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Abstract: As a pillar industry of the national economy, the construction industry not only promotes
urban development and social prosperity but also has an irreversible impact on the environment
with the trend of high carbon emissions. Therefore, it is of great significance for the construction
industry to take the lead in achieving carbon emissions reduction. This paper attempts to explore
the spatiotemporal distribution characteristics and specific driving factors of carbon emissions in the
construction industry in 30 provinces of China from 2011 to 2020 based on the spatial econometric
analysis, so as to clarify the development trajectory and formation mechanism. The key findings
are (1) there are obvious differences in carbon emissions across Chinese provinces, culminating in a
distinct “Belt–Ring–Dot” spatial distribution; (2) the carbon emissions in the construction industry
follow an inverted U-shaped pattern from south to north, with lower emissions in the west and
higher emissions in the east, which means the pressure and potential of carbon emissions reduction
coexist; (3) the Moran’s I index values from 2011 to 2020 were all greater than 0, with a maximum
value of 0.284, indicating that there is a notable positive spatial correlation in carbon emissions in the
construction industry between provinces; and (4) among the five factors, the number of employees
displays the most pronounced spatial correlation, passing the test a total of eight times, and the mean
test coefficient is the largest at 0.552. This factor positively influences carbon emissions alongside the
gross product. On the other hand, the patents granted factor significantly inhibits carbon emissions
with all test coefficients being negative with a maximum absolute value of 0.166. The impact of
the technical equipment rate shows a characteristic of initial positive stimulation followed by later
negative inhibition. In contrast, the urbanization rate exhibits the weakest spatial correlation with the
minimum test coefficient being only 0.001.

Keywords: carbon emissions; construction industry; spatial econometric analysis; spatiotemporal
distribution; driving factors

1. Introduction

On 15 November 2022, the World Meteorological Organization (WMO) released an
interim report on “Global Climate Conditions 2022”, which stated that the global average
temperature in 2022 was about 1.15 ◦C higher than the pre-industrial period (1850–1900),
and the last eight years may have been the hottest years on record. Since most of the green-
house gases that cause climate warming are carbon dioxide, reducing carbon emissions
can mitigate the severe risks and adverse effects of climate change to the greatest extent [1].
The UK was the world’s largest carbon emitter from the Industrial Revolution until it was
replaced by the US in 1888. Since then, developing countries have relied on fossil energy to
accelerate urban development, resulting in a rapid increase in carbon emissions. By 2006,
China had surpassed the US to become the country with the largest carbon emissions in
the world [2]. The Chinese government put forward the “Dual Carbon Targets” at the 75th
session of the United Nations General Assembly in this grim situation, aiming to solve
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the dilemma of resource and environmental constraints and achieve green sustainable
development [3].

Recent studies suggest that the construction industry globally is responsible for ap-
proximately one-quarter of carbon emissions [4]. The reason is that compared to other
sectors, the construction industry is a resource-intensive industry that consumes a large
amount of fossil energy, thereby increasing carbon emissions while promoting the rapid
development of urbanization, and improving people‘s livelihoods [5]. Therefore, it is
of great significance for the construction industry to take the lead in achieving carbon
emissions reduction. However, the achievement of emission reduction targets depends
not only on national policies but also on provincial actions [6]. In particular, China is in
the development stage, and the development level of the construction industry varies
between different regions, as well as between resource endowment and technological levels.
Meanwhile, the existing research predominantly concentrates on carbon emissions within
a specific region, or explores them from a single perspective of time or space, ignoring the
evolution characteristics across different regions. How to clarify the different characteristics
of carbon emissions in the construction industry for the implementation of differentiated
carbon reduction measures is worth careful consideration.

It has also been found that there may be significant carbon emission interactions
between provinces, which means the mechanisms affect both local and neighboring re-
gions [7]. Therefore, by using the carbon emissions data of the construction industry in
30 provinces from 2011 to 2020, this paper attempts to explore the spatiotemporal distribu-
tion characteristics and formation mechanisms of carbon emissions from the construction
industry at the provincial level in China, based on spatial econometric analysis. And it
exhibits innovation in three aspects. Firstly, it delves into the dynamic evolution character-
istics of carbon emissions in the construction industry by integrating a dual perspective
of time and space, presenting them visually. Secondly, it validates the spatial correlation
of carbon emissions in the construction industry and unveils new distribution patterns
through the Moran’s index. Finally, the inclusion of technological innovation factors in
the spatial econometric model adds a crucial dimension and has significantly enriched the
research findings. It is expected to provide a scientific basis for the relevant government de-
partments to formulate differentiated carbon emission reduction measures and the overall
linkage governance program in the construction industry.

This paper is structured as follows. Section 2 reviews the existing literature on the
carbon emission. Section 3 presents the data sources and research methods. Section 4
presents the results of the spatial econometric analysis. Section 5 discusses the results.
Finally, the conclusions are presented in Section 6.

2. Literature Review
2.1. Carbon Emissions Distribution

According to the existing literature collection, the distribution characteristics of carbon
emissions are analyzed in different countries and regions or different industrial sectors. For
example, Yang et al. (2018) observed that the spatial distribution of total carbon emissions in
China primarily exhibits a pattern of higher levels in the east and lower levels in the west [8].
Building upon this observation, Liu et al. (2021) identified a specific trend characterized by
the central agglomeration in the northeast–southwest direction and spatial divergence in
the northeast–southeast direction [9]. Gregg et al. (2009) explored that the characteristics of
fossil-fuel-based carbon emissions on a monthly scale have greater temporal and spatial
variability than the flux aggregated to the national annual level in North America [10]. At
the global level, some scholars have found that there is cross-country convergence in carbon
emissions [11], while with the passage of time and economic development, other scholars
hold the opposite view [12]. These viewpoints collectively indicate spatial variations in
the distribution of carbon emissions. From the perspective of different industrial sectors,
the aforementioned studies on carbon emissions have broadly encompassed various sec-
tors, including industry, transportation, and construction [13]. Some scholars have also
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focused their attention on agriculture, aviation, logistics, and so on [14]. For instance,
Zhou et al. (2022) found that the carbon emissions of agriculture are basically characterized
by rapid growth in the early stage and gradual stabilization in the later stage [15]. Liu
et al. (2019), focusing on local carbon emissions from civil airports, discovered that the
emission intensity in the central and eastern regions of China is significantly higher than
that in the northeast and western regions [16]. At present, the construction industry is
known as a representative industry for its high energy consumption and pollution where
the spatial distribution of emission efficiency is unbalanced [17], contributing to regional
disparities with an increasing trend of international linkage effects [18]. Meanwhile, some
scholars have attempted to explore the variation characteristics of carbon emissions during
the operational phase of buildings from a life cycle perspective [19].

