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Abstract: In recent years, the application of artificial intelligence-based methods to engineering
problems has received consistent praise for their high predictive accuracy. This paper utilizes a
BP neural network to predict the strength of steel–concrete composite beam shear connectors with
high-strength friction-grip bolts (HSFGBs). These connectors are widely used in bridge and building
construction due to their superior strength and stiffness compared to traditional beams. A validated
finite element model was used to predict the strength of HSFGB shear connectors. A reliable database
was created by analyzing 208 models with different characteristics for machine learning modeling.
Previous studies have identified issues with result variation and overestimation or underestimation
of shear connection strength. Among the machine learning methods evaluated, the backpropagation
neural network model performed the best. It achieved a goodness of fit of over 93% in both the
training and testing sets, with a low coefficient of variation of 6.50%. Concrete strength, bolt diameter,
and bolt tensile strength were found to be important variables influencing the strength of shear
connectors. Other variables showed a proportional or inverse relationship with compressive strength,
except for concrete strength and bolt pretension. This study presents an accurate machine learning
approach for predicting the strength of HSFGB shear connectors in steel–concrete composite beams.
The study offers valuable insights into the effects of various variables on the performance of shear
connection strength, providing support for structural design and analysis.

Keywords: composite beams; bolted shear connectors; data-driven approach; finite element modeling;
sustainability

1. Introduction

In recent years, there has been a substantial increase in the use of steel–concrete com-
posite beams in bridges and buildings. These composite beams provide several advantages
compared to pure steel or concrete beams, such as superior initial stiffness and strength, a
higher span-to-depth ratio, and reduced mid-span deflection, as demonstrated in Figure 1.
As a result, they have been widely adopted in construction projects. Shear connectors play
a crucial role in facilitating the transfer of forces between the steel beam and the concrete
slab in steel–concrete composite beams. The most commonly used shear connectors are
headed stud connectors, which are welded to ensure a strong and ductile shear connection.
However, due to an increasing focus on recycling, there is a need for more sustainable
installation techniques. High-strength friction-grip bolt (HSFGB) shear connectors have
emerged as a viable alternative in response to this need. These connectors not only require
the tightening of nuts but also provide easier recyclability, making them highly suitable for
future development and construction projects.
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During the 1970s, Marshall et al. [1] conducted a series of experimental studies to
investigate the application of high-strength friction-grip bolts (HSFGBs) as shear connectors
in steel–concrete composite structures. Recently, Kwon et al. [2] conducted tests on three
types of post-installed shear connectors under static and fatigue loads, aiming to investigate
methods for achieving composite action in existing non-composite bridges. Pathirana
et al. [3] performed composite beam tests using blind bolts and welding studs, and their
findings demonstrated that blind bolts are a more reliable method than welding studs
for achieving and maintaining composite action. Zhang et al. [4] conducted 11 sets of
experimental studies on the static performance of HSFGB shear connectors in composite
beams and proposed a formula for predicting the ultimate strength of these connectors.
However, early models often lacked sufficient experimental data, resulting in limited
effectiveness in predicting the ultimate strength of HSFGB shear connectors. Therefore, it
becomes crucial to develop a prediction formula that is accurate and reliable by utilizing
extensive experimental data and considering multiple variables.

Recently, there has been a growing popularity in the use of machine learning tech-
niques for predicting the structural state. These AI techniques have demonstrated promis-
ing results in modeling and predicting behaviors in civil engineering problems [5–11]. In
the field of structural engineering, machine learning has proven to be precise and reli-
able. Tohidi and Sharifi successfully developed a backpropagation neural network that
accurately predicts the residual flexural strength of corroded steel plate beams [12]. In a
separate study, Sharifi et al. investigated the use of neural network models to predict the
ultimate bearing capacity of honeycomb steel beams. They conducted tests with different
learning algorithms and hidden neuron configurations to determine the most effective
network. Additionally, they introduced a novel formula that utilizes artificial neural net-
works to estimate the failure load of honeycomb steel beams [13]. Sarothi et al. performed
a comprehensive comparison of various machine learning models, such as linear regres-
sion, ridge regression, lasso regression, support vector machine, decision tree, random
forest, k-nearest neighbors, artificial neural networks, XGBoost, AdaBoost, and CatBoost.
They trained and evaluated a total of 11 models for predicting the shear bolt connection
capacity. The results indicated that the random forest model outperformed the others
in terms of predictive performance. Moreover, they presented a formula derived from
this model [14]. Bagherzadeh et al. developed a high-precision computational model by
integrating multiple machine learning tools to predict the maximum tensile stress of a
plain-woven composite panel with two interacting grooves. The model incorporates GBR,
PolyFeatures, and LassoLarsCV algorithms, outperforming other machine learning combi-
nations and artificial neural networks in predicting the target values [15]. Asgarkhani et al.
enhanced ML algorithms using a pipeline-based hyper-parameter fine-tuning method and
feature selection techniques to prevent overfitting and data leakage. The results indicate
that the proposed methods achieve high prediction accuracy (over 95%) and curve fitting
ability, enabling the estimation of the median of the IDA curve and the seismic failure
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probability curve for an accelerated seismic risk assessment [16]. Hosseinpour employed
neural networks to predict the ultimate strength of bolt shear connectors in composite
cold-formed steel beams. The study specifically examined grade 8.8 bolt shear connectors
and offered a formula to accurately determine their ultimate strength [17]. Collectively,
these studies have conclusively demonstrated the feasibility and effectiveness of utilizing
machine learning approaches in the field of structural engineering.

Therefore, a finite element model was established to investigate the static performance
of high-strength bolted connections in composite beams. Xing’s experimental results [18]
were utilized to validate these models. Figure 2 illustrates the exact measurements and
configurations. Subsequently, a thorough analysis was conducted, consisting of 144 finite
element models that accounted for different factors impacting the maximum shear strength
of bolted connections. Utilizing the insights gained from this analysis, an operational
correlation using artificial neural networks was developed to predict the ultimate shear
strength of high-strength bolted connections. The database obtained from the analysis
was employed to supply input and target data for the neural network. Additionally, to
obtain more accurate prediction formulas, five methods were compared as follows: linear
regression (ridge regression and ordinary least squares) and nonlinear regression (decision
trees, random forests, and backpropagation neural networks). The results indicated that the
backpropagation neural network method is most suitable for predicting the ultimate shear
strength of HSFGB bolted connections in composite beams. By comparing the calculated
values of the proposed formula with those obtained from the relevant literature, it was
demonstrated that the proposed formula can provide reasonable prediction results.
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Figure 2. Push-out test specimen details (unit: mm).

