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Abstract: Double-layer steel truss continuous girders are prone to significant temperature stress,
deviation, torsion, and warping, thus causing adverse temperature structural responses, and also
affecting the safety and durability of bridge structures. This paper presents an investigation on
time-dependent characteristics in the temperature field and temperature response of double-layer
steel truss continuous bridge girders, fully considering the shielding effect subjected to different
solar radiation angles during the high-temperature season. The time-dependent thermal boundary
conditions and support conditions provided for the steel truss bridge structure were determined.
Subsequently, a thermal analysis model for the entire structure of double-layer steel truss continuous
girders was established to attain the temperature distribution law. The research results show that
significant differences occur in the position and temperature difference of temperature gradients
exhibited in the vertical, horizontal, and longitudinal directions in the double-layer steel truss bridge
structure. The temperature distribution pattern within the chord section is mainly influenced by
the environmental temperature and solar radiation intensity, along with the heat exchange between
different panels. Thereafter, a validated temperature gradient formula for the component section has
been proposed. The time-dependent laws in structural displacement, stress, and rotation angle under
daily temperature cycling conditions have been revealed, thereby providing a theoretical basis for the
life cycle construction and safety maintenance of double-layer steel truss structure bridges.

Keywords: double-layer steel truss; shielding effect; temperature field; structural response

1. Introduction

The steel truss girder possesses the advantages of being lightweight, having a long
span, and exhibiting high stiffness [1], which makes it widely used in double-deck bridges [2].
Due to factors such as solar radiation, atmospheric temperature [3], wind speed, and
other environmental conditions, significant variations occur in its temperature field [4,5],
resulting in noticeable temperature discrepancies among components. Moreover, this
nonlinear temperature distribution significantly impacts the internal forces and alignment
of the bridge structure, leading to a reduction in loading capacity and even structural
failure [6]. Therefore, the timely evaluation and control of the influence of temperature
loads on the safety and durability of bridge structures at each stage throughout their life
cycle are crucial for ensuring safe construction and maintenance.

Currently, the existing research both domestically and internationally primarily fo-
cuses on the temperature field and temperature effects of concrete bridges and steel–
concrete composite bridges [7–12]. However, there is insufficient investigation into the
temperature field of double-layer steel trusses. Through extensive theoretical analysis,
numerical simulation, and monitoring techniques, the typical temperature distribution
of the box girder and steel–concrete composite girder is presented. It is acknowledged
that solar radiation, external environmental conditions, and bridge type directly influence
bridge temperatures [13]. To more accurately and efficiently depict the actual temperature
field during the construction and operation stages of bridge structures, we employ shadow
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recognition algorithms and bounding box algorithms, as well as hidden algorithms in
temperature field simulations [14]. Various studies have proposed calculation methods con-
sidering transverse and vertical temperature loads, along with thermal stresses. Research
indicates that, due to shielding effects, the temperature fields differ significantly between
double-layer steel truss continuous girders compared to those of steel–concrete composite
girders or concrete box girders [15,16].

Bridge design codes from various nations offer models of temperature distribution
curves for the bridge’s thermal field, particularly focusing on common sections like box
girders and steel–concrete composite girders [17–20]. Regional factors, pavement types,
concrete thicknesses, and approaches employed in calculating negative gradient loads
contribute to significant variations. Nevertheless, current codes do not include explicit
guidelines concerning the temperature gradient of steel trusses. Conventional studies
assume effective heat transfer properties in steel trusses while assuming a uniform tem-
perature difference among their members. By conducting numerical calculations and
monitoring real bridges, Zhu et al. discovered significant discrepancies between the calcu-
lated deformation of the main girder and the overall temperature fluctuation model when
subjected to non-uniform temperature fields caused by solar radiation on railway steel truss
suspension bridges [21]. Based on data obtained from a health-monitoring system installed
on the main channel bridge of the Husutong Yangtze River Railway Bridge, Zhang et al.
investigated the temporal and spatial distribution of the temperature field in a double-layer
steel truss structure [22]. The results demonstrate that the temperature distribution in
the steel truss girder exhibits temporal lag and spatial variations in both the horizontal
and vertical directions. Through the extensive monitoring of railway steel truss bridges,
Wang et al. [23–25] observed significant positive and negative temperature discrepancies
among truss members, attributing the lateral temperature gradient between trusses as
the primary factor influencing their lateral rotation angle. Consequently, it is imperative
to investigate the time-varying characteristics of temperature fields and their effects on
double-layer steel truss continuous girders under shielding conditions.

The focus of this paper is to investigate the temperature field and response of a double-
layer steel truss continuous girder under shielding effects using an advanced numerical
simulation model. Firstly, a validated thermal analysis model is developed based on
structural shielding analysis. Furthermore, the distribution of the temperature field in
both the entire structure and important components is examined. Finally, the displacement
distribution, temperature response characteristics of structural stress, and rotation angle at
the end of the double deck caused by solar radiation are explored. The research findings
provide a theoretical basis for the life cycle construction and safety maintenance of double-
layer steel truss structures.