2.2. Influencing Factors

On account of the complex system formed by the interaction of various factors [8], it
is necessary to correctly identify the impact mechanism of carbon emissions in order to
establish an effective reduction strategy as soon as possible. Generally speaking, the driving
force behind carbon emissions cannot be separated from overall factors such as economic
level, scientific and technological capabilities, population, and policy guidance of a country
or region [20]. Among them, industrial structure, per capita income, population, and
urbanization level have a positive driving effect on carbon emissions [21], while scientific
and technological capabilities and policy releases have a negative inhibitory effect [22].
However, it is worth noting that the impact of economic level and industrial structure is
not simple, as studies have found variations in their influence [23]. For instance, there is no
consensus on whether trade openness has a positive impact on decoupling carbon emissions
from economic growth in high-income countries [24], while there is consensus that it has a
more negative impact on low-income countries [25]. As for industrial agglomeration, Gong
et al. (2022) found that the agglomeration of primary and secondary industries in China
promotes carbon emissions while the agglomeration of tertiary industries has a significant
effect on reduction [26]. Despite the varying characteristics of carbon emission factors in
different industrial sectors and regions, the construction industry is resource-intensive and
involves all aspects of urban production, consumption, and circulation, which are necessary
to clarify the individual factors consistent with its characteristics [27]. Some studies have
been conducted to investigate whether the structure of the construction industry, output
scale effect [28], land expansion, and building materials are the main factors of carbon
emissions [29]. Conversely, energy intensity, green building, low-carbon construction
patents, and policies have negative effects [30]. For example, Hou (2021) argues that
mechanisms to reform supply-side incentives could offer immediate benefits [31].

2.3. Relevant Research Methods

For the measurement of carbon emissions data, the most widely accepted and used
by countries around the world is the Intergovernmental Panel on Climate Change (IPCC)
Sectoral Approach, which provides a standardized approach for countries to estimate
their greenhouse gas emissions and removal [32]. Regarding the distribution of carbon
emissions, Liu et al. (2022) conducted a comparative analysis of the basic data of industrial
carbon emissions to explore its development trend in Jiangsu Province [33]. In addition,
some researchers predicted carbon emissions by modifying the Moon–Sonn model or using
the gray model GM (1, 1) [34]. Liu et al. (2022) conducted a peak analysis of agricultural
carbon emissions in Shandong Province using the Moon–Sonn model [35]. Recently, more
researchers have discovered that the spatial relationships between cities are becoming
stronger, making the connections of carbon emissions more intricate and extensive. To
better analyze these spatial effects, scholars have started using methods such as social
network analysis and spatial econometrics [36]. For example, Zheng et al. (2022) combined
Social Network Analysis (SNA) with Quadratic Assignment Procedure (QAP) to measure
the spatial correlation network characteristics of carbon emissions in the Pearl River Delta
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urban agglomeration in China [37]. Wang et al. (2022) calculated the Moran’s I index of
carbon emissions from the construction industry by spatial exploration methods at both
global and Chinese scales, revealing a significant positive autocorrelation across diverse
urban areas [38]. In the realm of carbon emissions impact analysis, a rich array of existing
methods has been employed. Most researchers have collected panel data and employed
the Kaya Identity to decompose the driving factors of carbon emissions. Subsequently, they
use the Logarithmic Mean Divisia Index (LMDI) model to disaggregate the contributions
of each factor [26]. Additionally, some scholars have utilized various methods including
Panel Vector Auto-Regressive (PVAR) models [39], Stochastic Impacts by Regression on
Population, Affluence, and Technology (STIRPAT) models [40], Random Forest models [41],
Granger causality tests [42], and system dynamics to identify and analyze the influencing
factors of carbon emissions [43]. In contrast, a minority of scholars have adopted a spatial
econometrics perspective by incorporating spatial weight matrices into their analyses [44].
They have employed Spatial Error, Lag, and Durbin models to investigate the factors while
accounting for spatial dependencies [45].

2.4. Literature Summary

In summary, extant literature exhibits diversities in research perspectives, content,
and methodologies concerning carbon emissions. Nevertheless, it predominantly concen-
trates on the assessment of carbon emissions distribution within individual national or
provincial regions, thereby disregarding potential spatial interactions with adjacent areas.
Furthermore, prevalent approaches primarily encompass measurements conducted along
either temporal or spatial dimensions, thus failing to capture the nuanced spatiotemporal
dynamics inherent in simultaneous processes influencing carbon emissions distribution.
Therefore, to address the deficiencies in the existing research, this study utilizes exploratory
spatial statistical analysis to examine the spatiotemporal trends of carbon emissions in the
construction industry across Chinese provinces from 2010 to 2020. Additionally, spatial
econometric models are employed to investigate the driving factors contributing to regional
disparities. The objective is to furnish a theoretical foundation and policy implications for
China’s carbon reduction initiatives, facilitating the realization of environmentally friendly
and low-carbon development within the construction industry.

