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Abstract: An algebraic approach to the design of resource-efficient carbon-reinforced concrete struc-
tures is presented. Interdisciplinary research in the fields of mathematics and algebra on the one
hand and civil engineering and concrete structures on the other can lead to fruitful interactions
and can contribute to the development of resource-efficient and sustainable concrete structures.
Textile-reinforced concrete (TRC) using non-crimp fabric carbon reinforcement enables very thin and
lightweight constructions and thus requires new construction strategies and new manufacturing
methods. Algebraic methods applied to topological interlocking contribute to modular, reusable, and
hence resource-efficient TRC structures. A modular approach to construct new interlocking blocks by
combining different Platonic and Archimedean solids is presented. In particular, the design of blocks
that can be decomposed into various n-prisms is the focus of this paper. It is demonstrated that the
resulting blocks are highly versatile and offer numerous possibilities for the creation of interlocking
assemblies, and a rigorous proof of the interlocking property is outlined.

Keywords: carbon-reinforced concrete; textile-reinforced concrete TRC; topological interlocking;
Platonic solids; Archimedean solids; concrete structures; computational form finding

1. Introduction
1.1. Carbon-Reinforced Concrete

Non-metallic reinforcement opens up a completely new field for concrete structures
and therefore requires new construction strategies and new manufacturing methods [1].
One of the key properties of textile-reinforced concrete (TRC) or carbon-reinforced concrete
(CRC) is the corrosion resistance of carbon, which leads to several benefits. The con-
crete cover needed for carbon reinforcement is much smaller than that needed for steel
reinforcement. Hence, components can be very thin and lightweight, yielding a path to
resource-efficient and sustainable construction. Currently, existing design principles of
steel-reinforced concrete are being applied to carbon-reinforced concrete. While this is
already yielding benefits and shows the applicability of carbon-reinforced concrete, it does
not exploit its full potential. Applying those classical design principles to carbon-reinforced
concrete and solely replacing the reinforcing steel with carbon results in load-bearing TRC
structures that either exhibit large deformations or low material utilization, as quantita-
tively analyzed [2,3]: when carbon-reinforced concrete is used for classical components
such as beams, exhausting the full load-bearing capacity will lead to deformations due
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to low material thickness. On, the other hand, if serviceability requirements are met, e.g.,
deformations and deflections are small, the material will be subjected to small stresses
and thus under-utilized, leading to a waste of resources (see ref. [2]). Hence, in order to
exploit the full potential of carbon-reinforced concrete as a composite material and to design
load-bearing structures that exhibit both low deformations and high material utilization,
new material-appropriate design principles are required.

Since thin components show low bending stiffness compared to the capacity for nor-
mal forces, carbon-reinforced concrete is especially suited to the principles of lightweight
constructions, in cases where out-of-plane bending is mostly avoided. The avoidance of
bending makes sense, since bending means maximum stresses and strains in the outer
regions of the cross section only. In the central regions of the cross section, the stresses and
strains are small and the material is under-utilized. This means that most of a bending com-
ponent is a waste of material and therefore resource-consuming. New design principles for
carbon-reinforced concrete are required instead, where various approaches are pursued [4].
These include consideration of the reinforcement cross sections [2], in-plane bending of
facets or sheets (since this can be highly efficient in contrast to out-of-plane bending),
and external or internal shell structures [5–7]. From an ecological perspective, material-
appropriate and resource-efficient construction is a very challenging task and important
duty—especially when dealing with problems such as climate change and resource scarcity.

Another essential property of textile-reinforced concrete is that it can be folded while
it is still fresh. This is not the case for steel-reinforced concrete. It is possible to create folds
and folded structures that form large spans with low material input and high resource
efficiency (see ref. [8]). To achieve folded structures and folding plans, triangulations
are needed.

1.2. Algebra in Civil Engineering

What do civil engineering and algebra have to do with each other? Exploiting al-
gebraic methods can give new insights into the study of construction methods that are
already established in civil engineering. On the other hand, algebraic results often lead
to unforeseen applications in engineering disciplines. An example of this observation is
the triangulation of surfaces. Triangulations can be used to generate folding plans, as
required for the production of folded structures. Folding is one of the key design strategies
to combine both serviceability and material utilization. Furthermore, a folded structure
comprises ductile behaviour, whereby the ductility is achieved at the structural instead
of the material level. An example is the comparison of the ductility of a flat sheet and the
same sheet folded in a waterbomb pattern. By varying the parameters of a waterbomb
folding pattern, for example, the edge lengths and folding angles of the base cell, global
shell shapes in a wide spectrum can be achieved [8–10], thereby changing its properties at
a structural level (see Figure 1).

