(1)

In the formula, Zi,j is the Z-score for the jth parameter of the i-th data set; xi,j is the jth
parameter value for the i-th data set, and xj,σj are the overall mean and standard deviation
of the jth parameter, respectively.

Buildings 2023, 13, x FOR PEER REVIEW 5 of 26 
 

2.2. Questionnaire Preparation and Data Collection 

2.2.1. Sample Selection 

Hebei, one of the most rural provinces in China, can provide a large number of case 

samples for the research and practice of low-carbon rural communities because of its large 

rural area, long coastline, more coastal villages than in other regions, and more developed 

economy within the coverage of China’s national urban agglomeration, the Beijing–Tian-

jin–Hebei urban agglomeration. The coastal villages are characterized by diversified in-

dustrial patterns and wide distributional differences, which make the villages in the 

coastal areas of Hebei highly representative. Hebei Province is located in the north of the 

Yellow River and is an important winter heating area. Therefore, the types of rural energy 

use in this area are more comprehensive than those in the south of China. In addition, 

since the population density of China is higher in the south than in the north, the rural 

areas in the north tend to have more farmland and animal husbandry area, so there is 

more room for research adjustment, so it has higher research value. In order to better de-

scribe the location relationship of the research samples in a wide-area environment and 

to show the relationship between the selection of rural sites and the coastline, it can be 

seen from Figure 2a,b that the locations of the research samples selected in this paper are 

the coastal parts of eastern Hebei Province, mainly the selection of villages along the coast-

line, and their main ground locations are relatively flat and open. It is far away from the 

hilly areas and plateau areas in the north. 

  
(a) (b) 

Figure 2. Study sample location map. (a) Sample city location. (b) Location map of selected points. 

Firstly, the villages in Hebei Province were screened and Z-standardized to reduce 

the influence of extreme values. The processing method is commonly used in the analysis 

of data with different data types and large differences, and the data can be simplified for 

subsequent analysis [33]. The items, such as the number of populations, cultivated land 

area, number of livestock, and energy consumption in the raw data, were calculated by 

the following Formula (1): 

Zi,j =
xi,j − xj̅

σj
 (1) 

In the formula, Zi,j is the Z-score for the jth parameter of the i-th data set; xi,j is the 

jth parameter value for the i-th data set，and xj̅, σj are the overall mean and standard 

deviation of the jth parameter, respectively. 

Figure 2. Study sample location map. (a) Sample city location. (b) Location map of selected points.

The Z-score characterizes the degree of deviation of the data from the overall mean, and
the larger the absolute value of the Z-score, the farther the data is from the whole [34,35]. In
this paper, the data are screened according to the absolute value of Z-score less than 3. A
small number of villages that are too large or too small to be representative in terms of area or
population are excluded, and about 409 village samples are selected. The screened 409 samples
have a regular spatial distribution in Hebei Province, involving many areas of the three coastal
cities in Hebei Province, which basically represent the overall situation of coastal villages in
Hebei Province. Secondly, because the qualification of this paper has been determined as
coastal, the production and lifestyle of China’s coastal villages have certain similarities, and
the selected villages can also represent other coastal villages in China to a certain extent. The
distribution of the number of households in the 409 samples is shown in Figure 3, with 75% of
the villages in the range from 84 to 420 households, of which the largest number of villages is
around 200 households, and 90% of the cultivated area is less than 2000 acres.
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2.2.2. Data Collection

The data sources involved in this study are mainly statistical data and field research.
Statistical data mainly come from the China Statistical Yearbook, China Rural Statisti-
cal Yearbook, Hebei Provincial Environmental Quality Bulletin, and online statistical
databases [36–38]. Empirical data include both relevant departmental visits and field
research. The departmental visits mainly collect data from the administrative depart-
ments where villages are located, and we designed a questionnaire about their energy
consumption based on daily life, energy consumption practices, and the existing literature
on villages in coastal areas of China [39]. Based on the results of the preliminary survey
and interviews, the questionnaire was improved to obtain the final scale, which can be
divided into three parts: behavioral and cognitive survey; spatial pattern survey; and
energy consumption survey. (1) Behavioral and cognitive survey via the questionnaire and
interview, the villagers’ daily production, life content to record, according to the combing
of the related literature; human behavior habits often have a greater impact on building
energy consumption and carbon emissions [40]; so, using the acquisition of the behavior
habits of rural residents, we can better determine the characteristics of the energy use of the
entire countryside as well as a more accurate rural carbon emissions data [41]; (2) Spatial
pattern survey, mainly to clarify the unit boundaries of rural carbon emissions, related
research shows that in some countryside areas, which are closer to the city compared
to the countryside far away from the city, the energy structure has a greater difference;
via the determination of the travel characteristics of the rural population and the public
transportation configuration it can be easy to access the spatial pattern of the countryside
to analyze the impact of spatial pattern on the rural carbon emissions; (3) Energy use and
consumption survey: the use of questionnaires and administrative visits in the form of a
combination of forms, access to the corresponding energy consumption data help access the
whole countryside energy use, including life and production behavior, via the villagers and
the whole countryside; at the same time, access to the data can play a mutual corroboration
to improve the authenticity of the data for the subsequent data screening to provide a
basis for comparison. The energy consumption data emission factor data refer to the IPCC
Guidelines for National Greenhouse Gas Inventories [42] and China Energy Statistical
Yearbook [43], etc., and the electric power part is based on the Baseline Emission Factor of
China Regional Power Grid [44], which finally obtains the data of carbon emission activities
of 409 villages.

