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Abstract: This paper presents the key mechanical properties of PVC fiber-reinforced concrete.
Six concrete mixtures were produced using plastic fibers obtained from clear PVC sheets.
Three concrete mixtures were made using 20 mm long PVC fibers, whereas the other three were
prepared with 40 mm long PVC fibers. The fiber content was varied in the range of 0–1.5 wt.% of
cement for each length of fiber. The fresh concrete mixtures were tested for workability in terms of
the slump. The hardened concretes were tested for their compressive and splitting tensile strengths,
flexural strength and toughness, static elastic modulus, and impact resistance and toughness. The
effects of the fiber content and fiber length on the workability and above-mentioned mechanical
properties were observed. In addition, the correlations between various mechanical properties were
sought. The test results revealed that the workability of concrete was reduced for both fiber lengths
as the fiber content increased. The compressive strength, flexural strength and toughness, elastic
modulus, and impact resistance and toughness increased at up to 1 wt.% fiber content, then decreased
for 1.5 wt.% fibers. A similar trend was also noticed for the splitting tensile strength, particularly
in the case of 20 mm long PVC fibers. Compared to the fiber length, the fiber content exhibited a
more pronounced effect on the mechanical properties of concrete. The optimum fiber content was
1 wt.%, which produced the best performance in this study. Furthermore, excellent correlations were
observed for the tested mechanical properties of concrete, except for splitting tensile strength, which
was not well-correlated with compressive strength.

Keywords: fiber-reinforced concrete; PVC fiber; compressive strength; splitting tensile strength;
elastic modulus; flexural strength and toughness; impact resistance and toughness

1. Introduction

The global generation of plastic waste is expanding tremendously. If plastics are
discarded rather than recycled, they constitute hazardous waste, as their pigments include
numerous trace ingredients that are harmful and take hundreds of years to break down
and decompose [1]. Even more concerning is that millions of tons of plastic waste enter the
marine environment each year, creating a detrimental effect that many researchers have
addressed [2–8]. Moreover, plastic waste causes severe troubles in wastewater treatment
facilities and pollution of the groundwater [9]. Plastic recycling can alleviate the above
issues and reduce the amount of waste disposal in landfills with significant contributions
to the conservation of raw materials and energy savings [10].

Plastic fibers can be used in producing various construction materials. Different types of
short plastic fibers, such as polyethylene terephthalate (PET), polypropylene (PP),
high- and low-density polyethylene (PE), polyvinyl alcohol (PVA), polyvinyl chloride (PVC),
nylon, aramid, and polyester, have been used in structural concrete members, shotcrete tunnel
linings, concrete overlays, blast-resistant concrete, and rigid pavements [11–15]. They were
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also found to be effective at reinforcing asphaltic concrete when mixed with conventional
asphalt [16–18]. Plastic fibers are utilized to increase the tensile strength of concrete and its
resistance to cracking. Previous research concluded that plastic fibers are useful for improving
the compressive strength, tensile strength, fracture toughness, ductility, absorption capacity,
and blast wave resistance of concrete [11,14,19–26]. Plastic fibers can carry internal forces by re-
sisting crack propagation and traveling over cracks, and thus improve the splitting tensile and
flexural strengths of concrete [27]. The incorporation of plastic fibers into concrete improves its
capacity to endure flexural stress. Table 1 includes the optimum percentage of various types
of plastic fibers used in previous studies, considering the increments in the compressive and
splitting tensile strengths of concrete. However, several researchers reported the decrement of
compressive strength when plastic fibers were used in concrete [21,28–35]. Mohammed and
Rahim [36] stated that the formation of flaws and pores within the concrete matrix due to
the varying volume and length of plastic fibers leads to the development of cracks. Nili
and Afroughsabet [37,38] observed a relatively large quantity of pores in the hardened
concrete specimens due to the improper pouring and compaction of the fresh concrete, and
consequently substantial reductions in their compressive and flexural strengths. The weak
fiber–cement matrix interface can also be responsible for the decrease in the tensile strength
of concrete [32,36,39]. In general, if a concrete is designed, mixed, poured, compacted, and
cured properly, plastic fibers are expected to improve its mechanical performance even in
adverse exposure conditions. It was found that the incorporation of PP fibers helps alleviate
the loss of the flexural strength of concrete caused by high temperature and thermal shock;
however, adding a high volume of plastic fibers into concrete increases the possibility of
forming a weak plane, which can result in a detrimental effect on the overall composite
behavior [40].