2. Finite Element Modeling

For machine learning, having more data is generally better; in most cases, having more
data can provide better training results. Larger datasets can help models capture patterns
and regularities in the data, thereby improving their generalization ability. However, we
currently only have 64 sets of experimental data, so we must build additional validated
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finite element models to supplement our database. ABAQUS 2023 is a popular and versatile
software used for finite element analysis in mechanical engineering [19]. It offers a wide
range of features and analysis options, allowing engineers and researchers to simulate
and analyze various engineering applications. These include static and dynamic analysis,
linear and nonlinear material models, and more. ABAQUS is known for its powerful
modeling and post-processing capabilities, making it a valuable tool for addressing complex
engineering problems. That is why we have chosen ABAQUS as our preferred finite element
analysis software.

2.1. Material Constitutive
2.1.1. Concrete

The concrete material constitutive model employed in this study was proposed by
Ding et al. [20] and is as follows:

y =


Anx+(Bn−1)x2

1+(An−2)x+Bnx2 , x ≤ 1
x

αn(x−1)2+x
, x > 1

(1)

where An represents the ratio of the initial tangent modulus to the secant modulus at the
point of peak stress, and the initial tangent modulus equates to the elastic modulus. Bn is a
parameter that regulates the reduction in the elastic modulus during the upward segment
of the axial stress–strain correlation. The proposed elastic modulus (Ec) values for different
strength grades of concrete are as follows:

Ec = 9500fcu
1/3 (2)

fc = 0.4 fcu
7/6; Or ft = 0.24 fcu

2/3. (3)

εc = 383 fcu
7/18 × 10−6; Or εt = 33 fcu

1/3 × 10−6. (4)

• In the case of concrete under compression, the following definitions apply: y represents
the ratio of the compressive stress (σ) to the uniaxial compressive strength ( fc), x
denotes the ratio of the compressive strain (ε) to the corresponding compressive strain
at the uniaxial tensile strength (εc), and n is set to 1. The variables fc and ft stand
for the uniaxial compressive and tensile strengths of concrete, respectively, while εc
and εt are the associated compressive and tensile strains. Additionally, fcu represents
the compressive cubic strength of concrete, with the variables A1 and B1 defined as
A1 = 9.1 fcu

−4/9 and B1 = 1.6(A1 − 1)2, respectively. For overall concrete, α1 is given
as 2.5× 10−5 fcu

3, while α1 = 0.15 is used for locally confined concrete in the nonlinear
finite element analysis.

• For concrete in tension, the following relationships are established: y is the ratio of
the tensile stress (σ) to the uniaxial tensile strength ( ft), x represents the ratio of the
tensile strain (ε) to the corresponding tensile strain at the uniaxial tensile strength
(εt), and n is set to 2. The variable A2 is assigned a value of 0.8 for the nonlinear
finite element analysis of reinforced concrete structures, while B2 is calculated as
5(A2 − 1)2/3. Additionally, α2 equals 1 + 3 fcu

2 × 10−4.

2.1.2. Steel Components

In this study, we utilized a tri-linear constitutive model, which was suggested by
Loh et al. [21], to accurately simulate the characteristics of high-strength bolt materials.
This model is visually depicted in Figure 3. In this model, the ultimate strength (fbtu) and
yield strain (εbty) were used, with the ultimate strain set at 8εbty. To verify and analyze
the model, we adopted a bolt fracture strain of 0.15, as suggested by Shi et al. [22]. The
adopted failure criterion is “Ductile Damage”. For the simulation of steel beams, gaskets,
and reinforced bars, an ideal elastic–plastic constitutive model was used, neglecting the
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strain-hardening phenomenon. The steel material was characterized by an elastic modulus
of 205 GPa and a Poisson’s ratio of 0.3. The yield strengths of the steel beam, gaskets,
and reinforced bars were 353 MPa, 1150 MPa, and 340 MPa, respectively. The diameter
of the steel reinforcement was assumed to be Φ10, and the specific values align with the
experimental data mentioned in the literature. For more detailed information, please refer
to Table 1.

Buildings 2023, 13, x FOR PEER REVIEW 5 of 23 
 

2.1.2. Steel Components 

In this study, we utilized a tri-linear constitutive model, which was suggested by Loh 

et al. [21], to accurately simulate the characteristics of high-strength bolt materials. This 

model is visually depicted in Figure 3. In this model, the ultimate strength (fbtu) and yield 

strain (εbty ) were used, with the ultimate strain set at 8εbty . To verify and analyze the 

model, we adopted a bolt fracture strain of 0.15, as suggested by Shi et al. [22]. The 

adopted failure criterion is “Ductile Damage”. For the simulation of steel beams, gaskets, 

and reinforced bars, an ideal elastic–plastic constitutive model was used, neglecting the 

strain-hardening phenomenon. The steel material was characterized by an elastic modu-

lus of 205 GPa and a Poisson’s ratio of 0.3. The yield strengths of the steel beam, gaskets, 

and reinforced bars were 353 MPa, 1150 MPa, and 340 MPa, respectively. The diameter of 

the steel reinforcement was assumed to be Φ10, and the specific values align with the ex-

perimental data mentioned in the literature. For more detailed information, please refer 

to Table 1. 

 

Figure 3. Constitutive relationship of high-strength bolts. 

Table 1. Details of test specimens and failure mode. 

Specimen 

Concrete 

Strength 

𝒇𝒄𝒖 (MPa) 

Bolt 

Diameter 𝒅 

(mm) 

Ultimate 

Strength 𝒇𝒖 

(MPa) 

Bolt 

Pretension 

𝑻 (kN) 

Preformed Hole 

Diameter Failure 

Mode Concrete Slab 

(mm) 

Steel Flange 

(mm) 

PT1 45.6 16 1083 80.7 20 18 B.F. 

PT2 60.2 16 1303 101.2 20 18 B.F. 

PT3 74.8 20 1024 126.4 24 22 B.F. 

PT4 61.6 16 1083 77.3 20 18 B.F. 

PT5 73.1 22 990 76.3 26 24 B.F. 

PT6 68.9 20 1024 77.9 24 22 B.F. 

B.F. = Bolt failure. 

2.2. Geometric Model, Element Type, and Mesh 

The specific grid size is depicted in Figure 4. To strike a balance between computa-

tional speed and accuracy, a grid sensitivity analysis was conducted. The grid sizes chosen 

at this point not only ensure computational efficiency but also maintain a high level of 

accuracy. The bolts, steel gaskets, and rigid base were divided into grids using the global 

seeding method with grid sizes of 2.5 mm, 6 mm, and 50 mm, respectively. The reinforce-

ment bars were divided into grids using the local seeding method with a grid size of “1”. 

The steel beam had the following three levels of mesh sizes: an overall size (20 mm), a size 

around the holes (5 mm), and a size along the innermost circumference of the holes (2.5 mm). 

The concrete slab had the following three levels of mesh sizes: an overall size (20 mm), a size 

Figure 3. Constitutive relationship of high-strength bolts.

Table 1. Details of test specimens and failure mode.