2. Thermal Analysis Model

The natural environment exhibits temporal variations in temperature, solar radiation,
air humidity, and cloud thickness. These variations, combined with the shielding effect
among bridge structures, lead to disparities in the received solar radiation intensity for
each component. Consequently, the temperature field of bridges demonstrates intricate
spatio-temporal characteristics. The numerical simulation method is employed to simulate
the heat exchange process between the bridge and its surrounding environment, in order to
obtain the time-varying temperature field of the double-layer steel truss continuous girder.

2.1. Environmental Temperature Model

Based on meteorological data [26] and on-site measurements in a specific region, the
highest and lowest temperatures recorded during periods of extremely high-temperature
weather [27] in the hot season are documented. The average maximum temperature is
determined to be 41 ◦C, while the average minimum temperature is calculated as 27 ◦C.
The ambient temperature at any given time is represented as:
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T =
1
2
(Tmax + Tmin) + 6.5 sin

( π

12
(t− 9)

)
(1)

where t (h) represents any time point within a day, and Tmax and Tmin (◦C), respectively,
denote the average maximum and minimum temperatures of extreme high-temperature
weather during the high-temperature season.

2.2. Solar Radiation

The solar radiation received by bridges is primarily categorized into direct solar
radiation, diffuse solar radiation, and ground reflection. Considering the research focus
on a double-deck steel truss continuous girder, it becomes imperative to account for the
impact of inter-component shielding on solar radiant energy.

2.2.1. Direct Solar Radiation

Direct solar radiation refers to the energy an object receives directly through the
atmosphere from the sun. It is expressed as follows:

Im = I00.9tukam cos α (2)

where I0 (W/m2) is the solar constant, I0 = 1367 [1 + 0.33 cos(360 N⁄365)], N is the daily
serial number, ka (Pa) is the atmospheric relative pressure, m (m) is the optical path length,
m = 1⁄sinβ, and α (◦) is the solar radiation angle.

2.2.2. Diffuse Solar Radiation

Diffuse solar radiation comprises atmospheric scattering and ground reflection. The
intensity of atmospheric scattering radiation is correlated with the angle θ formed between
the receiving surface for radiation and the horizontal plane [28].

When θ = 0, the expression for atmospheric scattered radiation (W/m2) is:

Id0 = 0.5I0 sin β
1− Pm

1− 1.4 log P
(3)

where Pm and P, respectively, represent the atmospheric transparency coefficient and the
composite atmospheric transparency coefficient, and their expressions are Pm = 0.9tukam,
P = 0.9tuka , and β (◦) is solar altitude angle.

When θ 6= 0, the atmospheric scattering expression is:

Idθ = 0.5Idθ(1 + cos θ) (4)

where θ (◦) is the angle between the surface receiving scattered radiation and the horizontal
plane.

The ground reflectivity will also affect the radiant intensity of solar scattering. The
expression for the ground reflection intensity of any surface is:

Ir = 0.5re(Im + Id0)(1− cos β) (5)

where re is the reflectivity of surface objects.

2.2.3. Double-Deck Shading Model

In the sunshine model, due to the continuous variation in the sun’s height, the lower
deck becomes covered by the upper deck, resulting in a lateral temperature difference.
Hence, it is imperative to establish a shading model for the upper deck, as depicted in
Figure 1.
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The shielding length L of the lower deck varies over time, expressed as:

L = d
tan β

cos(γs − γ) sin δ + cos δ tan β
(6)

where d (m) is the height between the double-deck bridges, γ and γs (◦) is the plane azimuth
and solar azimuth angle, respectively, and δ (◦) is the inclination angle of the plane.

2.2.4. Total Solar Radiant

The total radiant (W/m2) of the sunshine area is different from that of the shaded area,
so the total expression is:

I =
{

Im + Id0/Idθ + Ir Sunshine area
Id0/Idθ + Ir Shaded areas

(7)

The radiation parameters in this article are based on data obtained during the summer
solstice of 2022, specifically on the 188th day of the year and with a solar inclination angle
of 23.44◦. The bridge is situated at a latitude of 33◦42′ N and a longitude of 107◦36′ E,
spanning from south to north directionally. The solar radiation incident upon different
components of the bridge varies due to their respective angles ranging between 0◦ and 90◦,
resulting in diverse levels of radiant intensity. Figure 2 illustrates the temporal variation
curve depicting both horizontal and vertical radiant intensities.
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Figure 2. Time-varying curve of solar radiation.

2.3. Simulation of External Thermal Boundary of Double-Layer Steel Truss

The heat exchange mode of the outer boundary of the model is divided into three types:
solar radiation, convective heat transfer, and radiation heat exchange. The heat exchange
model is shown in Figure 3.
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2.3.1. Virtual Thermal Boundary

A virtual boundary is constructed outside the component. The virtual boundary
temperature is caused by solar radiation, which is called the comprehensive temperature of
the air medium and can be expressed as:

T = Ta +
αs I
h

(8)

where Ta (◦C) is the atmospheric temperature, αs is the radiation absorption coefficient of
the material, and h is the comprehensive heat transfer coefficient.