3. Data and Methods

This study integrates the IPCC Sectoral Approach, provincial greenhouse gas inventory
guidelines, and the Chinese carbon accounting database to calculate carbon emissions from
the construction industry in 30 provinces of China from 2010 to 2020, so as to conduct
descriptive statistical analyses [46]. Subsequently, we attribute spatial characteristics to
the dataset, exploring its spatiotemporal distribution patterns and developmental trends.
Conclusively, the approach involves the meticulous selection of influential factors from
multifaceted vantage points encompassing economic, social, demographic, technological,
and innovation dimensions. These selected factors form the basis for the construction
of a spatial econometric model, employed to probe the intricate causal mechanisms that
underlie the observed phenomena.

3.1. Data Definition and Source
3.1.1. Vector Data of Carbon Emissions

The research subject of this study is the carbon dioxide emissions from the construction
industry in 30 provinces across China (excluding Hong Kong, Taiwan, Tibet, and Macao)
from 2011 to 2020. This dataset not only includes the specific annual emissions values
for the construction industry but also encompasses the geographical coordinates of these
30 provinces, representing a vector dataset that combines both economic and spatial
attributes. The spatial attribute data consist of coordinates for administrative regions of
30 provinces in China and originate from the Resource and Environment Science and Data
Center. The economic attribute data represent the carbon emissions for each province
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in the construction industry. To derive carbon emissions data, this study combines the
IPCC Sectoral Approach, provincial greenhouse gas inventory guidelines, and the Chinese
carbon accounting database. Specifically, based on the physical quantity data extracted from
the provincial energy balance tables found in the China Energy Statistical Yearbook, we
consider 17 categories of fossil fuel energy consumption within the construction industry
including raw coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, petroleum asphalt,
liquefied petroleum gas, natural gas, and others. Then Equation (1) is used to measure the
carbon emissions:

C =
17

∑
n=1

En × Jn × Fn (1)

where En is the consumption of the nth fossil energy, Jn is average low calorific value of the
nth fossil energy, and Fn is carbon content per unit calorific value of the nth fossil energy.

3.1.2. Factors Selection

The relationship between economic activities and the environment can be decomposed
into scale, structure, and technological effects [47]. Considering that previous literature has
extensively explored mature factors affecting carbon emissions, such as economic levels,
industrial structure, energy intensity, and material consumption [21], and recognizing
that decarbonization in the construction industry is closely tied to the development of
green building and technological innovation, this paper endeavors to select factors related
to carbon emissions from the perspectives of machinery utilization and technological
innovation. In view of the availability of data, the rate of technical equipment and the
number of granted patents in the construction industry are characterized. The rate of
technological equipment refers to the ratio of the net value of self-owned mechanical
equipment to the total number of workers of construction industry enterprises at the end of
the year, reflecting the level of mechanization and technological investment. The number
of granted patents represents the count of invention patents authorized by the intellectual
property administrative department, indicating the level of scientific development and
innovation capability in each province. Given the diversity and comprehensiveness of
influencing factors, this study incorporates three influencing factors from the perspectives
of economic, social, and population development, including gross product of construction
industry, provincial urbanization rates, and the number of employees in the construction
industry. The definitions of the variables are shown in Table 1. The aforementioned
original data are sourced from annual publications such as China Statistical Yearbook,
China Construction Industry Statistical Yearbook, China Energy Statistical Yearbook, and
China Science and Technology Statistical Yearbook.

Table 1. Variables and data definitions.

Variables Definition Unit

CE Carbon emissions in the construction industry MT
GP Gross product of the construction industry 1010 Yuan
NE Number of employees in the construction industry 106 Person
UR Urbanization rates %
TR Technological equipment rates 104 Yuan/Person
PG Domestic Patents Granted 104 Item

3.2. Spatial Econometric Analysis
3.2.1. Spatial Correlation Analysis

American geographer W.R. Tobler proposed that everything is related to everything
else, but near things are more related than distant things in 1970 [48]. This principle is
known as the First Law of Geography, which means that different phenomena are more
similar when they are closer in space, indicating the presence of spatial correlation. If
the opposite is observed, meaning that closer objects are less similar, it indicates spatial
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heterogeneity. When there is no relationship between the attributes of objects and their
spatial positions, it suggests that the attribute lacks spatial correlation [49]. Therefore,
whether there exists spatial correlation among various economic variables at different
distances in different regions needs to be statistically measured. The Moran’s I index,
proposed by Australian statistician Patrick Alfred Pierce Moran in 1950, is a widely used
metric in global spatial autocorrelation analysis of economic variables to measure the
degree of spatial correlation and regional homogeneity. Its definition is as follows:

Moran′s I =
n ∑n

i=1 ∑n
j=1 Wij(ci − c)

W0 ∑n
i=1(ci − c)2 (2)

Wo = ∑n
i=1 ∑n

j 6=i Wij (3)

where n represents the number of provinces in China, ci and cj represent carbon emissions
in provinces i and j, c is the average carbon emissions in all provinces, and Wij is the spatial
weight matrix and represents the spatial disparity between regions i and j.

Wij is a binary spatial weight matrix, which can be categorized into two types. One is
based on adjacency, where regions share common boundaries, and the other is based on
distance, where the distance between the centroids of regions is less than a given critical
value. The selection of the spatial weight matrix can affect the calculation of the ratio. In
this paper, since the regions are represented by provincial surface data and provinces share
common boundaries with each other, we have chosen the spatial weight matrix based on
adjacency. Its form is as follows:

Wij =

{
1 Region i and j share a common boundary

0 else
(4)

The Moran’s I index typically ranges between [−1 and 1]. When Moran’s I > 0,
it indicates a positive spatial correlation in the carbon emissions from the construction
industry among different regions, meaning that neighboring regions have similar emissions.
When Moran’s I < 0, it indicates a negative spatial correlation, signifying those emissions
are heterogeneous among neighboring regions. When Moran’s I = 0, it suggests that there
is no spatial correlation, implying that emissions are independent of each region [50].