Table 1. Optimum fiber content for different types of plastic fibers considering the compressive and
splitting tensile strengths of concrete.

Fiber Type Fiber Size Fiber Properties

Compressive Strength, fc
′ Splitting Tensile Strength, ft

ReferencesOptimum
Fiber Content % Increment Optimum

Fiber Content % Increment

PET
Length = 50 mm,

width = 2–2.3 mm,
thickness = 0.25 mm

Specific gravity = 1.11,
tensile

strength = 989 MPa,
elastic

modulus = 7.05 GPa,
density = 910 kg/m3

0.4 wt.%
of binder 5.36 0.4 wt.%

of binder 11.60 [41]

PET Length = 50 mm,
diameter = 2 mm - 1.5 wt.%

of cement 15.57 1.5 wt.%
of cement 24.30 [42]

PET
Length = 30 mm,
width = 4 mm,

thickness = 0.3 mm

Tensile
strength = 101 MPa,

elastic
modulus = 0.19 GPa,

density = 1100 kg/m3,

1.5 vol.%
of concrete 44.00 - - [43]

PP Length = 12 mm,
diameter = 0.03 mm

Specific gravity = 0.91,
elastic

modulus = 3.5 GPa

0.3 vol.%
of concrete 1.30 0.3 vol.%

of concrete 22.30 [44]

PP
Length = 12 mm,
diameter = 0.025–

0.04 mm

Specific
gravity = 0.90–0.91,

tensile
strength = 4600 MPa,

elastic modulus > 4 GPa

0.5 vol.%
of concrete 4.20 0.5 vol.%

of concrete 16.87 [45]

RPET * 10
Ring shape, inner

diameter = 60 ± 5 mm,
width = 10 ± 1 mm

- 0.25 vol.%
of concrete 4.23 1 vol.%

of concrete 35.10 [46]

PVC Length = 40 mm,
diameter = 0.5 mm - 1 vol.%

of concrete 4.95 0.5 vol.%
of concrete 14.28 [47]

PET Length = 35 mm,
width = 1 mm Specific gravity = 1.36 1.5 wt.% of

fine aggregate 3.98 1.5 wt.% of
fine aggregate 5.59 [48]

Polythene - - 0.5 wt.%
of cement 3.84 0.5 wt.%

of cement 1.63 [49]

Polyester
(Recron-3S)

Length = 12 ± 1,
18 ± 1 mm, diameter,

0.0375 mm

Specific gravity = 1.36,
tensile

strength = 578 MPa,
elastic

modulus = 17.24 GPa,
density = 890–940 kg/m3

0.4 vol.%
of concrete 43.30 0.2 vol.%

of concrete 30.14 [50]
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Table 1. Cont.

Fiber Type Fiber Size Fiber Properties

Compressive Strength, fc
′ Splitting Tensile Strength, ft

ReferencesOptimum
Fiber Content % Increment Optimum

Fiber Content % Increment

HDPE † Length = 23 mm,
diameter = 0.25 mm

Tensile
strength = 37 MPa,

elastic
modulus = 0.5 GPa,

density = 940 kg/m3

0.4 vol.%
of concrete 12.45 0.4 vol.%

of concrete 10.39 [51]

HDPE Length = 30 mm,
diameter = 0.40 mm

Tensile
strength = 37 MPa,

elastic
modulus = 0.5 GPa,

density = 940 kg/m3

0.75 vol.%
of concrete 14.16 0.4 vol.%

of concrete 8.60 [51]

PET
Length = 25 mm,
width = 2 mm,

aspect ratio = 35
- 1.5 wt.%

of cement 3.59 1 wt.%
of cement 11.20 [52]

Waste
plastic

Length = 30 mm,
width = 5 mm,

thickness = 1 mm
- 1 vol.%

of concrete 4.00 1 vol.%
of concrete 11.00 [53]

PP - - 0.1, 0.3 vol.%
of concrete 19.34 - - [54]

* Recycled Polyethylene Terephthalate; † High-Density Polyethelene.