2.3.2. Convective Heat Transfer

Convective heat transfer refers to the heat exchange between a fluid flowing through
a solid surface and the solid. The heat flux density caused by convective heat transfer is
calculated using Newton’s heat transfer formula:

q = hc(Ta − Tc) (9)

where q (W/m2) is the heat flux density of convective heat transfer, hc (W/m2/K) is the
convective heat transfer coefficient, Ta (◦C) is the atmospheric temperature, and Tc (◦C) is
the surface temperature of the structure.

The convective heat transfer coefficient varies at different positions of the bridge
structure. The values of the convective heat transfer coefficients are shown in Table 1 [29].

Table 1. Value of convective heat transfer coefficient.

Position hc (W/m2/K)

Girder surface 15
Bridge side surface 15

Bridge bottom surface 10

2.3.3. Radiation Heat Transfer

The heat flux density expression for radiation heat transfer (W/m2/K) is:

hr = εC0

[
(Ta + 273)2 + (Tc + 273)2

]
(Ta + Tc + 546) (10)

where C0 is the Stefan–Boltzman constant, C0 = 5.67 × 10−8 W/m2/K, and ε is the long-
wave radiation emissivity of the component surface.
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2.4. Simulation of Internal Thermal Boundary of Double-Layer Steel Truss Box Members

The outer surface of the box-shaped component undergoes heat exchange, while con-
vective and radiative heat transfer also occur between the inner surface of the component
and the internal air. In this study, we express the internal thermal boundary effect by
utilizing the comprehensive atmospheric temperature within the system. The calculation
expression is as follows:

TAi = TA + 1.5 (11)

where TAi (◦C) is the comprehensive atmospheric temperature inside the box type com-
ponent, and TA (◦C) is the daily average temperature of the atmosphere, with a value of
34.5 ◦C in this study.

2.5. Establishment and Verification of Finite Element Model
2.5.1. Selection of Research Subjects

The research focuses on a double-layer steel truss continuous girder, which consists
of a 3 × 80 m steel truss continuous girder with separate layers for highway and railway
purposes, as illustrated in Figure 4. The primary truss is designed as a triangular structure
with a center spacing of 30.5 m and a truss height of 12 m. Both the upper and lower
chords of the main truss are box-shaped sections with dimensions of 1200 mm (width)
and 1600 mm (height), and with a plate thickness of 30 mm. The diagonal web members
adopt an I-shaped section, while the straight web members utilize a box-shaped section
measuring 1200 mm (width) and 1000 mm (height), and having a plate thickness of 36 mm.
For the upper and lower bridge decks, they consist of cross beams, longitudinal beams, and
orthotropic bridge decks. All cross beams and longitudinal beams are inverted T-shaped
sections with respective heights of 1600 mm (cross beam) and 800 mm (longitudinal beam).
Additionally, the wing plates have widths measuring 720 mm (cross beam) and 400 mm
(longitudinal beam), as depicted in Figure 5.
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The material of the steel truss is Q370qE, with a yield strength f y = 430 MPa and ulti-
mate strength f u = 582 MPa. The material parameters of Q370qE are shown in Table 2 [30,31].

Table 2. Q370qE material parameters.

Q370qE Numeric Value

Mass density ρ 7850 kg/m3

Thermal expansion coefficient α 1.2 × 10−5 ◦C−1

Poisson’s ratio υ 0.31
Specific heat capacity c 434 J/kg·◦C

Isotropic thermal conductivity 60.5 W/(m·◦C)
Elastic modulus E 2.06 × 105 MPa
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2.5.2. Modeling

An advanced simulation model of a three-span double-layer steel truss continuous
girder is established using the general-purpose finite element software ANSYS 2021. To
improve both the accuracy and computational efficiency of the temperature analysis, the
SHELL131 element is utilized. This element consists of four nodes, each node capable
of handling up to 32 temperature degrees of freedom, making it well-suited for three-
dimensional steady-state or transient analysis. In contrast, for structural analysis, the
SHELL181 element is employed, characterized by its four nodes, where each node has
six degrees of freedom. The simulation model of the double-layer steel truss continu-
ous girder is illustrated in Figure 6, whereas Figure 7 presents the mechanical boundary
conditions of the simulation model.
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The model is simplified in two ways. Firstly, the calculation of the sidewalk slab is
disregarded in the model analysis. However, its shielding effect on the bottom chord cannot
be overlooked. As depicted in Figure 8, there is minimal disparity observed in the vertical
displacement of the structure before and after simplifying the sidewalk board. Secondly,
to account for the frame effect of a double-layer bridge deck, an equivalent thickness is
assigned to simplify the U-shaped bridge deck as an equally thick bridge deck. The formula
used for calculating this equal plate thickness is:
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tw =
abEAc

2G
(

a2

4 + b2
)3/2 +

24EIa Ib
Gab(aIb + bIa)