An example of a triangulation is the Delaunay triangulation. It is very common
in civil engineering and in numerical simulations based on the finite element method
(FEM). This decomposition of a surface into subsurfaces is the starting point for virtually
any discretization of geometry in FE numerical simulations. From an algebraic point of
view, however, this triangulation is only one possible triangulation. Thus, in addition
to formulating the folding plans, algebraic methods of triangulation can also serve as
inspiration for new carbon concrete structures. Triangulations of surfaces have been studied
for some time in mathematics and computer science. Both the Delaunay triangulation,
in which a triangulated surface is created using a given set of support points, and the
Voronoi tessellation dual to this, in which a given surface is mosaiced into polygons based
on support points, are commonly used in engineering. In addition to these two well-known
methods, there are more general methods to create parameterized surfaces as well as to
triangulate implicitly given surfaces. As a rule, the closest possible approximation to the
given surface is obtained by a large number of very different and not necessarily planar
triangles. An extensive body of literature deals with this subject, and as an example of a
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review source, consider [11]. Instead of approximating a given surface by triangulation,
other problems inspired from an architectural view can be targeted. Namely, it can be
investigated which triangulated surfaces can be created from triangles with a specific
congruence type. Research on the theory of particular surfaces controlled by one triangle is
presented in refs. [12–14].
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Figure 1. (a,b) Waterbomb folding structure: different choices of folding angles of the base cell lead
to different curvature of the whole waterbomb structure; (c,d) Photograph of a carbon-reinforced con-
crete roof prototype folded using origami tessellation kinematics (Photographs: Rostislav Chudoba).

1.3. Interlocking

The principle that is examined algebraically in this paper to inspire new design
principles for TRC structures is the notion of topological interlocking assemblies. It enables
the design of structures consisting of building blocks that do not require any mortar in order
to ensure structural stability. This is especially interesting in the context of sustainable,
modular, recyclable, and reusable construction with concrete. Topological interlocking
finds frequent application within compression-loaded structures, notably in contexts such
as dry-stone walls and masonry, as exemplified in ref. [15]. In the late 17th century, Joseph
Abeille unveiled his invention of the Abeille tile to the French Academy of Sciences [16] (see
Figure 2). This innovative tile could be arranged in a manner that effectively immobilized
each individual tile through its connection with adjacent tiles.

Figure 2. Joseph Abeille’s proposed stone tile [16].

The idea of interlocking blocks has also been investigated by Glickmann [17]. In his
search for a vertically interlocking pavement, he presented the G-Block. The design of this
block is based on the tetrahedron and its corresponding tetrahedra interlocking to form an
early example of an interlocking system. Since the work of Dyskin et al. (see ref. [18] and

Figure 1. (a,b) Waterbomb folding structure: different choices of folding angles of the base cell lead
to different curvature of the whole waterbomb structure; (c,d) Photograph of a carbon-reinforced con-
crete roof prototype folded using origami tessellation kinematics (Photographs: Rostislav Chudoba).

1.3. Interlocking

The principle that is examined algebraically in this paper to inspire new design princi-
ples for TRC structures is the notion of topological interlocking assemblies. It enables the
design of structures consisting of building blocks that do not require any mortar in order
to ensure structural stability. This is especially interesting in the context of sustainable,
modular, recyclable, and reusable construction with concrete. Topological interlocking
finds frequent application within compression-loaded structures, notably in contexts such
as dry-stone walls and masonry, as exemplified in ref. [15]. In the late 17th century, Joseph
Abeille unveiled his invention of the Abeille tile to the French Academy of Sciences [16]
(see Figure 2). This innovative tile could be arranged in a manner that effectively immobi-
lized each individual tile through its connection with adjacent tiles.

Figure 2. Joseph Abeille’s proposed stone tile [16].