Specimen
Concrete
Strength
fcu (MPa)

Bolt
Diameter d

(mm)

Ultimate Strength fu
(MPa)

Bolt
Pretension

T (kN)

Preformed Hole
Diameter Failure

ModeConcrete Slab
(mm)

Steel Flange
(mm)

PT1 45.6 16 1083 80.7 20 18 B.F.
PT2 60.2 16 1303 101.2 20 18 B.F.
PT3 74.8 20 1024 126.4 24 22 B.F.
PT4 61.6 16 1083 77.3 20 18 B.F.
PT5 73.1 22 990 76.3 26 24 B.F.
PT6 68.9 20 1024 77.9 24 22 B.F.

B.F. = Bolt failure.

2.2. Geometric Model, Element Type, and Mesh

The specific grid size is depicted in Figure 4. To strike a balance between computational
speed and accuracy, a grid sensitivity analysis was conducted. The grid sizes chosen at this
point not only ensure computational efficiency but also maintain a high level of accuracy.
The bolts, steel gaskets, and rigid base were divided into grids using the global seeding
method with grid sizes of 2.5 mm, 6 mm, and 50 mm, respectively. The reinforcement bars
were divided into grids using the local seeding method with a grid size of “1”. The steel
beam had the following three levels of mesh sizes: an overall size (20 mm), a size around
the holes (5 mm), and a size along the innermost circumference of the holes (2.5 mm).
The concrete slab had the following three levels of mesh sizes: an overall size (20 mm), a
size around the holes (5 mm), and a size along the inner-layer circumference of the holes
(2.5 mm). Notably, for thin-walled components, it is advisable to utilize local seeding and
incorporate two or more layers of grids to enhance analysis precision and stability. In
this study, a two-layer grid system was utilized. Regarding the clearance between the
bolt and the hole in different components, the actual assembly conditions were taken into
consideration. A 1 mm clearance was considered for the steel gaskets, a 2 mm clearance for
the steel beam flanges, and a 4 mm clearance for the precast concrete slabs. This ensured a
more accurate representation of the physical assembly conditions.
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To ensure an accurate simulation of the structural behavior, we carefully selected the
appropriate element types for each component. Additionally, we made necessary revisions
to enhance the accuracy of the simulation. The two-node three-dimensional truss element
(T3D2) was chosen to model the reinforced bars embedded in the concrete slab, taking
into consideration the geometrical symmetry of the specimens and specified boundary
conditions. For all other structural components, except for the reinforcing bars, the eight-
node linear hexahedral solid element (C3D8R) was utilized. The C3D8R element is widely
used in engineering due to its numerous advantages, including high precision, geometric
flexibility, numerical stability, and a wide range of applications. This selection of element
types ensured an accurate and reliable simulation of structural behavior.

2.3. Interaction Conditions

The contact between surfaces was simulated using a face-to-face contact model, which
allows for separation between the surfaces while preventing penetration. To characterize
the frictional behavior, a friction coefficient of 0.52 was assigned to the interfaces between
steel and concrete. This value was determined based on the average obtained from the
interface friction values reported by Rabbat et al. [23] and Guo et al. [24]. In addition, a
friction coefficient of 0.25 was applied to all steel interfaces. To account for the interaction
and connection between the concrete slab and the reinforced bars, embedded constraints
were implemented. The “Embedded Region” command was utilized to embed the steel
reinforcement within the concrete elements. This approach ensures a realistic representation
of their mutual influence and connection.

2.4. Boundary Conditions

To accurately capture the experimental conditions, a rigid constraint is applied to the
steel footing. The center of the bottom surface serves as the constraint point (RP-1), where
a fixed constraint is imposed to prevent any movement. For the surface 1 and surface 2 of
the model, symmetric boundary conditions are applied to ensure symmetry and balance in
the analysis. To constrain the top surface, a structural coupling approach is employed. It
is coupled at the point (RP-2), as depicted in Figure 5. This coupling ensures that the top
surface remains constrained and properly connected to the surrounding components.

2.5. Loading, Analysis Method, and Failure Criteria

The nonlinear problem is addressed through the utilization of the general static analy-
sis method in ABAQUS. The loadings consist of bolt preloading and external loads, which
are divided into two analysis steps for accurate simulation. In the first step, the “Bolt Load”
functionality within the statics module is employed to apply the preload to the bolts. This
step ensures that the bolts are properly preloaded before subjecting the structure to external
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loading. In the second step, a downward displacement load is applied at the coupling point
on the top surface. To maintain equilibrium and account for the interaction between the bolt
preload and the externally applied load, the bolt force control mode is modified to “Fixed
at Current Length”. This adjustment allows the preload on the bolt to vary accordingly
with the applied load, ensuring the structure remains in a state of balance and stability
throughout the analysis.
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Figure 5. 3D view and boundary conditions.

The model can experience three potential failure modes. The first mode is associated
with the steel beam, wherein the local strain and stress exceed their respective limits,
resulting in a loss of normal working capacity. For the concrete slab, the second failure
mode occurs when the strain and damage surpass the specified limits under tension or
compression. These criteria act as indicators for potential cracking or fracturing. The third
failure mode involves the bolt rod section near the interface between the steel beam and
concrete slab. If the strain and stress in this region reach the anticipated fracture strain and
tensile strength, it will lead to bolt failure. The predominant failure modes observed, based
on available tests, are related to the concrete slab and the bolt rod section. Specifically, the
second failure mode pertains to the concrete slab, while the third failure mode is associated
with the bolt rod section. These findings are derived from extensive testing.

2.6. Finite Element Model Verification

We verified the accuracy of the finite element analysis by conducting a comparison
with experimental results, as shown in Table 2. This validation process ensured the reliabil-
ity and precision of our analysis. The simulated results from the analysis closely matched
the experimental data, with an average ratio of approximately 1.01. The standard devia-
tion between the simulated and experimental results was only 0.04, indicating a strong
agreement. Notably, the finite element model accurately predicted the observed failure
mode in the experiments. These findings support the reliability of the finite element model
for data analysis and future investigations. The slight discrepancies may be attributed to
the inherent experimental errors and the inaccuracies in the material constitutive models
used in the finite element simulation. For a detailed visual representation, please refer
to Figure 6.
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Table 2. Comparisons of the testing with predictions.

Test PT1 PT2 PT3 PT4 PT5 PT6 Average Standard Deviation

T 142.4 168.4 257.1 158.3 266.1 240.3
FEA 148.6 175.2 242.1 154.3 268.4 230.6

T/FEA 0.96 0.96 1.06 1.03 0.99 1.04
FEFM B.F. B.F. B.F. B.F. B.F. B.F.

1.01 0.04

T = test, FEA = finite element analysis, FEFM = finite element failure mode, B.F. = bolt failure.
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3. Establishment of a Database
3.1. Choosing Research Variables

The prevailing approach for enhancing the accuracy of HSFGB shear connectors’
ultimate strength prediction involves refining the formulas introduced in EN1994-1-1 [25]
that pertain to the ultimate strength of shear connectors with headed studs.