3.2.2. Spatial Econometric Models

The two fundamental types of spatial econometric models can be classified based
on the way spatial dependencies are introduced. One is the introduction of spatial lag
correlation, known as the Spatial Lag Model (SLM); the other introduces spatial error
dependence, referred to as the Spatial Error Model (SEM). The former involves correlation
in the dependent variable, while the latter involves correlation in the error terms. These
models are used in spatial econometrics to handle spatial dependencies and better capture
the relationships between observations in spatial datasets [51].

• Spatial Lag Model (SLM)

The SLM examines whether various variables in a particular region exhibit diffusion
or spillover effects. The dependent variable is influenced not only by the independent
variables within the same region but also by the dependent variables in neighboring regions.
The expression for this model is as follows:

y = ρWy + Xβ + ε (5)

where y is the dependent variable, X is the matrix of explanatory variables, W is the spatial
weight matrix, ρ is the spatial autoregressive coefficient, β is the parameter vector, and ε is
the error term. This relationship reflects the spatial dependency in the sample observations,
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indicating how the observations in neighboring regions influence the observations in the
focal region, including both the direction and magnitude of the influence.

• Spatial Error Model (SEM)

The SEM is used to capture the spatial interactions between individual units by
considering spatial correlations within the error term. This model is applicable when there
are variations in the spatial interactions among units due to differences in their relative
positions. The expression for SEM is as follows:

y = λWε + Xβ + η (6)

where λ is the spatial error term in the cross-sectional dependent variable vector, η denotes
independently distributed random error terms that measure the spatial dependency effects
present in the error disturbances and also quantify the extent to which neighboring areas
affect the observed values in the local area due to errors in the dependent variable.

4. Results
4.1. Initial Exploration of Carbon Emissions
4.1.1. Statistics of the Carbon Emissions

From the Table 2, the annual carbon emission values are valid and there are no default
data. It can be observed that although the average carbon emissions from the construction
industry in each province generally exhibit an upward trend, the median values exhibit
a fluctuating decline. They reach their troughs in 2011, 2015, and 2018, and peak in 2013,
2016, and 2019. Simultaneously, the peak values are decreasing, indicating a declining
trend in carbon emissions for provinces located around the dataset’s median values. It
reflects that these provinces have implemented carbon emission reduction measures and
achieved certain results during this period. The increase in the average, on the other
hand, may be attributed to the influence of extreme values in certain provinces. Especially
when examining the percentile values, half of the provinces have carbon emissions of only
2 million tons, significantly lower than the maximum value of 6 million tons. Additionally,
the carbon emissions of three-quarters of the provinces are also around 3 million tons, with
only half of the maximum value. The difference between the minimum and maximum
values is significant. By this token, the carbon emissions of most provinces are relatively
close to each other, while a small number of provinces exhibit significant differences in
carbon emissions, indicating a greater pressure for emissions reduction in those areas.

Table 2. Descriptive statistics of carbon emissions in 30 provinces from 2011 to 2020.

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Valid (n) 30 30 30 30 30 30 30 30 30 30
Null (n) 0 0 0 0 0 0 0 0 0 0
Mean 2.080 2.044 2.170 2.204 2.261 2.242 2.305 2.263 2.308 2.334

Median 1.760 1.786 2.117 1.974 1.929 2.063 2.000 1.858 1.962 1.874
Standard Deviation 1.505 1.421 1.528 1.588 1.635 1.534 1.578 1.610 1.649 1.680

Minimum 0.127 0.148 0.048 0.058 0.144 0.068 0.075 0.049 0.187 0.186
Maximum 5.850 5.549 5.942 6.033 6.103 5.921 5.925 6.139 6.326 6.532

25% 0.893 0.953 1.111 1.129 1.026 1.047 1.062 0.988 0.996 1.072
75% 2.828 2.710 2.577 2.747 3.011 3.101 3.331 3.353 3.411 3.616

4.1.2. Carbon Emissions Trends

According to Figure 1, on the one hand, there are 4 provinces out of the 30 provinces
in China that have cumulatively emitted more than 40 million tons of carbon in the con-
struction industry from 2011 to 2020. These provinces are Jiangsu, Zhejiang, Hubei, and
Hunan, with Zhejiang having the highest emissions at 53.80 million tons. On the other
hand, there are three provinces with emissions totaling less than 5 million tons, which are
Guangxi, Hainan, and Heilongjiang. Among them, Heilongjiang has the lowest carbon
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emissions, amounting to only 2.74 million tons, approximately 4% of Zhejiang’s emissions.
Over the course of a decade, the carbon emissions in several provinces exhibit different
trends. Shanghai, Beijing, Shandong, Hubei, Liaoning, and Shanxi, consistently witness
year-to-year reductions in carbon emissions. Conversely, provinces like Jilin, Hebei, and
Shaanxi initially experienced an increase in emissions followed by a subsequent decrease.
Anhui, Jiangxi, Ningxia, Henan, Guizhou, and Hunan register slight increases in emissions.
Meanwhile, areas like Yunnan, Tianjin, Jiangsu, Fujian, and Chongqing maintain relatively
stable emission levels.

Figure 1. Carbon emissions in 30 provinces of China’s construction industry from 2011 to 2020.

From this perspective, carbon emissions in the 30 provinces of China vary significantly.
Although the construction industry has made some progress in reducing carbon emissions
since the introduction of energy-saving and emission reduction targets during the “Eleventh
Five-Year Plan” and the subsequent issuance of several guiding documents, the carbon
emissions in some provinces remain high. This is due to the crucial role of the construction
industry in the economic development and urbanization of developing countries. Hence,
high carbon emission areas must simultaneously address the challenges and capitalize
on opportunities for further carbon reduction. This also indirectly shows that there are
regional disparities in the management of carbon emissions, which will help us gain an
in-depth understanding of the diverse performances and challenges in carbon reduction
across different areas.