Most of the above-mentioned published papers focused on the compressive, flexural,
and splitting tensile strengths of plastic fiber-reinforced concrete. In comparison, limited
studies regarding the effect of plastic fibers on the impact resistance and toughness of
concrete have been conducted. Bayasi and Zeng [54] investigated the impact resistance of
concrete with PP fibers. Their study showed that PP fibers, particularly those with a length
of 12.7 mm, considerably increased the impact resistance of concrete with a fiber content
up to 0.5 vol.% of concrete. This improvement is due to the fibers’ capacity to intercept
fractures and restrict crack propagation inside the concrete matrix, providing a three-
dimensional mesh reinforcement. However, the impact resistance of concrete decreased
for the increased fiber volume content beyond 0.5%. Foti and Paparella [55] studied the
performance of the concrete reinforced with PET strips, which resulted in a ductile behavior
of the slab that prevented complete failure, confirming the enhancement in the impact
strength. Also, Soroushian et al. [56] analyzed the impact resistance of recycled plastic
fibers; they reported an increase in the impact strength up to a fiber aspect ratio of 50, after
which it declined. At the aspect ratio of 50, the tight interlocking of fibers with aggregates
eliminated voids, resulting in a greater impact strength. From this perspective, additional
research is necessary to gain a comprehensive understanding of the impact resistance of
concrete reinforced with PVC fibers.

In summary, the literature review revealed that most of the previous studies exam-
ined the compressive, tensile, and flexural strength characteristics of non-PVC plastic
fiber-reinforced concrete. In comparison, limited research was undertaken on the impact re-
sistance of non-PVC and PVC fiber-reinforced concretes. The aim of this research consisted
of investigating the impact behavior of PVC fiber-reinforced concrete along with its work-
ability, compressive and splitting tensile strengths, and flexural strength and toughness.
The impact performance of concrete was examined with respect to its resistance to the first
crack and ultimate failure under repeated dynamic loading. In addition, the relationships
between different mechanical properties were sought.

2. Research Significance

Several plastic fiber-reinforced concretes with adequate workability were produced in
this study. PVC plastic fibers were added to produce the concrete mixtures. The mechanical
performance of the concretes was examined, focusing on their compressive and splitting
tensile strengths, flexural strength and toughness, and impact resistance and toughness.
The test results showed that the above properties were improved by PVC fibers when used
with a content of up to 1 wt.% of cement, although the workability was decreased. The
overall research findings suggest that PVC fibers can be used in concrete for structural and
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non-structural applications. Such applications of PVC fibers will contribute to alleviating
the critical issues that the world is currently facing due to the huge quantity of plastic waste.

3. Materials and Methods
3.1. Constituent Materials

Portland composite cement (PCC) with a strength grade of 42.5 N was used in the
present study. The initial setting time of this cement was 160 min, and its early strength
reached 20 MPa after 3 days. The specific gravity of PCC is 3.13. It consists of 65–79%
clinker and 21–35% slag, fly ash, and limestone, with a 0–5% gypsum content. Coarse
river sand (4.75 maximum size) and crushed stone (19 mm nominal maximum size) were
used following the specifications given in ASTM C33/C33M−18 [57]. River sand was
incorporated as fine aggregate (FA) whereas crushed stone was included as coarse aggregate
(CA). Table 2 and Figure 1 depict the key physical properties and particle size distributions
of the aggregates, respectively. Along with the cement and aggregates, normal tap water
was used in preparing the concrete mixtures. Furthermore, clear PVC sheets (0.45 mm
thick) were collected from a local garment factory and cut into small plastic fibers (Figure 2).
The fibers were 20 mm and 40 mm in length with a width of 2 mm. They were used in
the concrete mixtures by weight of cement. A third-generation polycarboxylate-based
superplasticizer with a specific gravity of 1.07 was also used in all concrete mixtures.

Table 2. Physical properties of aggregates.

Physical Properties FA (River Sand) CA (Crushed Stone)

Fineness modulus 3.05 7.50
Unit weight (kg/m3) 1778 1535

Voids (vol.%) 31.06 38.96
Bulk specific gravity (OD *) 2.50 2.50
Bulk specific gravity (SSD †) 2.58 2.51

Apparent specific gravity 2.73 2.54
Absorption (wt.%) 3.03 0.60

* Oven Dry; † Saturated Surface Dry.
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Figure 2. Processing of plastic fibers (a) PVC sheets and (b) PVC fibers after cutting.

3.2. Mixture Proportions

The mixture design of the concretes was performed following ACI Committee 211.1 [58]
for a target compressive strength of 20 MPa. The water-to-cement ratio was taken as 0.58.
A total of seven concrete mixtures with the PVC fiber contents of 0%, 0.5%, 1%, and 1.5%
by weight of cement were prepared. The polycarboxylate-based superplasticizer was used
by 1 wt.% of cement to make the concrete mixtures workable for casting test specimens.
Table 3 shows the mixture proportions of the control and PVC fiber-reinforced concretes.