(12)

where a, b, c (h) represent the spacing between nodes, the height between nodes, and
the length of the diagonal web member, respectively, as shown in Figure 9; Ii (m4) is the
in-plane bending moment of inertia of each member; Ac (m2) is the cross-section area of the
diagonal web; E (N/m2) is the elastic modulus; and G (N/m2) is the Shear modulus.
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2.5.3. Temperature Analysis Verification

The test data obtained from the steel box girder segment experiment conducted by
Tong was selected to validate the numerical model [32]. The validation results of the
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temperature analysis are presented in Figure 10. Upon comparing the on-site test data with
the finite element simulations, it can be concluded that there is a consistent time point at
which the top plate, east side, and west side of the steel box girder reach their maximum
temperatures. Furthermore, the difference between these two sets of results is within 2.22%.
It is evident that the temperatures predicted by our model exhibit excellent agreement with
those measured during testing.
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3. Time-Varying Temperature Field
3.1. Time-Varying Temperature Field Distribution Law of The Whole Structure

Due to the time-varying solar radiant intensity and radiation angle, as well as compo-
nent shielding effects, temperature gradients exist in the vertical, horizontal, and longitudi-
nal directions of the overall steel truss. Moreover, the temperature at different time points
within a specific location also varies.

The vertical temperature distribution, as depicted in Figure 11a,b, exhibits an uneven
pattern along the east–west direction with a noticeable temperature gradient. Specifically,
during the period from 8:00 to 12:00, the eastern region of the steel truss experiences direct
sunlight exposure, while, from 14:00 to 18:00, it shifts to the western region. The observed
temperature gradient primarily manifests in areas adjacent to the upper chord top plate
and side plate, as well as between the upper chord and web, and lower chord and web.
The transverse temperature distribution, as depicted in Figure 11c,d, exhibits a discernible
correlation between the lower deck’s temperature and the shading effect. Notably, the
shaded area experiences significantly lower temperatures compared to the unshielded
region, leading to a distinct stepped temperature gradient. At its peak, the lateral tempera-
ture difference can reach up to 29.73 ◦C at 13:00. The temperature in the shaded areas is
primarily influenced by the ambient temperature, whereas the temperature in the unshaded
areas is predominantly affected by solar radiation. In terms of the longitudinal temperature
distribution (as depicted in Figure 11e), apart from the vicinity near the connections of
chord and web members, the temperatures at each point along the same height of the steel
truss are equivalent. A slight temperature gradient exists near the connection points of the
steel truss. Near the bottom chord, the longitudinal temperature difference decreases as the
distance from the bottom chord increases. Similarly, near the top chord, the longitudinal
temperature difference diminishes with increasing distance from the top chord. Based
on the data comparison, it is evident that heat transfer in the connection area is more
significantly influenced by the lower chord than by the upper chord.
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Figure 11. Longitudinal temperature distribution of steel truss. (a) Vertical distribution temperature
of west side. (b) Vertical distribution temperature of east side. (c) Transverse temperature distribu-
tion (morning). (d) Transverse temperature distribution (afternoon). (e) Longitudinal temperature
distribution on the east side of steel truss.
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To further investigate the time-varying temperature law of the entire structure, five
characteristic points were selected for temperature analysis. The position and temperature
change pattern of these characteristic points are illustrated in Figures 12 and 13, respec-
tively. Figure 12 shows that characteristic point P1, situated on the outer side of the web
member, experiences a rapid increase in temperature between 6:00 and 10:00, reaching a
maximum value of 54.15 ◦C at 10:00, followed by a subsequent decrease in temperature.
Characteristic point P2, located on the outer side of the western web member, exhibits a
gradual warming trend between 6:00 and 10:00, primarily influenced by environmental
temperatures. However, during the period from 12:00 to 16:00, it undergoes a significant
rise in temperature due to the solar radiation impact with a peak value of 60.91 ◦C observed
at 16:00. The upper bridge level’s characteristic point P3 demonstrates continuous and
rapid heating since 6:00 until reaching its maximum value of 71.21 ◦C at 13:00. Thereafter,
the temperature decreases as the radiant intensity diminishes. Feature points P4 and P5 are
positioned on the inner side of both eastern and western web members, respectively. Their
respective temperature changes exhibit overall gentleness, mainly affected by environmen-
tal temperatures. However, a notable increase in the heating rate is observed near 18:00
and 8:00 under direct sunlight exposure. From these observations, it can be concluded that
solar radiation significantly impacts surface temperatures across this structural system.
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3.2. Temperature Distribution Model of Chord Section

The analysis objects consist of eight typical sections (T1–T8), as illustrated in Figure 14.
A detailed examination was conducted on the temperature distribution patterns at the
interfaces to investigate the underlying mechanisms governing temperature gradients
within chord sections under both sunlight and shading conditions. Taking the eastern side
of the steel truss as an example, depicted in Figure 15, it can be observed that T1 and T6
predominantly exhibit “J-shaped,” “convex,” and “S-shaped” temperature gradient profiles.
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On the other hand, lateral plates T2 and T5 primarily display temperature gradient modes
characterized by a “middle convex”, “right convex”, or a single type pattern. It is worth
noting that solar radiation angles significantly influence these temperature gradient modes,
resulting in varying temperatures between the side plates and either the bottom or top
plates due to differences in the solar radiant intensity. Consequently, this leads to distinct
heat transfer processes and, subsequently, generates diverse temperature distribution lines.
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3.3. Distribution Law of Time-Varying Temperature Field on Double Deck