4.2. Spatiotemporal Distribution Characteristics of Carbon Emissions
4.2.1. Spatiotemporal Distribution Pattern

From Figure 2, it is evident that there is a significant regional disparity in carbon
emissions. Beginning in 2010, the northern region, including Inner Mongolia, the cen-
tral region, with Hubei, and the eastern coastal areas such as Shandong and Zhejiang,
exhibited the highest emissions. In contrast, the northeastern province of Heilongjiang,
northwestern Qinghai, and southern Guangxi had the lowest carbon emissions during
this period. However, emissions in Inner Mongolia and Sichuan began to decrease annu-
ally, while, from 2012, the central region’s emissions gradually increased and formed a
central cluster. This cluster encompassed provinces such as Hunan, Hubei, Henan, Anhui,
Zhejiang, Jiangsu, and Guangdong, forming a roughly circular distribution around the
lower-emission area of Jiangxi. By 2015, the circular distribution pattern became more
pronounced, along with southwestern Sichuan, collectively radiating toward the central
region. Emissions began to decrease in most areas to the north along the line from the
westernmost Xinjiang to the easternmost Heilongjiang. In contrast, emissions in the central
regions of Henan and Hunan, as well as in the western regions of Sichuan and Yunnan,
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showed a gradual increase. Meanwhile, the eastern coastal areas, including Shandong,
Zhejiang, and Jiangsu, consistently remained in the high emissions zone. By 2020, it had
developed into a transverse low-value distribution belt spanning from east to west (referred
to as the “Belt”). This belt separated the high-value regions of northern Inner Mongolia
from the eastern coastal areas, including Zhejiang, Jiangsu, and Shandong, in addition to
the central regions of Henan, Hunan, and Sichuan (referred to as the “Ring” and the “Dot”).
Ultimately, this pattern evolved into the “Belt–Ring–Dot” spatial distribution, exhibiting a
noticeable spatial clustering characteristic.

Figure 2. Cont.
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Figure 2. Spatial distribution characteristics of carbon emissions from 2011 to 2020: (a) represents
the year 2011, (b) represents the year 2012, (c) represents the year 2013, (d) represents the year 2014,
(e) represents the year 2015, (f) represents the year 2016, (g) represents the year 2017, (h) represents
the year 2018, (i) represents the year 2019, (j) represents the year 2020.

This distribution pattern indicates that, on a national scale, carbon emissions from the
construction industry exhibit a specific clustering pattern in space, which is differentiated
and uneven. The “Belt” represents a low-value aggregation area of carbon emissions
horizontally, while the “Ring” and the “Dot” are high-value aggregation areas. This spatial
clustering property suggests that carbon emissions from the construction industry are
not only influenced by local factors such as economic development, industrial structure,
and energy consumption, but also by the influence of neighboring regions. Therefore, in
the study of influencing factors on carbon emissions from the construction industry, it is
necessary to consider the existence of spatial clustering effects.

The Y-axis in the trend analysis graph represents the north–south direction, the X-axis
represents the east–west direction, and the Z-axis represents carbon emissions. The blue
line connects the projected points of carbon emissions in the north–south direction, while
the green line represents the east–west direction. This line signifies the simulated optimal
trend direction for carbon emissions in the construction industry. Connecting the projected
points with lines allows us to simulate the most suitable trend direction. Upon examination,
it becomes apparent that the spatial trends in carbon emissions in the construction industry
are relatively consistent across provinces, thus warranting our focus on presenting the
trend analysis only for 2011 and 2020. Figure 3 illustrates that there is a clear inverted
U-shaped trend in the north–south direction, while in the east–west direction, emissions
are lower in the west and higher in the east. This suggests that the central regions of China
exhibit higher carbon emissions, gradually decreasing toward the north and south, while
the western regions demonstrate lower emissions compared to the eastern regions. This



Buildings 2023, 13, 2808 11 of 19

aligns with the spatial distribution of carbon emissions in Figure 2. Furthermore, the trend
analysis graph also indicates that as carbon emissions move eastward, the rate of increase in
carbon emissions slows down, and after reaching a peak, there is a slight decreasing trend.
From this observation, it becomes evident that there exists a substantial spatial disparity in
carbon emissions from the construction industry among provinces in China.

Figure 3. Trend Analysis of carbon emissions in 2011 and 2020: (a) represents the year 2011;
(b) represents the year 2020.

4.2.2. Global Spatial Autocorrelation Analysis

To verify the spatial effects of carbon emissions in the provincial-level construction
industry in China, a spatial weight matrix based on adjacency relationships is constructed.
Since Hainan Province is an independent island and does not share a land border with
other provinces and cities, the calculation index will be excluded. Therefore, for the sake
of data completeness and accuracy, we adjusted the adjacency of Hainan Province with
Guangdong Province and Guangxi Province. The final calculation results are as Table 3.

Table 3. Moran’s I index from 2011 to 2020.

Year Moran’s I p-Value z-Value

2011 0.151 0.015 2.1739
2012 0.142 0.011 2.1638
2013 0.162 0.004 2.4164
2014 0.194 0.001 2.8491
2015 0.225 0.001 3.2964
2016 0.245 0.001 3.3674
2017 0.279 0.001 3.8362
2018 0.284 0.001 3.8130
2019 0.281 0.001 3.8397
2020 0.269 0.001 3.5399

From 2011 to 2020, the Moran’s I index values of carbon emissions were all greater than
0, with a minimum value of 0.124 in 2010 and increasing fluctuation thereafter, reaching
a maximum of 0.284 in 2018. Additionally, the p-value passed the 5% significance test in
the first two years, while the p-value consistently passed the 1% significance test in the
last eight years. This demonstrates that there is a certain positive spatial correlation in
carbon emissions in the construction industry. Specifically, when the carbon emissions
in one region’s construction industry are high, the surrounding or adjacent regions also
tend to exhibit elevated carbon emissions in a spatially consistent pattern. Meanwhile, the
Moran’s I index being greater than zero validates that an econometric model neglecting
spatial correlation would lead to biases.
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4.3. Spatial Driving Factors
4.3.1. Construction of Spatial Econometric Models

As mentioned earlier, there is spatial autocorrelation in carbon emissions at the provin-
cial level, so it is appropriate to apply spatial econometric models to examine the influencing
factors. Spatial econometric models are divided into two fundamental types: SLM and
SEM. To determine which model offers a superior fit, it is essential to conduct parameter
estimation. After spatially comparing the influencing factors of carbon emissions in the
construction industry from 2011 to 2020, it is found that the spatial error model consistently
outperformed the spatial lag model in terms of assessment over the years. The model
estimation results from 2019 are used as an example for analysis.