Pu,c =
0.8 fuπd2/4

γv
,Or Pu,c =

0.29αd2
√

fckEc

γv
(5)

where:

γv = 1.25 is the partial factor.
d is the diameter of the shank of the stud.
hsc is the overall nominal height of the stud.
α = 0.2(hsc/d + 1) for 3 ≤ hsc/d ≤ 4; α = 1 for hsc/d > 4.
fu is the specified ultimate tensile strength of the material of the stud.
fck is the characteristic cylinder compressive strength of the concrete at the age considered.

Due to the nature of the HSFGB being studied, α is usually set to 1. Addition-
ally, according to Formulas (2) and (3), mentioned in Ding et al. [20], Ec and fck can
be related to the compressive strength of standard concrete cubes. Therefore, based on
Formula (5), the characteristics of high-strength frictional shear connectors, relevant ex-
periments conducted by researchers, and the availability of data, the variables consid-
ered in this study are the compressive strength of standard concrete cubes (GB50010)
(150 mm × 150 mm × 150 mm) [26], the diameter of the connecting rod, the ultimate tensile
strength of the shear connector, the nominal hole diameter in concrete, and the pretension
force of the bolt.

3.2. Data Collection Standards and Guidelines

The following criteria outline the standards for data collection:

• To apply forces, all specimens are loaded using the method of “inserting a steel beam
between two concrete slabs”.

• The geometric dimensions and material properties of the concrete slabs, steel beams,
and high-strength bolts in all samples were defined.
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After experimental validation of the finite element model’s accuracy, an additional 144
models were established to expand the database. The data source is presented in Table 3.
Table 3 includes 64 sets of experimental data from 5 researchers and 144 sets of finite
element model simulation data validated by experiments. The selected variables include
bolt diameter, preformed hole diameter in concrete, high-strength bolt tensile strength,
pretension force, and concrete strength. Since some experiments used the compressive
strength of standard cylindrical concrete samples, we replaced them uniformly with the
compressive strength of standard concrete cubes. Xin et al. recommended a conversion
factor of 0.81 between the compressive strength of standard concrete cubes and cylindrical
samples [27].

Table 3. Database.

Reference Specimen d
/mm

D
/mm

fu
/Mpa

fcu
/Mpa

T
/kN

Pu
/kN

Failure
Mode

Xing et al. [28] PT1 16 20 1083 75.4 21 150.5 B.F.
PT2 16 20 1083 75.4 21.3 141.9 B.F.
PT3 16 20 1083 75.4 21.5 150.4 B.F.
PT4 16 20 1083 77.1 41.3 133.5 B.F.
PT5 16 20 1083 77.1 41.5 160.5 B.F.
PT6 16 20 1083 77.1 41.9 158.9 B.F.
PT7 16 20 1083 70.8 61.1 160.9 B.F.
PT8 16 20 1083 70.8 60.9 159.3 B.F.
PT9 16 20 1083 70.8 60.8 168.5 B.F.
PT10 16 20 1083 73.1 83.7 156.5 B.F.
PT11 16 20 1083 73.1 81.9 154.1 B.F.
PT12 16 20 1083 73.1 81.6 154.8 B.F.
PT13 16 20 1303 72.4 101.9 209.9 B.F.
PT14 16 20 1303 72.4 101.6 193.3 B.F.
PT15 16 20 1303 72.4 102.4 200.9 B.F.
PT16 16 24 1083 79.2 82.1 144.1 B.F.
PT17 16 24 1083 79.2 82 145.6 B.F.
PT18 16 24 1083 79.2 81.4 153.8 B.F.
PT19 20 24 1083 71.3 80.3 240.4 B.F.
PT20 20 24 1083 71.3 125.6 249.7 B.F.
PT21 20 24 1083 71.3 126.8 257.5 B.F.
PT22 22 26 1083 77.7 80.1 265 B.F.
PT23 22 26 1083 77.7 120.5 246.2 B.F.
PT24 22 26 1083 77.7 150.4 269.7 B.F.

Zhang et al. [4] T1-1 20 24 1150 50 80 207 B.F.
T1-2 20 24 1150 50 100 207.5 B.F.
T1-3 20 24 1150 50 120 207.5 B.F.
T1-4 20 24 1150 50 155 212.5 B.F.
T2-1 16 20 1150 50 155 156.3 B.F.
T2-2 22 26 1150 50 155 231.3 C.F.
T2-3 24 28 1150 50 155 266.8 C.F.
T3-1 20 22 1150 50 155 209.2 C.F.
T3-2 20 26 1150 50 155 172.5 B.F.
T4-1 20 24 1150 40 155 169.8 C.F.
T4-2 20 24 1150 45 155 172.8 C.F.

Kwon et al. [2] HTFGB-05ST 22 25 1020 30.2 (24.5) a 175 246 B.F.
HTFGB-06ST 22 25 1020 30.2 (24.5) a 175 225 B.F.

Ataei et al. [29] PT1 12 16 955 30.9 (25) a 0 82 B.F.
PT2 12 20 955 30.9 (26) a 0 79.8 B.F.
PT3 12 16 1319 30.9 (27) a 0 83 B.F.
PT4 12 20 1319 30.9 (28) a 0 83.5 B.F.
PT5 16 20 955 30.9 (29) a 0 118 B.F.
PT6 16 25 955 30.9 (30) a 0 130.1 B.F.
PT7 16 20 1319 30.9 (31) a 0 161.5 B.F.
PT8 16 25 1319 30.9 (32) a 0 183.7 B.F.
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Table 3. Cont.

Reference Specimen d
/mm

D
/mm

fu
/Mpa

fcu
/Mpa

T
/kN

Pu
/kN

Failure
Mode

PT9 20 25 955 30.9 (33) a 0 180 B.F.
PT10 16 20 1319 49.4 (40) a 0 165.2 B.F.
PT11 16 25 1319 49.4 (41) a 0 189.2 B.F.
PT12 20 25 955 49.4 (42) a 0 196.2 B.F.

Zhao et al. [30] K24-S-1 20 24 1158 46.7 155 177.3 C.F.
K24-S-2 20 24 1158 46.7 155 174.5 C.F.
K24-S-3 20 24 1158 46.7 155 176.4 C.F.
K24-M-1 20 24 1158 46.7 155 181.3 C.F.
K24-M-2 20 24 1158 46.7 155 178.6 C.F.
K24-M-3 20 24 1158 46.7 155 182 C.F.
K24-L-1 20 24 1158 46.7 155 186.6 C.F.
K24-L-2 20 24 1158 46.7 155 179.5 C.F.
K24-L-3 20 24 1158 46.7 155 184 C.F.
K28-L-1 20 28 1158 46.7 155 162.8 C.F.
K28-L-2 20 28 1158 46.7 155 161.8 C.F.
K28-L-3 20 28 1158 46.7 155 168.1 C.F.
K32-L-1 20 32 1158 46.7 155 137.9 C.F.
K32-L-2 20 32 1158 46.7 155 135.8 C.F.
K32-L-3 20 32 1158 46.7 155 138.6 C.F.