The temperature distribution pattern of the upper deck remains have selected the
temperature distribution of the bridge deck at 12:00 as an illustrative example. Figure 16
depicts the grid-like temperature distribution across the entire upper deck. Due to heat
transfer effects, the bridge deck will conduct heat transfer like low-temperature longitudi-
nal beams, cross beams, and chords, resulting in a temperature gradient and a grid-like
temperature distribution on the bridge deck. The temperature difference between regions
L1 and L2 is smaller than that within region L2, indicating a more rapid temperature change
in region L2.
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Figure 16. Temperature distribution of upper deck.

In the sunshine area, the temperature distribution of the lower and upper layers is the
same grid distribution, as shown in Figure 17. In the shaded area, the temperature on the
bridge deck is evenly distributed and significantly lower than in the sunlight area, and there
is a clear temperature boundary between the two regions. In addition, the temperature
dividing line moves with the change of the solar zenith angle. At 12:00, the lower bridge
deck is completely covered, the overall temperature is evenly distributed, and the small
area in the east is grid-distributed.

The temperature distribution in the sunshine area exhibits a uniform grid pattern
for both the lower and upper layers, as depicted in Figure 17. Conversely, within the
shaded region, the temperature on the bridge deck demonstrates an even distribution that is
significantly lower compared to the sunny area, with a distinct thermal boundary separating
these two regions. Furthermore, this temperature demarcation line shifts correspondingly
with variations in the solar zenith angle. At noon, when the lower bridge deck is completely
shielded from direct sunlight, an overall homogeneous temperature distribution prevails
while a small eastern section maintains a grid-like pattern.
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3.4. Calculation Formula of Temperature Gradient of Component Section
3.4.1. Proposed Formula

We utilize MATLAB 2021 to fit the temperature gradient formulae of each cross-section
and, subsequently, derive the time-dependent function of gradient parameters. Considering
the identical temperature distribution patterns on both the east and west sides of the double-
layer steel truss, as well as the similarity in the fitting procedures for different time points
of the component sections, we select the upper chord section at 8:00 as a representative
case for calculating the temperature gradient formula. The objective function is defined as
a cubic polynomial with the following expression:

y = ax3 + bx2 + cx + d (13)

where x is the distance from the top, and y is the temperature value.
We calculate the values of each parameter using the minimum Q in Formula (14):
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Q =
n

∑
i=1

(
axi

3 + bxi
2 + cxi + d− yi

)
(14)

The ultimate fitting formula is y = −2.84x3 − 2.49x2 + 8.72x + 4.36. The fitting
diagram of the temperature gradient of the upper chord at each time point in the morning
is shown in Figure 18, demonstrating a remarkable level of accuracy in the temperature
fitting for every time point.
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the temperature gradient of the upper chord at each time point in the morning is shown 
in Figure 18, demonstrating a remarkable level of accuracy in the temperature fitting for 
every time point. 
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Figure 18. Temperature-fitting diagram.  

Similarly, we fit the remaining sections to obtain the temperature gradient parame-
ters a, b, c, and d for each section. Once all the parameters are obtained, we establish the 
functional relationship between them and time to derive the temperature gradient for-
mula for each cross-section at any given time. Table 3 displays the function of temperature 
gradient parameters for different components over time. Note that, from 12:00 to 18:00, 
there is no temperature gradient in the bottom chord, box-shaped web, and I-shaped web 
sections; therefore, their respective temperature gradient formulae only apply from 8:00 
to 12:00. 

Table 3. Formula for temperature gradient of component cross-section. 

Component Cross-Section Formula 
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Similarly, we fit the remaining sections to obtain the temperature gradient parameters
a, b, c, and d for each section. Once all the parameters are obtained, we establish the
functional relationship between them and time to derive the temperature gradient formula
for each cross-section at any given time. Table 3 displays the function of temperature
gradient parameters for different components over time. Note that, from 12:00 to 18:00,
there is no temperature gradient in the bottom chord, box-shaped web, and I-shaped web
sections; therefore, their respective temperature gradient formulae only apply from 8:00
to 12:00.

Table 3. Formula for temperature gradient of component cross-section.