2.3. Data Acquisition Method

The sources of rural GHG emissions can be roughly divided into two categories: one
is the GHG emissions from agricultural production activities, for coastal villages are mainly
planting and animal husbandry due to geographic location and the surrounding market en-
vironment and other factors. In the case of this paper, coastal aquaculture is mainly for the
industrial clusters, which basically does not exist in the case of individual aquaculture, not
the villagers’ family production, so this paper does not discuss aquaculture; The other cate-
gory is the greenhouse gas emissions generated in the course of residents’ living behaviors,
including energy, transportation, and waste disposal, and the greenhouse gases involved
are mainly carbon dioxide, methane, and nitrous oxide, whose corresponding 100-year
GWP values are 1, 27, and 273, respectively [42]. Broadly speaking, animal husbandry
belongs to one of the agricultural types; for convenience of expression, agriculture in this
paper only refers to the planting industry, while animal husbandry is listed separately. As
for the calculation method, there are two main methods for carbon emission calculation,
i.e., the emission factor method and the mass balance method, of which the mass balance
method is more complicated and not applicable to the use of this paper, so this paper adopts
the carbon emission factor method, which is relatively common and highly recognized, for
the calculation, in which the data of the carbon emission factor can be obtained from the
relevant policy documents in China.
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2.3.1. Calculation of Carbon Emissions from Residential Living

Carbon emissions from residential living mainly include the following three parts:
carbon emissions from building operations; carbon emissions from transportation; and
carbon emissions from domestic waste and sewage discharges. With regard to building
operation energy consumption, this includes daily use energy consumption and heating
and cooling energy consumption, which varies from region to region in terms of energy
consumption and demand. According to the actual situation, household energy use is
generally electricity, natural gas, gas, biomass, etc. The specific types can be obtained by
checking the IPCC Guidelines for National Greenhouse Gas Inventories. For transportation,
carbon emission needs to be adjusted according to the type of car and oil usage, and for
those who use public transportation, it should also be treated according to the public
transportation carbon emission factor. The average household vehicle ownership can be
calculated via on-site research or based on the number of durable goods held by rural
residents in the statistical yearbook of each province as a reference.

2.3.2. Calculation of Carbon Emissions from Residential Production

For carbon emissions from residential production, this paper focuses on production
behaviors that take place in rural areas, mainly including agricultural production and
animal breeding behaviors. For agricultural production, the main sources of carbon emis-
sions include the following: (1) carbon emissions caused by agricultural material inputs,
including fertilizers, pesticides, agricultural films, agricultural diesel, irrigation, plowing,
and other agricultural material inputs generated by carbon emissions; (2) Carbon emissions
from the growth and development of rice; (3) Carbon emissions from enteric fermenta-
tion and manure management in ruminant farming. By adding data on factors related to
plant carbon sinks as appropriate, the formula for calculating carbon emissions from the
agricultural sector can be summarized as follows:

CA = EAgr + EAqu − Et (2)

In the formula, EAgr is total crop GHG emissions (tCO2-eq/a); EAqu is total GHG
emissions for breeding (tCO2e/a); Et is carbon reduction for plant carbon sinks (tCO2-eq).
The values of the relevant parameters are shown in the Table A1 of Appendix B [45].

For the carbon emission calculation of the livestock farming component, carbon
emission accounting is mainly carried out by counting the equivalent amount of carbon
dioxide of methane and nitrous oxide gases produced by livestock in the rearing process.
The specific formulas are as follows, and the specific correlation coefficients are shown in
Table A2 of Appendix B [13].

ECH4,AH = ∑
(
Ti × EFCH4,i × βi

)
(3)

EN2O,AH = ∑
(
Ti × EFN2O,i × βi

)
(4)

Based on the above calculations of the three areas of village carbon emissions, the
formula for calculating overall village carbon emissions can be summarized as follows:

CN = C + CA + Ew − CRen − ∆CACTUAL,t (5)

In the formula, CN is total rural carbon emissions (tCO2-eq/a); C is total carbon emis-
sions from the living sector (tCO2-eq/a); CA is total carbon emissions from agriculture(tCO2-
eq/AP); Ew is total carbon emissions from transportation (tCO2-eq); CRen is renewable
energy system carbon sink (tCO2e); ∆CACTUAL,t is the total reduction in village carbon sink
in year t (tCO2-eq/a).
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2.4. Data Analysis

Due to the geographical conditions, population size, and living habits of each village,
agricultural production, animal breeding, waste and sewage generation, and energy con-
sumption are different, showing different greenhouse gas emission characteristics. With
the help of SPSS (version 20) and Python platform, the equivalent carbon dioxide emissions
of each pathway in the research villages are used as parameters for clustering analysis, and
the clustering mean can reflect the emission characteristics of different types of villages.
The k-mean clustering algorithm is a kind of division algorithm with a known number of
clustering categories. It is very typical of distance-based clustering algorithms, which use
distance as an evaluation index of similarity [46]. The prerequisite for this algorithm to
achieve effective clustering is to determine the accurate clustering center, which is generally
determined by randomly defining k-data points as the initial clustering center for clustering
and then calculating the center value of the k-class clusters as the new clustering center to
recluster, and repeating the process until the clustering criterion function converges [47,48].
In general, when the minimization squared error E of the clusters after clustering is smaller,
it means that the data samples within each type of clusters are closer to the cluster mean
vector, and the degree of similarity of the samples within the clusters is higher [49].

Single-factor linear regression analysis [31] can be used to screen whether there is
a significantly close correlation between each impact factor in the three categories and
the total village discounted carbon emissions. The resulting p-value < 0.05 indicates
that the influence factor has a significant correlation with the total discounted carbon
emissions of villages under this category; otherwise, it does not constitute a significant
correlation. The test results obtained via linear regression analysis will be used as the
basis for multiple regression analysis of this variable. In this paper, the total village
population (IV01), area of cultivated land (IV02), number of pig breeds (IV03), number of
cattle breeds (IV04), number of sheep breeds (IV05), domestic waste (IV06), average annual
electricity consumption (IV07), average annual gas consumption (IV08), average annual
coal consumption (IV09), and average annual biomass (IV10) in three different clusters
are used, as well as 10 parameters as influence factors and the total discounted carbon
emissions (DV01) of the village as assessment indicators using SPSS for linear regression
analysis to analyze the influence of the residential environment of the village on the village
carbon emissions.