R2 represents the degree of fit for the regression, ranging between 0 and 1. The
closer the value is to one, the higher the degree of model fit. Both Sigma2 and S.E of
regression indicate the stability of the data; a smaller value suggests more stability, while a
larger value indicates greater dispersion. The Log likelihood (LogL), Akaike Information
Criterion (AIC), and Schwarz Criterion (SC) are diagnostic metrics for the goodness of fit in
multivariate regression models. An augmented LogL, coupled with diminished AIC and SC
values, denotes an optimal model fit. From the Table 4, the R2 and LogL values for the SEM
are higher than those of the SLM, while the AIC and SC values for the former are lower than
the latter [52]. This implies the SEM more effectively captures the dynamics of provincial
construction carbon emissions compared to the SLM model. Additionally, the Sigma2 and
S.E of regression for the SEM model are also smaller, indicating a more stable dataset. Given
these considerations, this study has chosen the SEM model for further research.

Table 4. Comparison of model results.

Index Spatial Error Model Spatial Lag Model

R2 0.700504 0.602019
Sigma2 0.787003 1.0458

S.E of regression 0.887132 1.02264
LogL −41.209947 −43.9397
AIC 94.4199 101.879
SC 102.827 111.688

4.3.2. Model Results Analysis

The selection of the SEM model indicates that the spatial dependence of influencing
factors for carbon emissions in the construction industry exists within the error term. In
the Table 5, LAMBDA stands for the spatial autoregressive coefficient (λ) in the error term.
The significance test of the coefficient only failed in 2014 and 2015, proving that for the
remaining years, the null hypothesis that there is no spatial correlation effect in carbon
emissions from the Chinese construction industry should be rejected under a significance
level of 1–10%. This suggests that carbon emissions in China’s construction industry exhibit
a certain degree of spatial dependence, being easily influenced by the emissions from
neighboring regions.

Following 10 simulations, in terms of spatial correlation, both the number of employees
(NE) and patents granted (PG) pass the significance test eight times while the mean test
coefficient for NE (0.552) is greater than that of PG (−0.085), showing that NE has the
highest spatial correlation. This is trailed by the technical equipment rate (TR) and the
construction industry’s gross production (GP). Conversely, the urbanization rate (UR)
exhibits the weakest spatial correlation, only meeting significance thresholds three times.
With regard to influence directionality, NE, GP, and UR all indicate a positive association
with carbon emissions, underscoring their role in amplifying emissions. Contrastingly,
PG, representing technological innovation capabilities, demonstrates a negative correlation
with carbon emissions, indicating its efficacy in mitigating emissions. Specifically, the
correlation of TR transitioned from a positive stance before 2018 to a negative one post
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that year, signifying an evolution in its impact on carbon emissions from an initial boost to
subsequent restraint.

Table 5. Estimation results of Spatial Error Model.

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

GP
0.0825
(1.68)

*

0.0464
(1.10)

0.0438
(1.04)

0.0414
(0.86)

0.0319
(0.81)

0.0481
(1.93)

*

0.0579
(2.36)

**

0.0499
(2.24)

**

0.0532
(3.08)

***

0.0673
(3.65)

***

NE
0.5959
(2.40)

**

0.7659
(2.64)

***

0.8008
(2.78)

***

0.5143
(1.79)

*

0.7875
(3.22)

***

0.6436
(4.45)

***

0.4638
(3.30)

***

0.3972
(2.26)

**

0.2748
(1.58)

0.2763
(1.55)

UR 0.0065
(0.46)

0.0083
(0.50)

0.0333
(2.25)

**

−0.0063
(−2.89)

0.0154
(0.68)

0.0011
(0.06)

0.0183
(1.07)

0.0200
(0.99)

0.0396
(2.14)

**

0.0469
(1.97)

**

TR
0.4492
(2.35)

**

0.2619
(1.85)

*

0.0276
(0.33)

0.5544
(2.10)

**

1.0375
(2.15)

**

0.6840
(2.62)

***

0.4232
(1.52)

−0.2591
(−0.20)

−0.1624
(−1.68)

*

−0.1170
(−1.98)

**

PG −0.0618
(−0.94)

−0.1197
(−1.85)

*

−0.1658
(−2.22)

**

−0.0242
(−0.30)

−0.1287
(−2.01)

**

−0.0717
(−1.73)

*

−0.0710
(−2.05)

**

−0.0623
(−2.40)

**

−0.0760
(−3.38)

***

−0.0640
(−3.48)

***

LAMBDA
−0.4461
(−1.66)

*

−0.5210
(−1.96)

*

0.6602
(−2.56)

**

−0.1840
(−0.53)

0.4394
(1.61)

−0.8849
(−3.75)

***

−0.9191
(−3.97)

***

−0.9783
(−4.38)

***

0.8722
(−3.67)

***

−0.9980
(−4.53)

***

Note: The data in parentheses are the z-value. *, **, and *** represent the significant level of 10%, 5%, and
1%, respectively.

5. Discussion

This study conducts a spatial econometric analysis of the carbon emissions in the
construction industry across 30 provinces in China from 2011 to 2020. The findings suggest
that over the decade, regions with high carbon emissions have progressively shifted from
the northern, central, and eastern coastal areas, consolidating into a circular pattern in
the central region, characterized by a “Belt–Ring–Dot” spatial distribution. Concurrently,
the central region exhibits a gradual decrease in carbon emissions from south to north.
Moreover, the western provinces have lower carbon emissions compared to the eastern
ones, with the rate of increase in emissions slowing as one moves eastward. This indicates
substantial disparities in carbon emissions across provinces and displays inconsistent
reduction trajectories. While many provinces have made commendable strides in reducing
emissions, a select few grapple with considerable emission challenges.