FEA FEA-1 16 20 830 16 30 101.7 B.F.
FEA-2 16 20 830 16 40 107.3 B.F.
FEA-3 16 20 830 16 50 109.1 B.F.
FEA-4 16 20 830 16 60 110.5 B.F.
FEA-5 16 20 830 40 30 107.8 B.F.
FEA-6 16 20 830 40 40 109.2 B.F.
FEA-7 16 20 830 40 50 111.5 B.F.
FEA-8 16 20 830 40 60 112.6 B.F.
FEA-9 16 20 830 80 30 114.6 B.F.
FEA-10 16 20 830 80 40 116.4 B.F.
FEA-11 16 20 830 80 50 117.3 B.F.
FEA-12 16 20 830 80 60 118.5 B.F.
FEA-13 16 20 900 16 30 116.5 B.F.
FEA-14 16 20 900 16 40 118.1 B.F.
FEA-15 16 20 900 16 50 119.5 B.F.
FEA-16 16 20 900 16 60 121 B.F.
FEA-17 16 20 900 40 30 117.8 B.F.
FEA-18 16 20 900 40 40 119.6 B.F.
FEA-19 16 20 900 40 50 121.5 B.F.
FEA-20 16 20 900 40 60 122.9 B.F.
FEA-21 16 20 900 80 30 123.5 B.F.
FEA-22 16 20 900 80 40 126.3 B.F.
FEA-23 16 20 900 80 50 126.8 B.F.
FEA-24 16 20 900 80 60 127.3 B.F.
FEA-25 16 20 1000 20 40 133.3 B.F.
FEA-26 16 20 1000 20 50 133.5 B.F.
FEA-27 16 20 1000 20 60 135.3 B.F.
FEA-28 16 20 1000 50 40 135.7 B.F.
FEA-29 16 20 1000 50 50 136.7 B.F.
FEA-30 16 20 1000 50 60 138.4 B.F.
FEA-31 16 20 1000 100 40 144 B.F.
FEA-32 16 20 1000 100 50 144.8 B.F.
FEA-33 16 20 1000 100 60 144.8 B.F.
FEA-34 16 20 1150 20 40 157 B.F.
FEA-35 16 20 1150 20 50 158.3 B.F.
FEA-36 16 20 1150 20 60 158.6 B.F.
FEA-37 16 20 1150 50 40 159.2 B.F.
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Table 3. Cont.

Reference Specimen d
/mm

D
/mm

fu
/Mpa

fcu
/Mpa

T
/kN

Pu
/kN

Failure
Mode

FEA-38 16 20 1150 50 50 160.5 B.F.
FEA-39 16 20 1150 50 60 161.4 B.F.
FEA-40 16 20 1150 100 40 164.4 B.F.
FEA-41 16 20 1150 100 50 167.5 B.F.
FEA-42 16 20 1150 100 60 167.6 B.F.
FEA-43 20 24 830 25 40 169.9 B.F.
FEA-44 20 24 830 25 50 175.1 B.F.
FEA-45 20 24 830 25 60 177.6 B.F.
FEA-46 20 24 830 62.5 40 172.1 B.F.
FEA-47 20 24 830 62.5 50 178.4 B.F.
FEA-48 20 24 830 62.5 60 180.2 B.F.
FEA-49 20 24 830 125 40 177.4 B.F.
FEA-50 20 24 830 125 50 184.6 B.F.
FEA-51 20 24 830 125 60 186.1 B.F.
FEA-52 20 24 900 25 40 180.8 B.F.
FEA-53 20 24 900 25 50 190.9 B.F.
FEA-54 20 24 900 25 60 194.6 B.F.
FEA-55 20 24 900 62.5 40 181.8 B.F.
FEA-56 20 24 900 62.5 50 193.1 B.F.
FEA-57 20 24 900 62.5 60 196.5 B.F.
FEA-58 20 24 900 125 40 189.1 B.F.
FEA-59 20 24 900 125 50 197.4 B.F.
FEA-60 20 24 900 125 60 202.1 B.F.
FEA-61 20 24 1000 31 50 211.7 B.F.
FEA-62 20 24 1000 31 60 219.5 B.F.
FEA-63 20 24 1000 77.5 50 212.6 B.F.
FEA-64 20 24 1000 77.5 60 221.3 B.F.
FEA-65 20 24 1000 155 50 218.7 B.F.
FEA-66 20 24 1000 155 60 226.1 B.F.
FEA-67 22 26 830 30 50 214.1 B.F.
FEA-68 22 26 830 30 60 222.3 B.F.
FEA-69 22 26 830 75 50 214.5 B.F.
FEA-70 22 26 830 75 60 222.9 B.F.
FEA-71 22 26 830 150 50 219.9 B.F.
FEA-72 22 26 830 150 60 227.0 B.F.
FEA-73 22 26 900 30 60 239.1 B.F.
FEA-74 22 26 900 75 60 239.7 B.F.
FEA-75 22 26 900 150 60 243.5 B.F.
FEA-76 16 20 1000 20 30 126.7 C.F.
FEA-77 16 20 1000 50 30 131.2 C.F.
FEA-78 16 20 1000 100 30 135.9 C.F.
FEA-79 16 20 1150 20 30 135.4 C.F.
FEA-80 16 20 1150 50 30 141.4 C.F.
FEA-81 16 20 1150 100 30 145.1 C.F.
FEA-82 20 24 830 25 30 151.2 C.F.
FEA-83 20 24 830 62.5 30 153.8 C.F.
FEA-84 20 24 830 125 30 161.6 C.F.
FEA-85 20 24 900 25 30 156.2 C.F.
FEA-86 20 24 900 62.5 30 158.9 C.F.
FEA-87 20 24 900 125 30 166.2 C.F.
FEA-88 20 24 1000 31 30 162.4 C.F.
FEA-89 20 24 1000 31 40 194.0 C.F.
FEA-90 20 24 1000 77.5 30 166.3 C.F.
FEA-91 20 24 1000 77.5 40 193.1 C.F.
FEA-92 20 24 1000 155 30 185.0 C.F.
FEA-93 20 24 1000 155 40 204.8 C.F.
FEA-94 20 24 1150 31 30 169.4 C.F.
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Table 3. Cont.

Reference Specimen d
/mm

D
/mm

fu
/Mpa

fcu
/Mpa

T
/kN

Pu
/kN

Failure
Mode

FEA-95 20 24 1150 31 40 204.4 C.F.
FEA-96 20 24 1150 31 50 227.1 C.F.
FEA-97 20 24 1150 31 60 244.7 C.F.
FEA-98 20 24 1150 77.5 30 170.8 C.F.
FEA-99 20 24 1150 77.5 40 204.4 C.F.