Multiple regression analysis is a method of statistical analysis in which one of the
variables in a correlation is set as the dependent variable, and one or more of the other
variables are considered independent variables, establishing a mathematical model quan-
titative relationship between multiple independent variables and dependent variables.
Multiple regression analysis is a method of statistical analysis in which one of the variables
in a correlation is set as the dependent variable, and one or more of the other variables are
considered independent variables, establishing a mathematical model quantitative rela-
tionship between multiple independent variables and dependent variables. The statistical
analysis method of mathematical modeling is a quantitative relationship equation [50].
In this paper, the influence of village basic information parameters on carbon emissions
is quantified by fitting the quantitative relationship equation between multiple village
basic information parameters (independent variables) and village total converted carbon
emissions (dependent variable), and the general multiple regression analysis results are
expressed as follows:

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn + ε (6)

In the formula, Y is the dependent variable; b0 is the unstandardized coefficients for
constants; b1, b2· · · bn is the unstandardized coefficient of the independent variable; X1,
X2· · · Xn is the 1, 2· · · nth independent variable; ε is the error value.

In the process of multiple regression analysis, there are several indicators to focus on.
The first is the unstandardized coefficient value, which will be used directly in constructing
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the regression equation. The second is the standardized coefficient Beta value because
there may be differences in the nature, unit scale, order of magnitude, and other attributes
between the independent variables entered in this study; the standardized coefficient Beta
value can eliminate the differences in the attributes of multiple independent variables and
intuitively compare the degree of influence of each independent variable on the dependent
variable, and the order of the size of this item is the order of the degree of influence
of multiple independent variables on the dependent variables. Finally, we need to pay
attention to the test indicators of the regression model, which is used to determine whether
the output of the regression analysis results is reasonable. The test of multiple regression
analysis is mainly judged from four perspectives: t-test; goodness-of-fit test; covariance
test; and residual test. In this paper, the parameters with a strong correlation with village
carbon emissions are screened out by correlation analysis as independent variables, and
the total converted carbon emissions of the villages are used as dependent variables for
regression analysis. The calculation method adopts the step-by-step method, which can
exclude the independent variables that do not satisfy the t-test one by one by setting the
screening range of the significance p-value to ensure that the output parameters of the
villages are all the parameters that satisfy the t-test.

3. Results
3.1. Carbon Emission Calculation Results

The distribution of equivalent carbon dioxide (CO2e) emissions from agricultural
production, waste and sewage treatment, residential life, and transportation is shown in
Figure 4. It can be seen that the sample of agricultural carbon emissions is mainly concen-
trated between 0 and 100, which is lower compared with residential life and transportation
but higher than the carbon emissions generated by domestic waste and sewage. Residen-
tial living carbon emissions are more concentrated; annual carbon emissions are mainly
300 tons of CO2e, but there are also quantities higher than 300 tons of CO2e. This shows
that the coastal areas of the countryside have better economic development, and the energy
structure is relatively advanced. For waste and sewage, due to the current centralized
treatment mode being quite mature, the treatment method is basically fixed for landfill
and incineration, so the carbon emissions of domestic waste and sewage are mainly from
the degradation of carbon emissions within the calculation boundary of the countryside,
and the amount of carbon emissions in the samples is also relatively centralized, which is
related to the economic conditions. If the economic conditions are better, domestic waste
and sewage will be higher as well. This is related to their economic conditions, as better
economic conditions tend to produce higher amounts of domestic waste and sewage [51,52].
From the histogram of emissions, transportation GHG emissions show a significant normal
distribution. The GHG emissions from waste disposal are at a low value. Agriculture and
residential GHG emissions also show significant differences.

3.2. K-Mean Cluster Analysis

Since the number of clusters could not be determined in advance, the “elbow rule” was
used to determine the optimal number of clusters by comparing the sample error squared
and SSE under different numbers of clusters [40]. The inflection points where the SSE
decreases significantly are selected as the optimal number of classifications. In this study,
the change in the error sum of squares with the number of clusters is shown in Figure 5a,
which shows that when k = 3, the error sum of squares decreases at a significant “inflection
point”, so this paper divides the sample data into three categories. According to the elbow
rule, the research village data are divided into three major categories after dimensionality
reduction clustering, and their data distribution is shown in Figure 5b, using k-means
clustering to cluster the three major parts of the data distribution in three-dimensional
space to present the characteristics of aggregation, indicating that according to the elbow
rule clustering data classification effect is good, and it has a clear degree of differentiation
and statistical classification significance.
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The number of samples in each clustering center and each type is shown in Table 1.
In terms of emissions by pathway in the clustering centers, building energy consumption
emissions > transportation emissions > agricultural emissions > waste sewage treatment emis-
sions. Building energy consumption and waste sewage emissions are highest in type 1 and
lowest in type 2, while agricultural and transportation emissions are highest in type 3 and
lowest in type 2.

From the basic case information of the villages in the clustering center, type 2 is the
general pattern of coastal villages, which belongs to the lower level in terms of population
and cultivated land, and type 3 of carbon emission is mainly the high-intensity pattern
of coastal villages, which is in the higher level of coastal villages in terms of population,
cultivated land, animal husbandry, and all kinds of living and production modes, etc. Type 1
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is relatively similar to type 2 in terms of basic information about the villages and production
and life, but it belongs to the more extreme level; in terms of energy consumption, it is
higher than the other two types, which is an extreme level. The distribution of the mean
values of basic rural information by type is shown in Figure 6. It is clear that type 2 is
at a lower level in all aspects, while type 1 is closer to type 2 in terms of population and
number of farms but significantly higher than the other two types in all aspects of energy
consumption, except for arable land, which is lower than the average of type 2.
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Figure 6. Distribution of basic rural conditions by type. (a) Distribution of population by type.
(b) Distribution of cultivated land area by type. (c) Distribution of pig breeds by type. (d) Distribution
of cattle breeds by type. (e) Distribution of sheep breeds by type. (f) Distribution of domestic waste
by type. (g) Distribution of average annual electricity by type. (h) Distribution of average annual gas
by type. (i) Distribution of average annual coal by type. (j) Distribution of average annual biomass
by type.