Global spatial autocorrelation results further affirm a discernible positive correlation in
carbon emissions of the construction industry. Drawing from economic, societal, population,
technological, and innovative lenses, we employed five key indicators: the gross product
of the construction industry (GP), the number of employees (NE), urbanization rates
(UR), technical equipment rate (TR), and patents granted (PG). These factors informed the
formulation of a spatial error model to reveal three distinct directional impacts: stimulatory
effect, inhibitory effect, and special effect. In light of the results, we propose specific
recommendations for differentiated carbon emissions reduction, aiming to promote the
green, healthy, and sustainable development of the construction industry and achieve
“Dual Carbon Targets”.

5.1. Aggravating Effect
5.1.1. The Gross Product (GP)

The construction industry, recognized as a foundational pillar of the national economy,
has experienced a continuous expansion in its operational and production capacities. This
expansion is consistently reflected in the industry’s increasing total output value over
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time. Such a trend underscores a direct correlation between the industry’s developmental
progress and its economic contribution. Data from the table show that since 2016, higher
construction output has escalated carbon emissions. Essentially, the more advanced the
industry becomes, the greater the energy consumption and carbon output, with the impact
growing progressively. This is consistent with the research findings of Shi et al. (2023) [53].
Owing to the aggravating effect of surrounding areas, it also indirectly affects the local
carbon emissions. Therefore, while adjusting the industry structure for the development of
the construction sector, it is essential to accelerate the enhancement of its energy efficiency.

5.1.2. The Number of employees (NE)

NE in construction activities has shown a proportional relationship with carbon
emissions in the construction industry for eight consecutive years since 2010. That is, the
more people involved in construction activities, the higher the carbon emissions. Given that
value creation in the construction industry is reliant on labor, the strength of the labor force
directly influences the industry’s economic growth, subsequently affecting the volume of
carbon emissions [54]. Construction workers, often relocating to align with the location
of their projects, inherently exhibit a notable degree of mobility. This increased mobility
can subsequently escalate demands for housing, transportation, food, and infrastructure,
indirectly leading to an uptick in carbon emissions [55].

However, the impact coefficient has been gradually decreasing since 2013, indicating
that the influence of NE is progressively diminishing. Moreover, starting from 2019, this
factor does not pass significance testing. A possible explanation might be that, with the
continuous advancement of technological levels and rising mechanization, even with
fewer laborers, there is an elevation in productivity. This increased efficiency in creating
more industrial value might, in turn, lead to a rise in carbon emissions. As a result of
the cumulative impacts of various factors, its inherent influence begins to wane. This
decline became particularly pronounced at the end of 2019 due to the emergence of the
novel coronavirus in Wuhan. The subsequent nationwide outbreak in 2020 resulted in
widespread shutdowns, gravely affecting construction projects. With construction workers
ceasing their movement, the spatial interactivity was lost, leading to the complete loss of
their spatial influence. Liu et al. (2022) also believe that the novel coronavirus had a certain
impact on the reduction in carbon emissions [56].

5.2. Inhibitory Effect

Only the patents granted (PG) factor has an inhibiting effect on carbon emissions.
PG allows technological innovations to be directly transformed into production factors.
Safeguarding and enhancing the adoption of digital, modular, information-driven, and
eco-friendly technologies in construction serves as a pivotal catalyst, driving the industry’s
evolution and modernization. According to the table, with few exceptions, there is an
inverse relationship between PG and carbon emissions in the construction industry. That
is, the greater the number of patents granted, the less the carbon emissions. This under-
scores the significant role of technological innovation, as represented by PG, in curbing
carbon emissions. By obtaining PG, construction companies can continuously develop
and apply new energy-saving and emission-reduction technologies, processes, equipment,
and materials, enhancing energy utilization efficiency and reducing carbon emissions.
However, Zhang et al. (2020) consider that once energy consumption exceeds a critical
level, the promoting effect of technological innovation on carbon emissions reduction will
turn into an inhibiting effect [57]. Additionally, this indicator possesses a certain spatial
spillover effect, signifying that innovative collaboration in the construction industry across
neighboring provinces can pool more intelligence and resources. They can collaboratively
develop advanced carbon emission reduction technologies, engage in technology sharing,
and accelerate technological exchanges, achieving the goal of energy savings and emission
reductions at the source. This is consistent with the view of Dong et al. [58].
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5.3. Special Effect
5.3.1. The Urbanization Rate (UR)

It is widely believed that urbanization primarily manifests as an expansion of construc-
tion land and frequent building activities. Such progression often triggers deforestation, a
reduction in arable land, shifts in land cover, and, consequentially, climatic changes and
elevated carbon emissions. However, some studies argue that the impact of different stages
of urbanization on carbon emissions varies. Zhou et al. (2021) believe that the relationship
between urbanization and land-use change emissions (LUCEs) can be summarized into
three modes; however, the findings of this study differ from that perspective [59]. Accord-
ing to the data, only in specific years does UR directly correlate with carbon emissions,
indicating that heightened urbanization levels lead to an uptick in carbon emissions within
the construction industry. However, in the remaining years, UR did not pass the hypothe-
sis test, indicating a weak association between UR and carbon emissions across various
provinces and their neighbors. Given China’s vast territorial extent and stark regional
differences, the urbanization pace is not uniform across the country.

For instance, while Shanghai leads with an urbanization rate of 89.3%, Yunnan stands
at the lower end with a mere 50.5%. Regions with higher urbanization levels usually boast
advanced infrastructure, leading to fewer new construction initiatives. Moreover, con-
struction projects in these regions often employ eco-friendly methodologies and materials,
minimizing their carbon emissions. Conversely, regions with lower urbanization rates
often intensify measures like land expansion and infrastructure development to accelerate
urbanization. This tends to sustain high energy consumption in the construction industry,
consequently exacerbating carbon emissions. Hence, the influence of UR on construction
carbon emissions might be bidirectional, which cannot be simply understood as a direct
cause-and-effect relationship between them. Their interrelation remains influenced by
multiple factors, aligning with the research perspectives of Wang et al. [60].