Table 3. Mixture proportions of the concretes for the target compressive strength of 20 MPa.

Mixture
Designation

PVC Fiber Basic Ingredients (kg/m3) Superplasticizer
(wt.% of
Cement)

Fiber Length
(mm)

Fiber Content
(wt.% of Cement) Water Cement CA

(SSD *)
FA

(SSD)

Control - 0 198 341.7 935.5 771.9

1

PVCFRC 1
20

0.5 197 340 930.8 768
PVCFRC 2 1 196 338.3 926.1 764.2
PVCFRC 3 1.5 195 336.6 921.5 760.3

PVCFRC 4
40

0.5 197 340 930.8 768
PVCFRC 5 1 196 338.3 926.1 764.2
PVCFRC 6 1.5 195 336.6 921.5 760.3

* Saturated Surface Dry.

3.3. Methods for Testing
3.3.1. Workability Test

The slump test was performed to assess the workability of the freshly mixed concretes
in accordance with ASTM C143 [59]. A slump cone was positioned on a stable, level surface,
and the concrete sample was poured in three layers. The compaction of the individual
concrete layer was achieved by tamping it 25 times with the specified rod. The vertical
displacement between the initial and final heights of the concrete sample was used to
measure the slump.

3.3.2. Compressive Strength, Splitting Tensile Strength, and Static Elastic Modulus Tests

Cylinder specimens of ∅100 mm × 200 mm in size were tested for compressive
strength [60], static elastic modulus [61], and splitting tensile strength [62], as shown in
Figure 3. Triplicate specimens were used in compression and splitting tension tests whereas
duplicate specimens were employed in elastic modulus test. All the prepared specimens
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were continuously water-cured for 28 days in a curing tank before testing. For determining
the static elastic modulus (refer to Figure 4), the following Equation (1) was used.

E =
S2 − S1

ε2 − 0.00005
(1)

where E = modulus of elasticity; S1 = stress corresponding to a longitudinal strain (ε1)
of 0.00005; S2 = stress corresponding to 40% ultimate load; and ε2 = longitudinal strain
produced by S2.
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Figure 4. Stress–strain diagram of a concrete (PVCFRC 1) to determine its static elastic modulus.

3.3.3. Flexure Strength and Toughness Test

Simple beam specimens of 150 mm × 150 mm × 600 mm in size were prepared and
tested for load-deflection behavior and flexural strength according to ASTM C293/C293M [63].
Triplicate beam specimens were tested for each concrete. Figure 5 shows the dimensions and
test setup in a Universal Testing Machine (UTM) for flexure test. For the measurement of the
mid-point deflection of beam specimen, a dial gauge was placed at its central bottom line. The
area under the load-deflection behavior diagram was calculated graphically to determine the
toughness of concrete.
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3.3.4. Impact Resistance and Toughness Test

The impact resistance of concrete was assessed using triplicate ∅150 mm × 62.5 mm
cylinder specimens in accordance with the test procedure introduced by the ACI Committee
544 [64]. The test apparatus (Figure 6a) included a typical compaction hammer weighing
4.5 kg with a drop of 45.7 cm, a 65.3 mm diameter steel ball, and a positioning device to
retain the specimen. The experiment required dropping the hammer repeatedly on top of
the concrete specimen while carefully observing the formation of cracks in the specimen
and its eventual failure (Figure 6b). The number of blows of the hammer necessary before
the first crack appeared, as well as the total number of blows required until the ultimate
failure occurred, were recorded. The following formula (Equation (2)) provided by the ACI
Committee 544 [64] was used to calculate the first crack and ultimate impact toughness
of concrete.

I = MgHN (2)

where I = impact energy or toughness (J); N = number of blows required for fracture;
M = mass of dropping hammer = 4.5 kg; g = acceleration due to gravity = 9.81 m/s2; and
H = drop height = 0.457 m.
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4. Results and Discussion
4.1. Workability of Concretes