Table 1. Cluster center calculation results (Unit: tCO2eq/year).

Type Sample Size Agriculture Waste and Sewage Constructions Transportation Total Emissions

1 30 228.94 100.7 2386.7 1290.4 4006.74
2 290 156.65 28.01 310.82 562.94 1058.42
3 89 415.54 74.95 695.15 1451.03 2636.67

In the greenhouse gas calculation method proposed earlier, except for the influence of
the number of animal breeds on the amount of nitrogen input to farmland, the influencing
factors of each emission pathway do not intersect, and the structure of greenhouse gases in
the same emission pathway is basically the same. On average, the main GHG emitted from
agricultural production is carbon dioxide, accounting for 99.74%, which comes from the
use of fertilizers, pesticides, agricultural films, and other types of agricultural materials,
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followed by nitrous oxide emissions caused by nitrogen input from chemical fertilizers,
manure, straw, and other nitrogen; due to the small area of rice cultivation in Hebei, the
smallest proportion of GHGs in the agricultural sector is methane, and it mainly comes from
agricultural waste-water. Waste and sewage treatment greenhouse gases are dominated
by methane, accounting for 91.88% of the total, originating from landfills and domestic
sewage, followed by carbon dioxide and nitrous oxide, originating from waste incineration
and domestic sewage, respectively. Energy consumption emitted 99.88% carbon dioxide.
The exact percentage is shown in Figure 7.
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Figure 7. Share of greenhouse gases by emission pathway.

3.2.1. Type 1 Rural Emission Characteristics

Type I rural accounts for only 8.21% of the total but has the highest overall level of rural
population, arable land, and energy consumption of the three types, as well as the highest level
of agriculture, energy consumption, and total equivalent carbon emissions, which represent
the extremes of the research villages. In terms of the sources of greenhouse gas emissions
from various categories, carbon dioxide mainly comes from building energy consumption,
accounting for 60.22%, followed by agricultural production, accounting for 34.15%, and waste
and sewage, accounting for a lower percentage. Methane mainly comes from building energy
consumption, accounting for 62.59%, followed by waste and sewage treatment, accounting
for 29.84%; emissions from transportation and agricultural production are low. Nitrous oxide
emissions are mainly from agricultural production with 58.91%, followed by transportation
and energy consumption and less than 1% are from waste sewage. The main source of total
equivalent CO2 emissions considering GWP is energy consumption at 59.57%, followed by
transportation at 32.21%, agriculture at 5.71%, and waste sewage emissions with the lowest
share. The specific shares are shown in Figure 8.
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3.2.2. Type 2 Rural Emission Characteristics

The proportion of rural areas in Type 2 is 70.90%, which is at a lower level in terms
of population, arable land, energy, and equivalent carbon dioxide emissions by pathway,
and represents the average level of greenhouse gas emissions in the research area. From
the point of view of the proportion of emissions of various types of greenhouse gases
by different pathways, the proportion of emissions of various types of greenhouse gases
by pathways in Type 2 differs from that of Type 1 in a more obvious way. The share
of carbon dioxide emissions from transportation reaches 56.80%; the share of building
energy consumption decreases to 29.81%, and the share of agriculture and waste disposal
is basically the same as Type 1. Methane emissions are dominated by building energy
consumption and waste disposal, accounting for 40.75% and 39.80%, respectively, followed
by transportation and agriculture. Nitrous oxide emissions are mainly from agriculture,
with a share of 76.66%, followed by transportation and energy consumption; waste-water
treatment has the lowest share. The main source of total equivalent carbon dioxide (TEC)
emissions was transportation at 53.18%, followed by building energy consumption at
29.37%, animal husbandry at 14.80%, and waste-water treatment at 2.65%. The detailed
percentages are shown in Figure 9.

Buildings 2023, 13, x FOR PEER REVIEW 15 of 26 
 

different pathways, the proportion of emissions of various types of greenhouse gases by 

pathways in Type 2 differs from that of Type 1 in a more obvious way. The share of carbon 

dioxide emissions from transportation reaches 56.80%; the share of building energy con-

sumption decreases to 29.81%, and the share of agriculture and waste disposal is basically 

the same as Type 1. Methane emissions are dominated by building energy consumption 

and waste disposal, accounting for 40.75% and 39.80%, respectively, followed by trans-

portation and agriculture. Nitrous oxide emissions are mainly from agriculture, with a 

share of 76.66%, followed by transportation and energy consumption; waste-water treat-

ment has the lowest share. The main source of total equivalent carbon dioxide (TEC) emis-

sions was transportation at 53.18%, followed by building energy consumption at 29.37%, 

animal husbandry at 14.80%, and waste-water treatment at 2.65%. The detailed percent-

ages are shown in Figure 9. 

    
(a) (b) (c) (d) 

Figure 9. Type 2 GHG emission sources. (a) Percentage of CO2 emissions by component. (b) Per-

centage of CH4 emissions by component. (c) Percentage of N2O emissions by component. (d) Per-

centage of CO2-equivalent emissions by component. 

3.2.3. Type 3 Rural Emission Characteristics 

Type 3 rural emission characteristic accounts for only 21.7% of the total in terms of 

population, arable cultivation, livestock feeding, and transportation, and the overall level 

of agricultural emissions is the highest of the three types; agriculture and energy con-

sumption are also at a high level, representing the medium–high level of the research vil-

lage. Type 3 rural energy consumption exceeds the other types, and the share of agricul-

tural production emissions in carbon dioxide emissions is 59.38%, while waste and sewage 

emissions are less than 1%. The share of waste sewage methane emissions reaches 45.5%, 

exceeding 34.42% of building energy consumption, while transportation and agricultural 

emissions are tied at 9.65% and 10.93%, respectively. For nitrous oxide emissions, agricul-

ture has the highest share of 82.51%, followed by transportation and energy consumption, 

and less than 1% for waste sewage treatment. Of the total equivalent of carbon dioxide 

emissions, transportation emissions accounted for 55.04%, followed by building energy 

consumption, agriculture, and waste sewage with 26.36%, 15.76%, and 2.84%, respec-

tively. Details of the shares are shown in Figure 10. 