5.3.2. Technical Equipment Rate (TR)

The level of TR signifies the degree of mechanization and technological investment
within the construction industry. This, in turn, affects the efficiency of construction pro-
duction, indirectly determining the volume of carbon emissions. Although technological
progress is widely recognized as a method of reducing carbon emissions, some scholars
believe that technological progress can also have the opposite effect [61]. The results of
this study, however, demonstrate both positive and negative impacts. The data indicate
that TR passes the significance test in more than six times, demonstrating a certain spatial
correlation between TR and carbon emissions. However, it is noteworthy that the relation-
ship was positive prior to 2018 but turned negative afterward. While construction firms
have steadily acknowledged the value of mechanization and technological advancement,
ramping up their machinery investments, or the use of information and communication
technology (ICT), such shifts bring challenges [62]. The high energy demands of the newly
introduced machinery can lead to an increase in fossil fuel consumption, boosting carbon
emissions. Moreover, there is an inherent learning curve when introducing new technolo-
gies. Workers initially might not fully grasp the optimal methods of operation, which can
hinder the machinery’s efficiency and inadvertently escalate energy wastage and carbon
emissions. With the accumulation of practical experience, the widespread application of
information technology, the introduction of newer low-energy construction machinery,
guidance from green building policies, and the sharing and emulation of successful prac-
tices from neighboring provinces’ construction industries, the rise in TR has simultaneously
led to reduced resource consumption and lower carbon emissions, ultimately exhibiting a
negative correlation [63].

5.4. Policy Recommendations

According to the research results, NE has the highest degree of influence. Therefore,
in high carbon-emission areas, the first step is to strengthen publicity and education,
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improve construction workers’ awareness of clean energy and green buildings, and form
a social consensus. Secondly, considering the significant role of technological innovation
and machinery investment in suppressing carbon emissions, government departments
can provide policy support or tax incentives to encourage construction companies to
adopt clean energy, green low-carbon technologies, and low-energy machinery, fostering
structural adjustments within the industry [64]. Simultaneously, corresponding restrictions
and emission reduction targets should be imposed on carbon emissions, with rewards for
those achieving the targets and penalties for excessive emissions.

In low carbon-emission areas, establishing low-carbon demonstration projects could
be considered. Through skill training or academic seminars, the successful experiences of
emission reduction and advanced technologies could be exchanged and shared externally,
facilitating the transfer of low-carbon knowledge. Alternatively, the implementation of
technology assistance programs could provide technical support to high carbon-emission
areas, fostering collaborative efforts to promote the transformation and upgrading of the
construction industry. Taking into account the spatial correlation of carbon emissions,
regional cooperation could be explored, such as establishing a carbon emission information
platform for tracking construction-related carbon emissions, bolstered by data-sharing
mechanisms, which would enhance monitoring, auditing, and oversight processes. These
initiatives aim to promote the healthy and sustainable development of the construction
industry, ultimately achieving the ”dual-carbon” goals.

6. Conclusions

This research analyzed the carbon emissions from the construction industry of
30 provinces in China over a decade, from 2011 to 2020. From a spatiotemporal per-
spective, after 10 years of evolution, the carbon emissions of the construction industry have
gradually formed a “Belt–Ring–Dot” distribution characteristic. The “Belt” represents a
low-value aggregation area of carbon emissions horizontally, while the “Ring” and the
“Dot” are high-value aggregation areas. Analysis of the trend indicates a U-shaped pattern
in carbon emissions from north to south, with higher emissions in the central region gradu-
ally decreasing toward the north and south. In the east–west direction, emissions are lower
in the west and higher in the east, with a deceleration in the rate of increase. This suggests
significant regional disparities in carbon emissions from the construction industry, while
many provinces have made strides in carbon reduction, a select few continue to grapple
with heightened emission challenges.

Based on the global spatial autocorrelation analysis from 2011 to 2020, the Moran’s
I index of carbon emissions in the construction industry consistently surpassed 0, with a
maximum value of 0.284 in 2018. Every value met the criteria for statistical significance,
highlighting a clear spatial correlation in construction carbon emissions throughout the
30 provinces. To address the limitations of traditional economic models that neglect spatial
correlations, this study employs a spatial error model to analyze the influencing factors
of carbon emissions. Evaluating from economic, social, demographic, technological, and
innovative perspectives, five indicative variables are incorporated: the gross product
(GP), number of employees (NE), urbanization rates (UR), technological equipment rate
(TR), and patents granted (PG). Among the five variables, the spatial correlation of UR
is the weakest, failing the test a total of seven times, with the minimum test coefficient
being only 0.001. While the spatial correlation of NE is the highest, passing the test eight
times, and the mean test coefficient is the largest, at 0.552. Simultaneously, NE and GP
show a positive correlation with carbon emissions, indicating an aggravating effect on the
emissions, whereas NE tops the list in spatial correlation, followed by PG, TR, and GP.
On the other hand, due to the consistently negative test coefficients, with the maximum
absolute value of 0.166, PG demonstrates an inverse relationship with carbon emissions.
This underscores the significant role that technological innovation, as represented by
PG, plays in curbing carbon emissions. TR, however, has shown a shift from a positive
correlation to a negative one, with 2018 as the turning point.
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This study still has some research limitations. For instance, given sufficient data,
extending the study timeframe beyond the current 10 years could reveal a more compre-
hensive pattern of evolution. Additionally, future research could consider expanding the
categories of influencing factors of carbon emissions in the construction industry to broaden
the research findings. Furthermore, in terms of regional segmentation, it might be beneficial
to shift the study focus from provincial to municipal levels for a more detailed conclusion.
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