Component Cross-Section Formula

Top chord section


a = −0.0042t4 + 0.21t3 − 3.63t2 + 24.15t− 53.85
b = 0.034t4 − 1.79t3 − 33.59t2 − 259.42t− 704.34

c = −0.047t4 + 2.52t3 − 47.71t2 + 375.08t− 1037.31
d = −0.0092t4 − 0.51t3 − 10.88t2 − 103.81t− 309.65

Bottom chord section


a = 0.15t4 − 6.08t3 + 90.08t2 − 590.31t + 1443.31

b = −0.51t4 + 20.51t3 − 303.73t2 − 1990.4t− 4866.54
c = 0.56t4 − 22.51t3 + 333.11t2 − 2182.93t− 5337.25
d = −0.21t4 + 8.26t3 − 122.32t2 + 801.48t− 1959.67

Cross beam section


a = −0.0056t4 + 0.28t3 − 4.84t2 + 32.05t− 71.87
b = 0.019t4 − 0.96t3 + 16.47t2 − 108.91t + 244.19

c = −0.021t4 + 1.06t3 − 18.28t2 + 120.88t− 271.08
d = −0.0079t4 − 0.39t3 + 6.81t2 + 45.01t− 100.91

Box-shaped web member


a = 0.037t4 − 1.48t3 + 21.14t2 − 128.77t− 294.41

b = −0.034t4 + 1.36t3 − 19.51t2 + 119.56t− 275.05
c = 0.014t4 − 0.57t3 + 8.24t2 − 51.11t + 118.86

d = −0.0002t4 + 0.0082t3 − 0.12t2 + 0.69t− 1.57

I-shaped web member


a = −0.049t4 − 1.94t3 + 27.61t2 − 168.08t− 384.15
b = −0.042t4 + 1.66t3 − 23.61t2 + 143.75t− 328.56

c = −0.015t4 − 0.61t3 + 8.54t2 − 52.01t + 118.90
d = −0.0003t4 − 0.01t3 − 0.16t2 + 1.03t− 2.35
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3.4.2. Formula Validation

The 11:00 temperature data of the upper chord box girder of Chongqing Chaotian-
men Bridge was selected to validate the proposed temperature gradient formula in this
study [33]. The main truss chord of Chongqing Chaotianmen Bridge is a welded box
section, available in two variations, 1200 mm and 1600 mm in width. The section height
ranges from 1240 mm to 1840 mm, with a plate thickness varying between 20 mm and
50 mm. The main structural material employed is Q420q steel. Due to the difference in the
maximum temperature between the literature [33] and the paper, a reduction coefficient
(0.76 is adopted here) needs to be considered when calculating component temperatures.
Figure 19 illustrates the comparison of the temperature results, demonstrating that the
calculated results in this paper align with the linear temperature gradient observed in [33],
with a correlation coefficient (R2 = 0.9889), thus confirming the formula’s feasibility.
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3.4.2. Formula Validation 
The 11:00 temperature data of the upper chord box girder of Chongqing Chaotian-

men Bridge was selected to validate the proposed temperature gradient formula in this 
study [33]. The main truss chord of Chongqing Chaotianmen Bridge is a welded box sec-
tion, available in two variations, 1200 mm and 1600 mm in width. The section height 
ranges from 1240 mm to 1840 mm, with a plate thickness varying between 20 mm and 50 
mm. The main structural material employed is Q420q steel. Due to the difference in the 
maximum temperature between the literature [33] and the paper, a reduction coefficient 
(0.76 is adopted here) needs to be considered when calculating component temperatures. 
Figure 19 illustrates the comparison of the temperature results, demonstrating that the 
calculated results in this paper align with the linear temperature gradient observed in [33], 
with a correlation coefficient (R2 = 0.9889), thus confirming the formula’s feasibility. 
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Figure 19. Comparison of temperature calculation results.

4. Time-Varying Law of Temperature Response
4.1. Structural Displacement

The bridge structure exhibits a significant structural response under the daily tem-
perature cycle. The displacement of the bridge can be categorized into three components:
vertical, horizontal, and longitudinal displacements. To extract displacement data, three rep-
resentative longitudinal lines are selected: the centerline, east and west lines, and the
transverse line in the middle span, as depicted in Figure 20. The vertical displacement is
positive in the upward direction and negative in the downward direction. The horizontal
displacement is positive towards the east and negative towards the west. The longitudinal
displacement is positive outwardly and negative inwardly.
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4.1.1. Vertical Displacement

The vertical displacement curve of the double-layer deck at different time points is
shown in Figure 21. The vertical displacement of the double-layer deck rises first and then
falls during the day, which is positively correlated with the ambient temperature. The
vertical displacement distribution pattern of each time point is consistent, and the most
significant displacement occurs in the middle span position. The vertical displacement
reaches its maximum value at 12:00, with the upper deck measuring 87.69 mm and the
lower deck measuring 77.24 mm. The nonuniform lateral temperature distribution of the
lower bridge deck due to shading effects necessitates attention to the vertical displacement
in the west sides of both the upper and lower decks during design and maintenance.
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Figure 21. Vertical displacement curve of double-layer bridge deck at different time points. (a) 10:00.
(b) 12:00. (c) 14:00. (d) 16:00.

4.1.2. Transverse Displacement

Under the combined influence of the solar radiation angle and support constraints,
the position of the maximum lateral displacement changes, as illustrated in Figure 22. Both
sides of the upper deck are horizontally offset, while, in the middle span, the lower deck
is horizontally offset to both sides and curved to both sides in the side span. There are
differences in the distribution patterns of lateral displacement between them. Under the
solar radiation influence, the bridge deck temperature rises and expands outward. The
direction of the lateral deviation of the center line is determined by the side of the steel
truss with a high solar radiation intensity.
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Figure 22. Lateral displacement of double deck. (a) 12:00. (b) 14:00.