    
(a) (b) (c) (d) 

Figure 10. Type 3 GHG emission sources. (a) Percentage of CO2 emissions by component. (b) Per-

centage of CH4 emissions by component. (c) Percentage of N2O emissions by component. (d) Per-

centage of CO2-equivalent emissions by component. 

Figure 9. Type 2 GHG emission sources. (a) Percentage of CO2 emissions by component. (b) Percent-
age of CH4 emissions by component. (c) Percentage of N2O emissions by component. (d) Percentage
of CO2-equivalent emissions by component.

3.2.3. Type 3 Rural Emission Characteristics

Type 3 rural emission characteristic accounts for only 21.7% of the total in terms of
population, arable cultivation, livestock feeding, and transportation, and the overall level of
agricultural emissions is the highest of the three types; agriculture and energy consumption
are also at a high level, representing the medium–high level of the research village. Type 3
rural energy consumption exceeds the other types, and the share of agricultural production
emissions in carbon dioxide emissions is 59.38%, while waste and sewage emissions are
less than 1%. The share of waste sewage methane emissions reaches 45.5%, exceeding
34.42% of building energy consumption, while transportation and agricultural emissions
are tied at 9.65% and 10.93%, respectively. For nitrous oxide emissions, agriculture has
the highest share of 82.51%, followed by transportation and energy consumption, and less
than 1% for waste sewage treatment. Of the total equivalent of carbon dioxide emissions,
transportation emissions accounted for 55.04%, followed by building energy consumption,
agriculture, and waste sewage with 26.36%, 15.76%, and 2.84%, respectively. Details of the
shares are shown in Figure 10.
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3.3. Results of Linear Regression Analysis and Multiple Regression Analysis for Different Types

For the three village cases mentioned in the previous section, this paper analyzes the
linear correlation between the influence shadow of carbon emission and the total carbon
emission of the village and screens out the influence parameters with a significant cor-
relation. In different types, the significant correlation factors and the number of factors
that affect the total carbon emission of villages are different. The test results of the core
factors that have a significant correlation (p < 0.05) with the total amount of converted
carbon emissions in the three villages are as follows: The core factors of type 1 were village
population (IV01) (p = 0.039 < 0.05), village cultivated land area (IV02) (p = 0.017 < 0.05),
annual average utilization of coal consumption (IV09) (p = 0.043 < 0.05), and annual
biomass utilization (IV10) (p = 0.027 < 0.05); The second core factors were village popula-
tion (IV01) (p = 0.041 < 0.05), cultivated land area (IV02) (p = 0.012 < 0.05), cattle breeding
(IV04) (p = 0.013 < 0.05), sheep breeding (IV05) (p = 0.026 < 0.05), domestic waste (IV06)
(p = 0.013 < 0.05), average annual electricity consumption (IV07) (p = 0.032 < 0.05), average
annual coal consumption (IV09) (p = 0.033 < 0.05), and average annual biomass consump-
tion (IV10) (p = 0.006 < 0.05); Population (IV01) (p = 0.008 < 0.05), cultivated land area (IV02)
(p = 0.014 < 0.05), domestic waste (IV06) (p = 0.009 < 0.05), average annual gas consumption
(IV08) (p = 0.018 < 0.05), average annual coal consumption (IV09) (p = 0.022 < 0.05), and an-
nual biomass use (IV10) (p = 0.026 < 0.05) were significantly correlated with total converted
carbon emissions of type 3. In the three types of villages studied, there is a significant
correlation between total carbon emissions, village population, and cultivated land area,
indicating that the carbon emissions of most of the villages studied are closely related to
the village population and cultivated land area.

Linear regression analysis can screen and explain the influence path between village
basic information parameters and building energy consumption, but it is difficult to explain
the influence relationship with village carbon emissions under the joint effect of multiple
basic information parameters, so in order to further quantify the degree of joint influence
of basic information on total carbon emissions in the above types of villages, this paper
utilizes multivariate regression analysis to explore the influence of the law under the joint
influence of each basic information parameter. Based on the results of regression analysis
(Table 2), it can be seen that the three types of regression models of type 1, type 2, and type 3
have a goodness-of-fit Ra2 of 0.740, 0.883, and 0.722, respectively, and the goodness-of-fit
is greater than 0.5. The degree of goodness-of-fit is better than 0.5, which is statistically
significant. The carbon emissions (DV01t1) of type 1 villages are mainly affected by the
population (IV01), the area of cultivated land (IV02), the average annual use of coal (IV09),
and the average annual use of biomass (IV10), and the regression equation is

DV01t1 = 1.22 × IV01 + 0.254 × IV02 + 1.473 × IV09 + 1.203 × IV10 + 1020.446 (7)
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Table 2. Results of multiple regression analysis.