The slump values of different concrete mixtures as a measure of their workability are
presented in Figure 7. The design slump was 75–100 mm. However, the addition of the
polycarboxylate-based superplasticizer by 1 wt.% of cement increased the slump value to
140 mm for the control concrete. The inclusion of PVC fibers showed a decrease in the
workability of concrete resulting in a lower slump. Similar effects were observed from
previous studies [31,42,47,53]. In the present study, up to 1 wt.% PVC fibers (20 mm and
40 mm in length), the slump value decreased to 80–95 mm, but it was still within the range
of the design slump. A significant reduction in the slump was found when the PVC fiber
content reached 1.5 wt.% (Figure 7). Also, a higher reduction was noticed for 20 mm long
PVC fibers. A higher fiber volume content in a concrete mixture decreases the fluidity of its
mortar component due to the increased water demand for the wetting of material surfaces
and thus restrains the flow of concrete [30,31]. A lower fiber size can also increase the water
demand for a given slump because of the increased surface area [30,31]. Moreover, PVC fibers
have the potential to cluster together at a higher content, leading to a reduction in the concrete
slump [41]. In this study, the slump was reduced to 40 mm and 25 mm for 1.5 wt.% 40 mm
and 20 mm long fibers, respectively. Therefore, considering the workability of concrete, PVC
fibers up to 1 wt.% of cement are recommended for use in the context of the present study.
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Figure 7. Effects of PVC fiber content and length on the workability of concrete.

4.2. Compressive Strength of Concretes

The compressive strength of the concretes and the effect of PVC fibers noticed in this
study are shown in Table 4 and Figure 8. The published literature reveals the inconsistent
effect of plastic fibers on the compressive strength of concrete. Many past studies have
shown that the incorporation of plastic fibers produced minimal to no improvement in
the compressive strength of concrete [21,28–35,46–49,52,53]. In contrast, some researchers
found a significant increment of the compressive strength when plastic fibers were incorpo-
rated into the concrete mixtures [42,43,50,51,54]. Such inconsistency can happen due to the
differences in the mixture design, mixing, pouring, compaction, and curing of concrete. In
the present study, the incorporation of 20 mm long PVC fibers into the concrete mixture at
1 wt.% resulted in the maximum increment of the compressive strength (25%). A similar
effect was found for 1 wt.% 40 mm PVC fibers, which gave a 20% improvement in the
compressive strength compared to the control concrete. This improvement is related to the
distribution of the fibers throughout the concrete mixture. The use of the polycarboxylate-
based superplasticizer helped to maintain an adequate workability, particularly up to
1 wt.% fiber content, which was conducive for a better distribution of the fibers in the
concrete mixture. As a result, the fibers resisted the development of microcracks, requiring
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more time and energy for the specimens to collapse. However, when the PVC fiber content
exceeded 1 wt.%, the reduction in the compressive strength was noticed. A reduction in the
compressive strength can happen due to the reduced workability of concrete which may
induce fiber aggregation and more air-voids in the concrete mixture [65].

Table 4. Compressive, splitting tensile, and flexural strengths along with the elastic modulus and
flexural toughness of different concretes.

Mixture
Designation

PVC Fiber Compressive
Strength

(MPa)

Elastic
Modulus

(MPa)

Splitting
Tensile

Strength
(MPa)

Flexural
Strength

(MPa)

Flexural
Toughness

(N-mm)Fiber
Length (mm)

Fiber
Content
(wt.%)

Control - 0 21.40 19,462 2.55 4.69 2887.45

PVCFRC 1
20

0.5 25.00 26,800 2.80 5.69 6467.63
PVCFRC 2 1 26.80 27,062 2.90 6.25 8385.51
PVCFRC 3 1.5 20.50 25,614 2.76 5.52 6410.53

PVCFRC 4
40

0.5 23.20 26,167 2.87 5.21 5951.22
PVCFRC 5 1 25.70 26,899 2.82 6.04 8109.57
PVCFRC 6 1.5 22.10 26,071 2.74 5.60 6810.15
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4.3. Elastic Modulus of Concretes

Elastic modulus (Ec) is an influential property of concrete that indicates its strain capacity.
Table 4 and Figure 9 show the static elastic modulus of different concretes and the effect of
PVC fibers. A few studies were conducted to examine the modulus of elasticity of plastic fiber-
reinforced concrete and a decrease in the modulus of elasticity was found [66–68]. However,
some researchers found an increment in the elastic modulus as well [36,41]. In this study, it
was observed that PVC fibers up to a 1 wt.% fiber content enhanced the elastic modulus of
concrete. For each length of PVC fibers, the maximum increase in the elastic modulus occurred
for 1 wt.% fiber content, compared to the control concrete. In contrast, the elastic modulus of
the concrete with 1.5 wt.% 20 mm or 40 mm long PVC fibers dropped, but it was still higher
than that of the control concrete (Figure 9). Such an effect of PVC fibers on the elastic modulus
of concrete is attributed to the same reasons, as discussed in the case of compressive strength.
Furthermore, the static elastic modulus increases because the inclusion of fibers decreases
the pre-cracked elastic deformation, and consequently enhances the load-carrying capacity of
concrete [36], as observed from the results of the compressive strength.
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4.4. Splitting Tensile Strength of Concretes