FEA-100 20 24 1150 77.5 50 227.9 C.F.
FEA-101 20 24 1150 77.5 60 247.9 C.F.
FEA-102 20 24 1150 155 30 187.7 C.F.
FEA-103 20 24 1150 155 40 213.6 C.F.
FEA-104 20 24 1150 155 50 232.0 C.F.
FEA-105 20 24 1150 155 60 252.4 C.F.
FEA-106 22 26 830 30 30 167.2 C.F.
FEA-107 22 26 830 30 40 197.4 C.F.
FEA-108 22 26 830 75 30 166.0 C.F.
FEA-109 22 26 830 75 40 198.3 C.F.
FEA-110 22 26 830 150 30 186.0 C.F.
FEA-111 22 26 830 150 40 202.9 C.F.
FEA-112 22 26 900 30 30 170.8 C.F.
FEA-113 22 26 900 30 40 203.6 C.F.
FEA-114 22 26 900 30 50 226.0 C.F.
FEA-115 22 26 900 75 30 168.9 C.F.
FEA-116 22 26 900 75 40 204.5 C.F.
FEA-117 22 26 900 75 50 225.0 C.F.
FEA-118 22 26 900 150 30 188.9 C.F.
FEA-119 22 26 900 150 40 209.2 C.F.
FEA-120 22 26 900 150 50 230.8 C.F.
FEA-121 22 26 1000 38 30 174.2 C.F.
FEA-122 22 26 1000 38 40 210.3 C.F.
FEA-123 22 26 1000 38 50 235.1 C.F.
FEA-124 22 26 1000 38 60 255.2 C.F.
FEA-125 22 26 1000 95 30 175.8 C.F.
FEA-126 22 26 1000 95 40 212.2 C.F.
FEA-127 22 26 1000 95 50 236.4 C.F.
FEA-128 22 26 1000 95 60 254.4 C.F.
FEA-129 22 26 1000 190 30 213.6 C.F.
FEA-130 22 26 1000 190 40 239.4 C.F.
FEA-131 22 26 1000 190 50 254.5 C.F.
FEA-132 22 26 1000 190 60 265.1 C.F.
FEA-133 22 26 1150 38 30 176.6 C.F.
FEA-134 22 26 1150 38 40 215.7 C.F.
FEA-135 22 26 1150 38 50 243.0 C.F.
FEA-136 22 26 1150 38 60 263.8 C.F.
FEA-137 22 26 1150 95 30 177.6 C.F.
FEA-138 22 26 1150 95 40 216.8 C.F.
FEA-139 22 26 1150 95 50 245.0 C.F.
FEA-140 22 26 1150 95 60 263.8 C.F.
FEA-141 22 26 1150 190 30 217.2 C.F.
FEA-142 22 26 1150 190 40 243.5 C.F.
FEA-143 22 26 1150 190 50 262.1 C.F.
FEA-144 22 26 1150 190 60 275.5 C.F.

T = test, FEA = finite element analysis, B.F. = bolt failure, C.F. = concrete failure, fcu( fck) a.

The specific distribution charts of the parameters for the 208 experimental data can
be seen in Figure 7. The distribution of most variables in the samples is non-uniform.
For example, the bolt diameter primarily ranges from 12 mm to 20 mm, with only one
sample having a diameter exceeding 22 mm. The precast hole diameter in the concrete
has a main distribution range of 16 mm to 24 mm, with only seven samples having a
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minimum diameter of 24 mm to 25 mm. The tensile strength of high-strength bolts is
mainly distributed between 830 MPa and 1083 MPa. The main distribution range of
pretension force is from 0 kN to 100 kN. Additionally, the concrete strength is primarily
distributed between 30 MPa and 50 MPa.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 23 
 

150 mm) [26], the diameter of the connecting rod, the ultimate tensile strength of the shear 

connector, the nominal hole diameter in concrete, and the pretension force of the bolt. 

3.2. Data Collection Standards and Guidelines 

The following criteria outline the standards for data collection: 

• To apply forces, all specimens are loaded using the method of “inserting a steel beam 

between two concrete slabs”. 

• The geometric dimensions and material properties of the concrete slabs, steel beams, 

and high-strength bolts in all samples were defined. 

After experimental validation of the finite element model’s accuracy, an additional 

144 models were established to expand the database. The data source is presented in Table 

3. Table 3 includes 64 sets of experimental data from 5 researchers and 144 sets of finite 

element model simulation data validated by experiments. The selected variables include 

bolt diameter, preformed hole diameter in concrete, high-strength bolt tensile strength, 

pretension force, and concrete strength. Since some experiments used the compressive 

strength of standard cylindrical concrete samples, we replaced them uniformly with the 

compressive strength of standard concrete cubes. Xin et al. recommended a conversion 

factor of 0.81 between the compressive strength of standard concrete cubes and cylindrical 

samples [27]. 

The specific distribution charts of the parameters for the 208 experimental data can 

be seen in Figure 7. The distribution of most variables in the samples is non-uniform. For 

example, the bolt diameter primarily ranges from 12 mm to 20 mm, with only one sample 

having a diameter exceeding 22 mm. The precast hole diameter in the concrete has a main 

distribution range of 16 mm to 24 mm, with only seven samples having a minimum di-

ameter of 24 mm to 25 mm. The tensile strength of high-strength bolts is mainly distrib-

uted between 830 MPa and 1083 MPa. The main distribution range of pretension force is 

from 0 kN to 100 kN. Additionally, the concrete strength is primarily distributed between 

30 MPa and 50 MPa. 

 

Figure 7. Distributions of the variables. 

  

Figure 7. Distributions of the variables.

4. Model Evaluation
4.1. Existing Evaluation Models

See Table 4. These models have been developed since 2004 and consider both concrete
failure and shear connector failure simultaneously.

Table 4. Existing evaluation models.

Concrete Failure Connector Fracture Unit Model
Sequence

EN 1994-1-1 (2004) [25] 0.29αd2
√

fck Ec
γv

0.8 fuπd2/4
γv

N, mm, MPa

(6)

AISC 360-16 (2016) [31] 0.5πd2
√

Ec fck
4

πd2 fu
4

(7)

GB 50017 (2017) [32] 0.43πd2
√

Ec fc
4

0.7πd2 fu
4

(8)

Zhang et al. (2019 [4] 0.7πd2
√

Ec fck
4

0.62πd2 fu
4

(9)

All models share the same form as Equation (6), with only variations in coefficients.
The models take into account variables such as the elastic modulus of concrete, compressive
strength of concrete, tensile strength of shear connectors, and bolt diameter. According
to Formulas (2) and (3), mentioned in Ding et al. [17], Ec and fck can be related to the
compressive strength of standard concrete cubes. Additionally, considering the prediction
of the ultimate strength of HSFGB shear connectors, the influences of preformed hole
diameter in concrete and bolt pretension force are also important. Hence, the variables
taken into consideration in this study are deemed viable.