Variables Independent
Variables

Unstandardized Coefficient Standardized
Coefficient Significance VIF Ra2

B Standard Error Beta

DV01t1

Constant 1020.446 361.089 0.009

0.740

IV01 1.22 0.222 0.653 0 1.577

IV10 1.203 0.273 0.499 0 1.425

IV09 1.473 0.447 0.367 0.003 1.384

IV02 0.254 0.1 0.278 0.017 1.322

DV01t2

Constant 212.314 21.126 0

0.883

IV01 0.66 0.039 0.396 0 1.355

IV02 0.175 0.012 0.336 0 1.331

IV04 0.109 0.051 0.045 0.032 1.091

IV05 0.036 0.01 0.078 0 1.065

IV06 0.526 0.063 0.173 0 1.05

IV07 0.001 0 0.128 0 1.058

IV09 3.203 0.157 0.439 0 1.142

IV10 1.614 0.113 0.302 0 1.107

DV01t3

Constant 1180.104 116.809 0

0.722

IV02 0.147 0.024 0.394 0 1.229

IV09 2.987 0.33 0.572 0 1.182

IV06 0.592 0.111 0.317 0 1.032

IV10 1.797 0.316 0.341 0 1.066

IV01 0.29 0.058 0.309 0 1.127

IV08 0.002 0 0.291 0 1.247

Total type 1 equivalent carbon emissions = 1.22 × population + 0.254 × cultivated land
area + 1.473 × average annual use of coal + 1.203 × average annual use of biomass 1020.446.
From the standardized coefficient Beta value of each influence parameter can be quantified
to derive the degree of influence of the respective variable on the dependent variable,
the degree of influence of the village information parameter on the carbon emissions of
type 1 from largest to smallest for the degree of influence of the state parameter on the
energy consumption of the building in the following order of magnitude: the population of
the village (0.653) > average annual use of biomass (0.499) > average annual use of coal
(0.367) > village cultivated area (0.278). The carbon emissions of type 2 villages (DV01t2) are
mainly affected by the number of population (IV01), cultivated area (IV02), cattle breeding
(IV04), sheep breeding (IV05), domestic waste (IV06), average annual use of electricity
(IV07), average annual use of coal (IV09), and average annual use of biomass (IV10) in a
joint manner, and the regression equation is:

DV01t2 = 0.66 × IV01 + 0.175 × IV02 + 0.109 × IV04 + 0.036 × IV05 + 0.526 × IV06 + 0.001 × IV07 + 3.203 × IV09
+ 1.641 × IV10 + 212.314

(8)

Total type 2 equivalent carbon emissions = 0.66 × population + 0.175 × cultivated
land area + 0.109 × cattle breeding + 0.036 × sheep breeding + 0.526 × domestic waste
+ 0.001 × average annual use of electricity + 3.203 × average annual use of coal + 1.641
× average annual use of biomass + 212.314. From the standardized coefficients of the
respective impact parameters, Beta value can be quantified to derive the degree of influence
of the respective variables on the dependent variable; the degree of influence of the village
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information parameters on type 2 carbon emissions from largest to smallest is the degree of
influence of the state parameter on building energy consumption from largest to smallest
and it is average annual use of coal (0.439) > village population (0.396) > cultivated land
area (0.336) > average annual use of biomass (0.302) > domestic waste (0.173) > average
annual electricity use (0.128) > number of sheep breeds (0.078) > number of cattle breeds
(0.045). And the carbon emission (DV01t3) of type 3 villages was mainly affected by the
population (IV01), cultivated area (IV02), domestic waste (IV06), average annual use of
gas (IV08), average annual use of coal (IV09), and average annual use of biomass (IV10),
together with the following regression equation:

DV01t3 = 0.29 × IV01 + 0.147 × IV02 + 0.592 × IV06 + 0.002 × IV08 + 2.987 × IV09 + 1.797 × IV10 + 1180.104 (9)

Total type 3 equivalent carbon emissions = 0.29 × population + 0.147 × cultivated land
area + 0.592 × domestic waste + 0.002 × average annual gas use + 2.987 × average annual coal
use +1.797 × average annual use of biomass +1180.104. The standardized coefficient of the
Beta value of each influence parameter can be quantified to derive the degree of influence of
the respective variables on the dependent variable and the influence of the village information
parameter on the type 3 carbon emissions. The degree of influence of the state parameters
on building energy consumption from largest to smallest is the average annual coal use
(0.572) > cultivated area (0.394) > average annual use of biomass (0.341) > domestic waste
(0.317) > village population (0.309) > average annual gas use (0.291).

In order to test the reliability of the results of the above regression equation, it is
necessary to carry out the standardized residuals test, which can be judged from the
standardized residuals histogram and standardized residuals normal probability plot. From
the histogram of standardized residuals (Figure 11), it can be seen that the model residuals
of the total carbon emissions of the three types of villages and the basic information
parameters of the villages are more in line with the normal distribution of the relationship;
from the normal probability of the standardized residuals (Figure 12), it can also be seen
that the samples are distributed on both sides of the diagonal of the first quadrant, which
meets the validation criteria of normal distribution, indicating that the regression equation
meets the requirements of residual tests; in summary, it can be decided that the regression
model has a certain degree of reliability. The test analysis can determine whether the results
of the regression model have a certain degree of reliability.
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4. Discussion

Rural carbon emissions as a hot spot direction in recent years have gradually been paid
in-depth attention by various disciplines, although despite significant results [31,53,54],
there is a lack of multidisciplinary cooperation. The development of low-carbon villages
has positive significance for protecting the environment, promoting sustainable devel-
opment, and narrowing the gap between urban and rural areas [55]. As mentioned in
the introduction, the analysis of rural energy issues in China has been booming [56], and
rural energy consumption, as a major source of China’s greenhouse gas emissions, is an
important aspect of reducing China’s carbon emissions [57]. A low-carbon countryside
is an important means to develop a low-carbon economy and realize energy saving and
emission reduction [58]. Economic growth and population contribute positively to carbon
emissions in the low-carbon countryside, generating more carbon dioxide emissions, while
technological advances, changes in the agricultural structure, and changes in the national
industrial structure have negative impacts, which have a positive effect on emission re-
duction and carbon emission reduction [9], and a positive effect on emission reduction
and carbon reduction has been obtained in the previous study of the impact of economic
structure on carbon emissions [59]. Similar conclusions were obtained, while adjusting the
agricultural structure and agricultural technology has reduced greenhouse gas emissions
compared to traditional farms that grow maize without the use of mineral fertilizers [60,61].