The inclusion of fibers typically enhances the splitting tensile strength of concrete, as they
can effectively transfer the tensile stress from weaker and cracked areas to themselves because
of their higher strength under tension. Many past studies reported that non-PVC plastic
fibers significantly improved the splitting tensile strength of concrete [41,42,44–47,50–53].
The results of the splitting tension test and the associated effect of PVC fibers observed in
this study are shown in Table 4 and Figure 10. The test results revealed that the concrete
containing 1 wt.% 20 mm long PVC fibers demonstrated the highest splitting tensile strength,
while the incorporation of 40 mm long PVC fibers caused a slight decrease in the splitting
tensile strength beyond 0.5 wt.% fiber content. For 1 wt.% fiber content, an approximate 13.7%
increase in the splitting tensile strength was gained for 20 mm long PVC fibers (Figure 10).
The fibers located perpendicularly in the splitting section of the specimen function as bridges,
facilitating the transfer of stress within the concrete elements. As a result, the tensile stresses
developed in the splitting section are sustained gradually with an increase in the tensile
strength of fiber-reinforced concrete [69]. Furthermore, the percentage of compressive to
splitting tensile strengths is shown in Figure 11. This percentage falls between 7.4% and 9.2%.
The highest percentage was observed for 1 wt.% fiber content for both 20 mm and 40 mm long
PVC fibers, as evident from Figure 11. In addition, it was noticed that the above percentage
became higher for 20 mm long PVC fibers than 40 mm long PVC fibers (Figure 11) for the
fiber content up to 1 wt.% of cement.
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Figure 11. Influence of PVC fiber content on the percentage of compressive to tensile strengths
of concrete.

4.5. Flexural Strength and Toughness of Concretes

The load-deflection characteristics of different concretes obtained from the beam
specimens subjected to center-point loading are illustrated in Figure 12. The post-peak
deflection-softening behavior was observed in all PVC fiber-reinforced concretes. Notably,
the concrete reinforced with 20 mm long PVC fibers exhibited a higher flexural peak load
than the concrete reinforced with 40 mm long PVC fibers, particularly for 0.5 wt.% and
1 wt.% fiber contents. The load-carrying capacity and deflection of the concrete beams
increased up to 1 wt.% fiber content. When the fiber content exceeded 1 wt.%, a reduction
in the load-carrying capacity of the concrete beams was observed (Figure 12). However, the
concrete beams still exhibited significant post-peak deflection, as compared to the control
concrete beams. For 20 mm and 40 mm long PVC fibers, the deflection at the peak load
increased by 28.6–121.4% and 42.9–100%, respectively. These findings indicate a substantial
increase in the ductility of the concrete with PVC fibers.
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Figure 12. Load-deflection behavior of the concretes with (a) 20 mm and (b) 40 mm long PVC fibers.

The flexural strength magnitudes of the concretes were attained from their load-
deflection curves (Table 4) and the associated effect of PVC fibers are shown in Figure 13.
For a higher fiber content, the flexural strength of concrete increased due to its higher load-
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carrying capacity. A similar effect was observed in several past studies [21,28,51]. In the
present study, the flexural strength of concrete increased by 33.3% and 28.9%, respectively,
when 20 mm and 40 mm long PVC fibers were added by 1 wt.%. For both fiber lengths, the
increase in flexural strength was below 20% for 1.5 wt.% PVC fibers, yet the flexural strength
remained much higher than that of the control concrete. The observed enhancement in
the flexural strength of concrete can be attributed to the role of PVC fibers in resisting the
cracks within the tension zone of beam specimens. As the fibers stretch and bridge the
cracks, they effectively distribute the applied load across the cracks. This mechanism leads
to an increased capacity for energy absorption and internal stress relaxation, resulting in an
overall improvement in the flexural strength [69].
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Figure 13. Effects of PVC fiber content and length on the (a) flexural strength and (b) % increase in
flexural strength of concrete.