4.2. Model Assessment

To assess the models presented in Table 4, it is recommended to evaluate them based
on both the average value and the coefficient of variation (COV) of the obtained results. The
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average value provides a comprehensive measure of the deviation between the calculated
values and the experimental values. A significantly higher average value suggests an
overestimation of shear strength, while a considerably lower average value indicates a
more conservative approach. The coefficient of variation is used to assess the dispersion
between the calculated values and the experimental values. A lower coefficient of variation,
approaching zero, indicates reduced dispersion and a more precise model.

Figure 8 presents a statistical analysis of the collected data, comparing the calculated
values and the actual values of the models proposed in different literature sources. This
analysis highlights the disparities between the proposed models and the observed out-
comes. For the models proposed by AISC 360-16 (2016) and GB 50017 (2017), the average
ratio between the predicted values and the actual values is 0.91 and 0.76, respectively.
These models exhibit overly conservative predictions for the shear-carrying capacity of the
specimens. On the other hand, the models proposed by EN 1994-1-1 (2004) and Zhang et al.
(2019) have average ratios of 1.01 and 0.99, respectively, indicating higher accuracy. EN
1994-1-1 (2004) has the lowest COV value at only 14.83%.
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5. Establishment of the Data-Driven Model

As stated in Section 4, the research findings suggest that the coefficient of variation for
the ratio between the calculated values and the experimental values falls within the range
of 14% to 18.5%. Additionally, it is proposed that further analysis should be conducted
to validate these results. Building upon this, our objective in this section is to develop a
data-driven machine learning model for predicting the ultimate strength of HSFGB shear
connectors in composite beams. By adopting this approach, we aim to obtain a more precise
and reliable prediction model for the ultimate strength of HSFGB shear connectors.

5.1. Model Construction and Evaluation

The machine learning model integrates established linear and nonlinear models. Lin-
ear regression and ridge regression are employed as the linear models, while decision
trees, random forests, and backpropagation neural networks are utilized as the nonlinear
models (refer to Figure 9). The dataset used for the model consists of 208 data points from
experiments conducted by researchers and finite element analyses (see Table 1). The model
is trained using 80% of randomly partitioned data, and the remaining 20% is used for
testing. The input variables include bolt diameter, preformed hole diameter in concrete,
high-strength bolt tensile strength, preload force, and concrete strength. The output variable
is the shear-bearing capacity. The model’s performance is evaluated using the following
two metrics: the coefficient of determination (R-squared) and the mean absolute percentage
error. Figures 10 and 11 depict the visual representation of the coefficient of determination
and the mean absolute percentage error of the model, respectively.

The BP neural network model outperforms the LR, RR, DT, and RF models in terms
of coefficient of determination for both the training and testing sets, exceeding 90% in
both cases.

By analyzing Figure 11, it can be noted that the LR and DT models display low
percentage errors for both the training and testing sets, with values of 0.11% and 0.48%,
respectively. On the other hand, the RR and RF models exhibit notably different percentage
errors between the training and testing sets, with values of 0.91% and 1.97%, respectively.
In contrast, the BP neural network model demonstrates percentage errors that not only
have closer values between the training and testing sets but are also considerably lower at
4.48% and 4.37%, respectively.
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In summary, the BP neural network model outperforms other models by achieving
the highest coefficient of determination and the lowest percentage error. Therefore, it is
considered the most suitable model for predicting the ultimate strength of HSFGB shear
connectors. Furthermore, when compared to other well-established models (as shown in
Figure 12), the BP neural network model demonstrates a lower coefficient of variation than
the model defined in EN 1994-1-1 (2004).
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5.2. Research on Variables in Studies
5.2.1. Analysis of the Importance of Research Variables

In this section, an analysis of importance is conducted to investigate the significant
factors that influence the ultimate strength of HSFGB shear connectors in composite beams.
The mean impact value (MIV) is commonly used to extract the feature importance of the BP
neural network. The MIV algorithm is primarily employed to detect which input variables
have an impact on the output and is a method used for variable selection and assessing
variable importance. The MIV calculation formula is shown in Equation (6). Two sets of
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data are obtained by reducing and increasing the value of a particular input variable by
10% while keeping other input variables unchanged.

MIV =
1
n∑n

i=1

(
y(i)up − y(i)down

)
(10)

where:

y(i)up: The predicted value for the i-th sample after increasing the variable by 10%;

y(i)down: The predicted value for the i-th sample after decreasing the variable by 10%.

The variable importance results after calculations can be seen in Figure 13.
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From Figure 13, it can be observed that the importance of variables for the shear
connection joint ultimate strength is in the following order: concrete strength, bolt diameter,
bolt ultimate tensile strength, preformed hole diameter in concrete, and bolt preload.

5.2.2. Analysis of the Sensitivity of Research Variables

To investigate the correlation between different individual variables and the ultimate
strength, we conducted a comprehensive sensitivity analysis. The analysis was performed
using the BP neural network model. The variable values are held constant while the
variable is varied across four different levels: d = 16, 18, 20, and 22 (with fcu taking values
of 30, 40, 50, and 60 when studying d). The variable values are obtained from the average
values of 208 sets of data collected from Table 1, respectively: D = 23.3 mm, fu = 1019.4 MPa,
T = 81.5 kN, fcu = 48 GPa. The relationship between each variable and the ultimate strength
of HSFGB shear connectors is shown in Figure 14.

From Figure 14a, it is apparent that the ultimate strength of HSFGB shear connectors
demonstrates a direct correlation with the bolt diameter. This relationship is observed
across various concrete strengths. Notably, the growth rate of ultimate strength becomes
more pronounced for bolt diameters exceeding 14 mm.

From Figure 14b, it can be seen that at different bolt diameters, the ultimate strength
of HSFGB shear connectors is inversely proportional to the preformed hole diameter
in concrete.

From Figure 14c, it can be observed that the ultimate strength of HSFGB shear connec-
tors is directly proportional to their ultimate strength.

From Figure 14d, it can be seen that at different bolt diameters, the ultimate strength
of HSFGB shear connectors exhibits a steady increase with the increase in bolt pretension
until it reaches a plateau. However, when the bolt pretension exceeds 130 kN, the ultimate
strength starts to rise again before eventually stabilizing.



Buildings 2023, 13, 2769 19 of 22

Buildings 2023, 13, x FOR PEER REVIEW 19 of 23 
 

 

Figure 13. Analysis of the importance of research variables. 

From Figure 13, it can be observed that the importance of variables for the shear con-

nection joint ultimate strength is in the following order: concrete strength, bolt diameter, 

bolt ultimate tensile strength, preformed hole diameter in concrete, and bolt preload. 