4.1.3. Longitudinal Displacement

The end of the continuous girder was marked by selecting twelve specific points, as
illustrated in Figure 23. The time-varying curves depicting longitudinal displacement at
each of these points under extremely high temperatures are presented in Figure 24a,b.
The comparison reveals a consistent changing trend between the south and north ends
of the girder. Notably, the outward elongation value at the northern end surpasses that
at the southern end. The time variation curve of the longitudinal displacement of the
point is analyzed by taking the north end of the continuous girder as an example. For
the upper deck, the longitudinal displacements of N1, N2, and N3 are consistent. Under
solar radiation, each point is heated and expanded, reaching a maximum of 54.14 mm at
14:00 and then entering the descending stage; for the lower bridge deck, the longitudinal
displacements of N4, N5, and N6 are consistent during 6:00~8:00. After 8:00, affected by the
angle of solar radiation and shading, the degree of thermal expansion of the three positions
was different. The girder end exhibits a complex structural configuration and experiences
intricate stress states.
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4.2. Structural Stress

The stress utilized in this model refers to the von Mises stress, as defined by the
fourth strength theory of elastic–plastic mechanics. As can be seen from Figure 25, the
stress predominantly concentrates near the bearing region. Hence, the chord stress at the
edge fulcrum section ((4) pier), middle fulcrum section ((3) pier), and fulcrum are selected
for analysis.
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4.2.1. Stress of the Support Sections

The stress distribution of the edge support and middle support sections under the
action of all-day sunlight are shown in Figures 26 and 27, respectively. The comparative
analysis reveals that the shading effect of the component induces an uneven temperature
field, leading to varying degrees of thermal expansion in the steel truss. Consequently,
this phenomenon significantly impacts the distribution of stress. The trend of maximum
stress variation is the same for the edge fulcrum and middle support section. The stress of
the edge fulcrum and the middle fulcrum section were maximized at 14:00, which were
141.48 MPa and 60.38 MPa, respectively. The maximum stress of the edge support section
exceeds that of the middle support section at each point.

4.2.2. Stress of Chords

The stress distribution of the chords under solar radiation is primarily concentrated
near the supports. Therefore, the stress of the east upper chord, west upper chord, east
lower chord, and west lower chord near the supports are extracted, as shown in Table 4.
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Table 4. Stress of chord rod at support section (unit: MPa).

Location 7:00 10:00 12:00 14:00 16:00 19:00

East-side
upper chord

1© pier 14.95 38.25 44.18 43.12 28.45 4.02
2© pier 11.64 32.61 42.49 41.93 28.41 1.10
3© pier 11.60 32.21 42.05 41.98 29.49 1.14
4© pier 14.99 39.61 44.28 43.42 28.79 3.86

West-side
upper chord

1© pier 6.57 31.75 44.71 45.75 35.65 8.86
2© pier 2.80 30.69 43.64 44.71 32.30 8.52
3© pier 2.86 30.68 43.94 44.12 32.55 8.37
4© pier 6.37 31.59 43.86 45.99 35.53 8.77

East-side
lower chord

1© pier 10.41 55.38 84.88 80.13 51.65 4.86
2© pier 14.69 29.52 35.91 40.89 38.90 24.62
3© pier 17.85 32.85 43.96 45.38 40.78 33.94
4© pier 10.31 55.91 83.84 81.34 52.53 4.07

West-side
lower chord

1© pier 5.98 53.74 81.46 85.58 66.84 7.96
2© pier 9.95 24.66 28.15 35.51 26.98 15.76
3© pier 11.96 30.61 36.07 40.44 34.71 28.80
4© pier 4.85 52.46 80.22 86.08 67.47 7.91

The stress of the upper chord on the east is observed to be significantly higher than
that on the west during the time interval of 7:00~12:00, as indicated by Table 4. During
14:00~19:00, the magnitude of stress experienced by the upper chord on the western side is
significantly higher compared to that on the eastern side. During 12:00~14:00, there exists a
subtle disparity in stress levels between the upper chords situated on both sides. The east
and west upper chords have the same stress time-varying law at each support. The stress at
each support of the upper chord on the east reaches the maximum stress at 12:00. The stress
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at each support of the upper chord on the west reaches the maximum stress at 14:00. The
stress of the lower chord at pier (1) and pier (4) is mainly affected by the intensity of solar
radiation. However, the stress at the positions of pier (2) and pier (3) is mainly affected by
the constraints, so the stress of the lower chord on the east side at the position of pier (2)
and (3) at each time point is greater than that of the lower chord on the west side.