However, there are obvious differences in the development of low-carbon villages
under different geographic characteristics, which also provides a broad research prospect
for related studies [62]. As climate change has attracted more and more attention, countries
around the globe are taking action to mitigate the impacts of climate change [63]. Among
them, carbon peaking and carbon neutrality have become one of the main ways to achieve
global emission reduction targets. Traditional carbon emission assessment methods only
consider the energy consumption of enterprises and households while ignoring the im-
pact of geographical features on carbon emissions. Therefore, when assessing the carbon
emissions of low-carbon villages, it is necessary to consider the impact of geographical
characteristics and adapt to the stage of development in order to better serve the rural
grassroots in realizing energy transition and upgrading. The differences in carbon emis-
sions of villages with different geographic characteristics are not the same [64]; relevant
studies analyze the influencing factors of energy and emissions of rural households via
case studies [65,66], but the current study still lacks the study of the basic characteristics
of villages.

In this study, we have conducted an in-depth exploration of the potential and methods
of energy saving and emission reduction in coastal villages. Using a large amount of
research data, the carbon emissions of 409 villages along the coast of China were accounted
for. Via cluster analysis, the villages’ carbon emissions were classified into three types.
Via linear regression analysis and multiple regression analyses, the influence of the basic
information of the villages on the carbon emissions of the villages is analyzed and discussed,
and different energy-saving and emission-reduction strategies are proposed for different
types of villages, which provide references for the coastal village planning and rural
governance for the purpose of energy saving. The three different types of villages divided
by the basic characteristics of villages in this study have different carbon emission pathways,
but in the overall situation, the main carbon emission comes from the construction of
buildings, and there are some types in which agriculture accounts for a large proportion,
which is consistent with previous studies [67], but the importance of agriculture and animal
husbandry is different from the results of the latest study [68]; the reason for that lies in the
difference in geographical location and the cash crop structure of the villages. From the
numerical point of view, there is an obvious gap between the main part of the buildings and
traffic stations of the village sample of type 1 and the emission of agricultural and domestic
sewage. Although the proportion of construction and transportation for the village sample
of type 2 is also high, the proportion of agriculture is relatively balanced. From the
characteristics of high carbon emissions from construction operations and transportation, it
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can be seen that the third-type villages belong to the villages with good economic levels.
Compared with the characteristics of the first type of village with high carbon emissions
in the building part and the third type of village with high carbon emissions in the traffic
part, the type 2 villages are more moderate in carbon emissions, which is related to the
fact that the rural residents are generally more economical and simpler, and the economic
situation is generally worse than that of the first and third type of villages. The second
type of villages exactly reflects the characteristics of most Chinese villages, which meet
the basic living conditions but have not yet reached the level of well-being, which proves
that the villages in the second category are more common than those in the first and third
categories. This is also the reason why the number of samples in the second category is the
largest. It can also be seen from the clustering characteristics that economic conditions tend
to push rural carbon emissions to a higher level, which is caused by rural residents’ pursuit
of a better quality of life [69].

Since the scope of this study mainly focuses on the coastal villages in China and the
research data are concentrated on 409 villages along the coast of China, the conclusions
of this study lack some applicability to coastal villages in other regions outside China.
However, in the coastal villages in northern China, the carbon emission structure of the
villages is similar due to similar living habits and industrial policies. Therefore, the
conclusions of this study mainly guide the energy-saving and emission-reduction strategies
of coastal villages in Hebei Province and also have certain application scenarios for coastal
villages in northern China. In addition to this, when analyzing the carbon emission
problems of coastal villages in this study, in order to make the carbon emission data of the
villages more representative and not be interfered with by a small number of extremes,
a small number of villages have been screened for special carbon emissions, such as
special industries or special machinery, according to the relevant literature. However, since
this study is mainly based on most ordinary coastal villages to explore carbon emission
saving and emission reduction methods, extreme villages are not the object of study, which
may cause some errors. At the same time, due to the characteristics of China’s national
conditions, the current research results may not be applicable to coastal villages in other
countries. The results may change and become more accurate.

5. Conclusions

Based on the Provincial Greenhouse Gas Emission Inventory Guidelines and IPCC
Carbon Emission Inventory Methodology, this paper has systematically sorted out the
calculation methods of greenhouse gas emissions in rural areas and accounted for the
greenhouse gas emissions of 409 effective research villages. Based on the calculation results,
the k-mean clustering algorithm was used to analyze the structure of GHG emissions in the
research villages, and the following conclusions were drawn:

Rural greenhouse gas emission pathways can be divided into four parts: agricultural
production; waste and sewage treatment; energy consumption; and transportation con-
sumption. Based on the equivalent carbon dioxide emissions of each pathway, the rural
villages investigated in this paper can be divided into three types, and there are differences
in the industrial structure, living habits, energy consumption, and other aspects of different
types of villages, so the structure of greenhouse gas emissions is different. There are differ-
ences in population size and industrial structure among the three types of rural areas, and
the total equivalent carbon emissions are dominated by energy consumption. Therefore,
rural areas, especially villages with high energy consumption levels, should pay attention
to energy conservation and energy structure adjustment and promote the improvement in
energy efficiency and the use of renewable energy. In agriculture, scientific management
should be promoted to avoid excessive use of chemical fertilizers and pesticides and to
reduce carbon dioxide and nitrous oxide emissions. Transportation emissions should be
optimized by optimizing the road structure and enhancing the popularity of green new
energy transportation. For waste and sewage, the level of collection and treatment should
be improved, the proportion of solid waste incineration should be increased, and high
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methane and nitrous oxide emissions should be reduced. In addition to low-carbon opti-
mization in rural areas, the economic benefits of rural development should also be ensured.
For low-income villages with high carbon emissions, more energy-efficient ways should be
considered to improve energy efficiency, and the planting area of high-yield crops should
be increased by reducing the proportion of low-energy efficiency facilities to achieve carbon
reduction and income increase. For low-income villages with moderate carbon emissions,
economic benefits should be given priority, and the growth rate of carbon emissions should
be slowed down in the process of economic development. There should be a way to balance
development worth exploring.