5.2.2. Analysis of the Sensitivity of Research Variables 

To investigate the correlation between different individual variables and the ultimate 

strength, we conducted a comprehensive sensitivity analysis. The analysis was performed 

using the BP neural network model. The variable values are held constant while the vari-

able is varied across four different levels: 𝑑 = 16, 18, 20, and 22 (with 𝑓𝑐𝑢 taking values of 

30, 40, 50, and 60 when studying 𝑑). The variable values are obtained from the average 

values of 208 sets of data collected from Table 1, respectively: 𝐷 = 23.3 mm, 𝑓𝑢 = 1019.4 

MPa, 𝑇 = 81.5 kN, 𝑓𝑐𝑢 = 48 GPa. The relationship between each variable and the ultimate 

strength of HSFGB shear connectors is shown in Figure 14. 

 
        (a) Bolt diameter  (b) Preformed hole diameter in concrete 

Buildings 2023, 13, x FOR PEER REVIEW 20 of 23 

(c) Ultimate strength (d) Bolt pretension

(e) Concrete strength

Figure 14. Sensitivity analysis of research variables. 

From Figure 14a, it is apparent that the ultimate strength of HSFGB shear connectors 

demonstrates a direct correlation with the bolt diameter. This relationship is observed 

across various concrete strengths. Notably, the growth rate of ultimate strength becomes

more pronounced for bolt diameters exceeding 14 mm.

From Figure 14b, it can be seen that at different bolt diameters, the ultimate strength 

of HSFGB shear connectors is inversely proportional to the preformed hole diameter in 

concrete. 

From Figure 14c, it can be observed that the ultimate strength of HSFGB shear con-

nectors is directly proportional to their ultimate strength. 

From Figure 14d, it can be seen that at different bolt diameters, the ultimate strength 

of HSFGB shear connectors exhibits a steady increase with the increase in bolt pretension 

until it reaches a plateau. However, when the bolt pretension exceeds 130 kN, the ultimate

strength starts to rise again before eventually stabilizing.

From Figure 14e, it can be observed that at bolt diameters of 18, 22, and 24, the ulti-

mate strength of HSFGB shear connectors shows an initial increase followed by a decrease 

with the increase in concrete strength. When utilizing an HSFGB shear connector with a 

bolt diameter of 16 mm, the ultimate load capacity exhibits a direct proportionality to the 

strength of the concrete. 

Figure 14. Sensitivity analysis of research variables.

From Figure 14e, it can be observed that at bolt diameters of 18, 22, and 24, the ultimate
strength of HSFGB shear connectors shows an initial increase followed by a decrease with
the increase in concrete strength. When utilizing an HSFGB shear connector with a bolt
diameter of 16 mm, the ultimate load capacity exhibits a direct proportionality to the
strength of the concrete.
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5.3. Formulation Development

Formulas in the BP neural network rely on carefully determined interlayer weights
and thresholds, which determine the network’s behavior. Equations (11) and (12) define
the transfer functions between layers, reflecting information processing and the network’s
output. Precise interlayer connection weights and biases can be found in Table 3, guiding
the network’s configuration and behavior.

tansig(ϕ) =
2

1 + e−2ϕ
− 1 (11)

f (ϕ) = ϕ (12)

where ϕ = ∑
i

Wijxi + φj. In the BP neural network, the connection weight between the i-th

layer and the i-th neuron is denoted as Wij. Additionally, the bias of the j-th neuron is
represented by φj.

Based on Table 5, we can obtain Equation (13) to predict the ultimate strength (Pu in
kN) of HSFGB shear connectors in composite beams by considering the following problem
variables: bolt diameter (d in mm), concrete borehole diameter (D in mm), high-strength
bolt ultimate tensile strength ( fu in MPa), bolt pretension force (T in mm), and concrete
compressive strength ( fcu in MPa). Please note that the provided equation is applicable
only within the range of the input variables. In this study, we strive to incorporate practical
requirements by considering the various ranges of different variables. The provided
formula represents the model expression obtained after extracting the BP neural network.
It has been verified that the maximum error between the predicted values of the model
expression and the BP neural network is only 1.7053× 10−13. The error is attributed to
the precision of the extracted coefficients being controlled to only four significant figures
after the decimal point. The applicable parameter range is as follows: d (12~24 mm), D
(16~32 mm) fu (830~1319 Mpa), T (0~190 kN), fcu (30~79.2 Mpa).

Pu =
−269.279
1 + e−2β1

+
157.9536
1 + e−2β2

+
66.8526

1 + e−2β3
+ 204.2662 (13)

β1 = −0.13546d + 0.053719D− 0.00033762 fu + 0.0026984T − 0.026075 fcu + 2.864 (14)

β2 = 0.023253d + 0.085009D + 0.0016156 fu + 0.0065562T − 0.043332 fcu − 1.5351 (15)

β3 = −0.18569d− 0.15407D− 0.004812 fu + 0.05698T−
0.066369 fcu + 6.0514

(16)

Table 5. Weights for interlayer connections in a neural network.

P

P

Hidden Output

H(1:1) H(1:2) H(1:3) Pu

Bias 2.864 −1.5351 6.0514
d −0.1355 0.0233 −0.1857
D 0.0537 0.085 −0.1541

Input fu −0.0003 0.0016 −0.0048
T 0.0027 0.0066 0.057
fcu −0.0261 −0.0433 −0.0664

Bias 182.0298
H(1:1) −134.64

Hidden H(1:2) 78.9768
H(1:3) 33.4263
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6. Conclusions

This research develops practical formulas to predict the ultimate strength of HSFGB
shear connectors in composite beams. Finite element analyses and variable studies are
used to simulate and validate the behavior of these connectors. The findings contribute to
accurate formulas considering connector characteristics for engineering design and analysis.
Overall, the research successfully predicts the ultimate strength of HSFGB shear connectors.

By analyzing researchers’ experimental data and a large amount of finite element
data, five data-driven models were evaluated, including ridge regression, least squares,
decision trees, random forests, and BP neural networks. Among these models, the BP
neural network exhibited the highest accuracy on the dataset and was, therefore, selected
for further analysis.

An analysis of variable importance indicated that the concrete strength, bolt diameter,
and bolt tensile strength significantly influenced the ultimate strength of the shear connector.
In a sensitivity analysis, we observed that, with the exception of concrete strength and
bolt pretension, the other variables exhibited either a positive or negative correlation with
compressive strength.

Based on these findings, we proposed a more accurate prediction formula for the
ultimate strength of HSFGB shear connectors. It is important to note that the proposed
relationships are only applicable within the range of data used in this study and can be
utilized by engineers during relevant design processes.

The method used in this article is the traditional BP neural network, and the collected
data are also limited. To establish a better model, it is necessary to incorporate more deep
learning models and gather a larger amount of data.
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