The flexural toughness (Tf) values of different concretes calculated from the areas under
the load-deflection curves (Figure 12) are shown in Table 4. The effect of PVC fibers on the
flexural toughness of concrete has been illustrated in Figure 14. This figure demonstrates
that the flexural toughness of concrete increased in the presence of PVC fibers. Specifically,
the increase in the flexural toughness ranged from 122% to 190.4% when 20 mm long PVC
fibers were used in the concrete mixture with a content in the range of 0.5–1.5 wt.% of cement.
Similarly, the increase in the flexural toughness ranged from 106.1% to 180.9% for the above
fiber contents of 40 mm long PVC fibers. In both cases, the optimum content of PVC fibers to
achieve the highest increase in the flexural toughness was 1 wt.%.
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4.6. Impact Resistance and Toughness of Concretes

Limited studies have investigated the effect of plastic fibers on the impact resistance
and toughness of concrete. The present study examined several PVC fiber-reinforced
concretes for their impact resistance and toughness using the test apparatus introduced
by the ACI committee 544 [62]. The average numbers of blows required to cause the first
visible crack and ultimate failure of the concrete specimens during the impact testing have
been presented in Table 5. The incorporation of PVC fibers contributed to the extensive
improvement in the impact resistance of concrete. The optimum fiber content of both
20 mm and 40 mm long PVC fibers was found to be 1 wt.% for increasing the impact
resistance of concrete, as the concrete specimens required the highest number of blows for
the first visible crack and ultimate failure.

Table 5. First crack and ultimate impact resistance and toughness of different concretes.

Mixture
Designation

PVC Fiber First Crack Impact
Resistance (No. of

Blows for First
Visible Crack, Nc)

First Crack Impact
Toughness, Ic (J)

Ultimate Impact
Resistance (No. of
Blows for Ultimate

Failure, Nu)

Ultimate Impact
Toughness, Iu (J)Fiber Length (mm) Fiber Content

(wt.%)

Control - 0 15 302.6 19 383.3

PVCFRC 1
20

0.5 32 645.6 45 907.8
PVCFRC 2 1 36 726.3 55 1109.6
PVCFRC 3 1.5 27 544.7 38 766.6

PVCFRC 4
40

0.5 29 585.1 39 786.8
PVCFRC 5 1 35 706.1 51 1028.9
PVCFRC 6 1.5 31 625.4 42 847.3

The first crack and ultimate impact toughness values of the concretes are given in
Table 5. Figure 15 presents the normalized first crack and ultimate impact toughness. This
figure shows that incorporating 1 wt.% 20 mm long PVC fibers into the concrete mixture
resulted in a 2.3 times increase in the first crack impact toughness and a 2.9 times increase in
the ultimate impact toughness compared to the control concrete. However, when the fiber
content was increased to 1.5 wt.%, a lower increase in the first crack and ultimate impact
toughness was observed for the concretes containing 20 mm and 40 mm long PVC fibers.
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4.7. Correlations among Mechanical Properties of Concretes

The correlations between the elastic modulus and compressive strength, splitting tensile
and compressive strengths, flexural and compressive strengths, and impact resistance and
compressive strength of PVC fiber-reinforced concrete are presented in Figure 16a–d. The
elastic modulus and compressive strength of PVC fiber-reinforced concrete were found to
be strongly correlated with a power relationship (Figure 16a). The correlation coefficient (r)
for the power relationship was 0.9911, which indicates a strong correlation. A correlation
coefficient greater than 0.70 indicates a strong correlation [70]. Such a strong correlation was
observed because the variations in the compressive strength and elastic modulus with the
fiber content followed a similar trend.
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Figure 16. Correlations of the compressive strength of concrete with its (a) elastic modulus,
(b) splitting tensile strength, (c) flexural strength, and (d) ultimate impact resistance.

Interestingly, no strong correlation between the splitting tensile and compressive
strengths of PVC fiber-reinforced concrete was found (Figure 16b). This is due to the reason
that some differences between the effects of PVC fibers on the compressive and splitting
tensile strengths of concrete were noticed (refer to Sections 4.2 and 4.4).
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An excellent correlation between the flexural and compressive strengths of PVC
fiber-reinforced concrete was observed, as evident from Figure 16c. The relationship was
linear with a correlation coefficient of 0.9980, which implies a strong correlation. Such
a strong linear relationship was observed because both strengths varied with the fiber
content following a similar trend. Furthermore, the ultimate impact resistance of PVC
fiber-reinforced concrete was strongly correlated with its compressive strength, as can be
seen in Figure 16d. However, the relationship was exponential, with a correlation coefficient
of 0.9246.