4.3. Steel Truss Girder Rotation Angles
4.3.1. Transverse Rotation Angle of Girder End

The girder end rotation angles encompass both transverse and vertical rotations.
The obstruction of the upper bridge on the lower deck results in a significant transverse
temperature gradient, induces in-plane bending of the lower deck, and, consequently,
leads to substantial transverse rotation angles. Based on the flat-section assumption, it is
presumed that, after the deformation of the bridge deck, longitudinal displacements at
supports 1, 2, and 3 remain within the plane; support 2 experiences constrained longitudinal
displacement while the lateral displacement is considerably smaller than longitudinal
displacement. Therefore, the transverse angle can be approximated by the longitudinal
displacement of support 1 and support 3, that is:

θ ≈ tan θ =
H1 − H3

D
(15)

The observation of Equation (15) reveals that, as the longitudinal displacement of
support 1 surpasses that of support 3, with an increasing difference between them, the
lateral angle of the girder end initiates a progressive increment. The lateral rotation angle
of the north and south ends of the continuous girder remains relatively stable during
nighttime, as depicted in Figure 28. During the period of 10:00~12:00, an increase in the
solar radiation angle leads to a gradual reduction in the lateral angle at the girder end.
After 12:00, the sun gradually moves towards the west. The longitudinal displacement
of support 3 exceeds that of support 1. Additionally, the transverse angle of the girder
end becomes negative and reaches its minimum value at 17:00. Subsequently, it gradually
approaches zero.
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4.3.2. Vertical Rotation Angle of Girder End

Due to the shading effect, the lower bridge deck exhibits a comparatively lower tem-
perature than the upper deck, leading to differential thermal expansion between them
and, consequently, resulting in a significant vertical rotation angle of the girder end. The
supports on both sides of the girder end are tension–compression support. The vertical
displacement is constrained. It can be inferred that the vertical displacement is negligible,
while the lateral displacement is significantly smaller than the longitudinal displacement.
Therefore, the vertical rotation angle of the girder end can be approximated by the longitu-
dinal displacement of nodes 1 and 2, that is:
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θ ≈ tan θ =
D1 − D2

H
(16)

The vertical rotation angle of the girder end is illustrated in Figure 29. The trend of the
variation in the vertical rotation angle at both ends of the east and west girders exhibits a
high degree of similarity. During the period of 6:00~14:00, the longitudinal displacement of
the upper deck’s end exceeds that of the lower deck, while the girder end exhibits a positive
and increasing vertical rotation angle, reaching its maximum at 14:00. The limited influence
of the double-layer bridge deck’s shielding effect on the vertical rotation angle of the girder
end is evident. As a result of reducing the longitudinal displacement difference between
the upper and lower deck beam ends, the vertical rotation angle gradually diminishes
to zero.
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The changing trends and values of the lateral and vertical rotation angles of the
girder ends exhibit significant disparities, as evident from Figures 28 and 29, owing to
distinct influencing factors governing their variations. The lateral angle of the girder end
is primarily determined by the radiation intensity received on the vertical plane, while
the vertical rotation angle of the girder end is predominantly influenced by the radiation
intensity received on the horizontal plane. The inclination of the girder end increases
proportionally with escalating radiation intensity.

5. Conclusions

After investigating the time-varying behavior of the temperature distribution, tem-
perature response characteristics, and structural response of the double-layer steel truss
continuous girder under shielding, the following conclusions can be deduced:

1. A model analyzing the impact of solar radiation on bridge structures was developed.
This model, integrating time-varying thermal boundary conditions and support sce-
narios, led to an effective temperature analysis framework for the double-layer steel
truss continuous girder. Validation efforts revealed that the temperature model’s pre-
dictions deviate from experimental data by a mere 2.22%, demonstrating the model’s
reliability and effectiveness.

2. The study identified distinct vertical, horizontal, and longitudinal temperature gradi-
ents within the structure. The vertical gradient, most pronounced on the truss sides,
showed a maximum temperature difference of 19.27 ◦C. The horizontal gradient,
concentrated on the lower deck, varied with solar radiation angles, reaching a peak
difference of 29.73 ◦C. The longitudinal gradient, less evident and located at the chord
junctions, exhibited a temperature variation within 1.87 ◦C under solar influence.

3. The proposed temperature distribution model of the chord section under shielding en-
compasses five vertical temperature gradient distribution models and four horizontal
temperature gradient distribution models. These models are primarily influenced by
the environmental temperature, solar radiation, and panel heat exchange. A notewor-
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thy finding is the grid-like temperature field distribution in the double deck under
shading, with a distinct temperature boundary on the lower deck influenced by the so-
lar altitude angle. Additionally, the study introduces a methodology for determining
temperature gradients at any member section time point.

4. Shading was observed to significantly influence the displacements of the upper and
lower decks, leading to notable disparities. The most considerable vertical displace-
ment difference occurred at noon (22.58 mm), while the lateral and longitudinal
displacements showed the maximum differences of 6.50 mm and 7.49 mm, respec-
tively, at different times of day. Uneven transverse temperature distribution was
found to alter the maximum stress location in the lateral fulcrum section over time.
The study also highlighted that the girder end’s rotational behavior, both transversely
and vertically, is subject to the intensity and angle of solar radiation, with a lag in
response to radiation intensity changes.
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