Rural greenhouse gas emissions are closely related to the basic parameters of villages,
and the carbon emissions of the three types of village cases derived from the cluster analysis
are affected by different basic parameters, and the degree of influence varies. The linear
regression analysis between the basic parameters of each type of village and the total
converted carbon emissions of the village and the results of multiple regression analysis
found that the carbon emissions of the village and the population and cultivated area of the
village have a significant impact path, and for type 1 villages, the village population and
the cultivated area of the villages are the core influencing factors, and the core influencing
factor for types 2 and 3 is the average annual coal consumption. So, when studying its
carbon sinks and carbon emissions prediction, we should focus on taking into account its
carbon emission and population forecasting. Therefore, when studying their carbon sinks
and carbon emission forecasts, we should focus on population and cultivated land area,
appropriately return farmland to forests, build green areas to enhance carbon sequestration
and carbon reduction capacity, reduce the use of coal in construction and domestic waste,
and apply new types of energy and waste control to reduce carbon emissions.

Based on a large amount of village basic information and village greenhouse gas
emissions research data, this paper uses k-mean clustering to classify villages into three
categories, analyzes their respective greenhouse gas emissions and emission pathways, and
uses linear regression analysis and multiple regression analysis to analyze the influence
factors and influence degree of village carbon emissions under the simultaneous influence
of village basic parameters and multi-parameters. This paper establishes a low-carbon
performance quality assessment and optimization path for coastal villages, and the analysis
of carbon emission influencing factors and assessment and optimization provide theoretical
support and quantitative methods for village carbon reduction and optimization and
provide design guidelines for rural carbon reduction and sequestration and green low-
carbon rural construction.

In the process of this study, the quantitative impact relationship between the existing
impact factors and rural carbon emissions can be determined according to the currently
identified impact factors. The follow-up research plan is proposed here to further investi-
gate and explore the deeper influencing factors of carbon emissions, and to promote the
research and analysis of other regional rural areas. Finally, a set of low-carbon emission
reduction strategies and optimization paths are proposed that can be applied to all types
of villages.
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Appendix A

Appendix A.1. Village Energy Structure and Industry Survey Questionnaire

Appendix A.1.1. Basic Information of the Village

1. Home City

A. Plain cities: Hengshui; Langfang; Xingtai;
B. Mountain cities: Shijiazhuang; Baoding; Handan;
C. Coastal cities: Tangshan; Qinhuangdao; Cangzhou;
D. Plateau cities: Chengde; and Zhangjiakou.

2. Village Name:
3. Number of households:
4. Resident population:
5. Main industries in the village:

A. Farming;
B. Forestry;
C. Fishery;
D. Livestock;
E. Tourism services;
F. Industrial.

6. Annual output value of the village:

Appendix A.1.2. Village Land Type and Area Statistics

7. Village Land Type and Area

Area (mu)

Village area
Residential land area

Infrastructure area
Landscaped green area (artificial landscape)

Natural forest area
Area of cultivated land for agriculture

(agricultural crop cultivation)
Water Area (Aquaculture)

Pasture area
Forestry, orchard planting area (nursery, etc.)

Appendix A.1.3. Investigation of Domestic Waste

8. Frequency of garbage removal in the village:

A. Daily;
B. Three days;
C. One week;
D. Two weeks;
E. One month.

9. Total amount of domestic waste (ton)

Appendix A.1.4. Investigation of the Agricultural Situation in the Village Area

10. Name of the main crops planted in the village
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Planting Area (mu)

Corn
Wheat

Hulled oats
Rice

Cotton
Vegetables and fruits

Other

11. Whether to use combine harvesters for harvesting [multiple choice] *

A. Yes;
B. No.

12. Number of public transport trunk lines in villages

Appendix A.1.5. Investigation of Energy Use in Villages

13. Village Annual Energy Consumption Summary

2018 2019 2020 2021 2022

Power (kwh)
Natural gas (cubic meters, including

pipeline gas, etc.)
Coal (ton, clean coal, general bulk
coal, honeycomb briquette, etc.)

Biomass (tons, firewood, biomass
pellets, etc.)

14. Village New Energy Usage and 2022 Output

Annual Production (kwh/Year; GJ/Year)

Photoelectric resources
Wind power resources

Geothermal energy resources
Hydropower resources

15. Supplement: Total Number of Livestock in Village Animal Husbandry

Quantity (Head)

Pig
Cattle
Sheep

Appendix B

Table A1. Parameters for calculating CO2 emissions from cultivation [42].

Carbon Source
Average

Consumption per
Mu kg/Acre

CO2 Emission Factor
CO2 Emissions

per Acre
kg/Acre

Nitrogen Fertilizer 8.29 6.38 52.90
Phosphorus fertilizer 1.84 0.61 1.11

Potash Fertilizer 1.73 0.44 0.76
Compound Fertilizer 11.69 2.48 28.93

Pesticide 0.45 18.09 8.10
Agricultural Film 0.08 18.99 1.60
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Table A1. Cont.

Carbon Source
Average

Consumption per
Mu kg/Acre

CO2 Emission Factor
CO2 Emissions

per Acre
kg/Acre

Agricultural Diesel 11.58 2.17 25.17
Irrigation - - 4.85

Total - - 123.42
Note: This paper is based on the characteristics of China’s agriculture; using the collation of the agricultural film
is not a one-time consumption; public documents show that in 2020, the recovery rate of agricultural film in Hebei
Province has reached 90.17%, so the consumption of agricultural film in the table is 9.83% of the amount used in
the year.

Table A2. Parameters for calculating GHG emissions from livestock (Adapted with permission from
Ref. [45]. 2021, Masson-Delmotte, et al.).

Animal Species
Intestinal CH4

Emission Factor
kg/p/Year

Manure CH4
Emission Factor

kg/p/Year

Manure N2O
Emission Factor

kg/p/Year

pig 1.00 3.120 0.227
Cattle 78.60 5.140 1.320
sheep 8.55 0.160 0.093

Note: The cattle-related emission factors in the table take the average values for dairy and non-dairy cattle, and
the sheep-related emission factors take the average values for goats and sheep.
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