The correlations among the flexural strength, flexural toughness, impact resistance,
and impact toughness of PVC fiber-reinforced concrete were also examined. Figure 17a
demonstrates the relationship between the flexural strength and ultimate impact resistance,
whereas Figure 17b shows the correlation between the flexural toughness and ultimate impact
toughness of PVC fiber-reinforced concrete. In both cases, strong relationships were found
due to the same reason as already discussed above in this subsection. However, the former
relationship was exponential whereas the latter was linear. The correlation coefficient was
0.9751 for the exponential relationship whereas it was 0.9824 for the linear relationship.
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5. Conclusions

This study mainly examined the mechanical performance of PVC fiber-reinforced
concrete focusing on its compressive, splitting tensile, flexure, and impact behaviors. Based
on the findings of the experimental study, the following conclusions are drawn:

• At up to 1 wt.% inclusion of 20 mm and 40 mm long PVC fibers, the slump was reduced
to 80–95 mm, which falls between the design slump of 75 mm and 100 mm. A significant
reduction in the slump, indicating reduced workability, was observed when the PVC fiber
content reached 1.5 wt.% of cement. The decrease in the slump was more pronounced
with 20 mm long PVC fibers, primarily due to their higher surface area, which increased
the water demand for the required workability of concrete. In the presence of PVC fibers,
the water demand became higher for the wetting of material surfaces.

• The concretes including 1 wt.% PVC fibers showed optimal performance with respect
to the compressive, splitting tensile and flexural strengths, impact resistance, and
flexural and impact toughness. More importantly, the concrete mixtures containing
1 wt.% PVC fibers exhibited the highest flexural and impact (first crack and ultimate)
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toughness. This is mostly attributed to the larger ductility and energy absorption
capacity of PVC fiber-reinforced concrete.

• The use of PVC fibers by more than 1 wt.% caused a decline in the mechanical proper-
ties of concrete due to a relatively low workability which can induce fiber aggregation
and more air-voids in the concrete mixture. However, the concretes with 1.5 wt.% PVC
fibers still performed better than the control concrete.

• The incorporation of PVC fibers enhanced the ductility of concrete and it increased
with a higher quantity of fibers, as realized from the post-peak deflection behavior of
the beam specimens tested under flexure.

• The effects of the fiber content on the mechanical properties of concrete were more
pronounced than the fiber length. Based on the overall findings of the present study,
the optimum fiber content was 1 wt.% for both fiber lengths.

• The compressive strength of concrete was strongly correlated with its elastic modulus,
flexural strength, and impact resistance, since these properties followed similar trends
regarding the effects of PVC fiber content and length. In contrast, no strong correlation
was observed between the compressive and splitting tensile strengths of concrete,
as the effects of PVC fibers on these two properties were different. Furthermore,
excellent correlations were observed between the flexural strength and ultimate impact
resistance. The flexural toughness was also strongly correlated with ultimate impact
toughness. Strong relationships were noticed for these properties because they varied
following a similar trend for the fiber contents and lengths used in this study.

This study has provided valuable insights into the impact resistance and other at-
tributes of PVC fiber-reinforced concrete, as well as the relationships among different
mechanical properties. However, it is important to acknowledge certain limitations of
this study. The properties of PVC fibers, such as the tensile strength and percentage of
elongation, should be determined to correlate with the behavior of concrete during different
mechanical tests of the specimens containing various amounts of fiber. Additionally, the
chemical treatment of PVC fibers can be performed to increase the adhesion of the fibers
which will certainly provide better bonding within the concrete mixture. Despite these
limitations, the present study contributes to the growing body of knowledge in the field of
fiber-reinforced concrete and opens avenues for further research.

6. Recommendations

It is recommended to conduct further experiments to collect data after shorter curing
periods, such as 3, 7, and 14 days, to better understand the early strength development of
PVC fiber-reinforced concrete. This could provide valuable insights into the behavior of
this concrete during the initial stages of curing. Again, future investigations could explore
alternative curing methods, including self-curing, to assess their impact on the mechanical
properties and long-term performance of PVC fiber-reinforced concrete. Comparing the
effects of different curing techniques could contribute to optimizing the properties and
durability of concrete. Additionally, the influence of temperature on the properties of PVC
fiber-reinforced concrete remained unexplored in this study. A recommended area of future
research is to investigate the effect of varying temperatures on the mechanical behavior
and structural integrity of PVC fiber-reinforced concrete. This is particularly relevant for
real-world applications where the concrete may be exposed to temperature fluctuations.
Lastly, expanding the scope of this research to consider practical applications and structural
performance under various loading conditions could further enhance the understanding of
the suitability of using PVC plastic fibers in concrete for construction projects.
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