The idea of interlocking blocks has also been investigated by Glickmann [17]. In his
search for a vertically interlocking pavement, he presented the G-Block. The design of this
block is based on the tetrahedron and its corresponding tetrahedra interlocking to form an
early example of an interlocking system. Since the work of Dyskin et al. (see ref. [18] and
subsequent publications), topological interlocking has been the focus of extensive research.
For a recent overview, refer to ref. [19].
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1.3.1. Analogy and Explanation

When building an assembly of elements, e.g., a wall made of stones, the stones can
be fixed using mortar. As a result, the elements (stones) cannot move out of the assembly.
When elements or blocks are fixed amongst each other solely due to their geometric shape,
they are said to be interlocked. In that case, a fixation is achieved without using mortar.
On an engineering level, stereotomic architecture, i.e., the principle of interlocking, has
been used for a long time and derived design principles can be seen in constructions such as
stone arcs (see Figure 3). For the erection of such an arc, a temporary arch-shaped formwork
or subconstruction, e.g., made of wood, is needed. The individual stones are placed on
the subconstruction. They are not yet locked and can easily be removed. Only when the
arch is entirely filled with stones do the stones jam each other so that no stone can fall, and
the formwork subconstruction can be removed. Once the final stone—mostly the middle
one—is placed into the arc, the flux of force through the jammed stones is established.
Since the final stone functions as a key from a technical point of view, it is often decorated
and emphasized. From an engineering point of view and under gravity, this example
illustrates the principle of interlocking, even though such a construction is not a topological
interlocking according to the formal mathematical definition, which is outlined in the
next section.

Figure 3. A stone arc is stable only when all stones are included (Photograph: Franz Vincentz [20]).

1.3.2. Mathematical Description

Mathematically, a topological interlocking assembly is an assembly of rigid blocks
together with a fixed frame, so that any subset of blocks is kinematically constrained and
therefore cannot be removed from the assembly. The concept of topological interlocking as a
material design concept was pioneered by Dyskin, Estrin, Kanel-Belov, and Pasternak [18,19].
For instance, the authors Dyskin et al. show that it is possible to form topological interlocking
assemblies by assembling copies of one of the Platonic solids. The cube and the tetrahedra
interlocking assemblies are illustrated in Figure 4.

(a) (b)

Figure 4. (a) Cube interlocking; (b) Tetrahedra interlocking. The frame is shown in red.

A modular approach to designing new blocks that enable topological interlocking
assemblies is the primary focus of this paper. In this paper, a focus is placed on new
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topological interlocking blocks that can be disassembled into various Archimedean and
Platonic solids. In particular, a demonstration of the modular approach used to design
more complex geometries with interlocking properties by combining different regular
prisms is presented. Furthermore, it is shown that these topological interlocking blocks
exhibit versatility, as they can be arranged into various topological interlocking assemblies.
To achieve this, a definition of topological interlocking, along with the concept of convex
sets, is presented in Section 2, in order to provide a foundational understanding of the
interlocking blocks constructed in this paper. In Section 3, the construction methods are
introduced, and examples of topological interlocking blocks that can be deconstructed
into different regular prisms are provided. More precisely, topological interlocking blocks
that can be assembled from one regular n-prism and six regular 3-prisms in Section 3.2.1,
or one regular n-prism and six cubes in Section 3.2.2, are introduced. Various possibili-
ties for forming corresponding interlocking assemblies are discussed. Additionally, it is
demonstrated that these assemblies indeed qualify as topological interlocking assemblies
by building upon an interlocking test introduced in ref. [21] and generalizing it to certify
the interlocking property for more kinds of interlocking assemblies, in particular the ones
presented in this paper. Algorithms and functions to analyze the presented blocks and
their topological interlocking assemblies are implemented in the programming language
Julia [22] using the packages Polyhedra, v0.7.6, [23] for convex polyhedron computations
and JuMP, v1.15.1, [24] for linear programming in combination with the Julia wrapper
of the C solver HiGHS, v1.7.2, [25]. The images were generated using the Julia package
PlotlyJS, v0.18.10, [26]. The source code has been made public under the second author’s
GitHub page [27]. Furthermore, the GAP package SimplicialSurfaces can be exploited to
study the blocks’ combinatorial properties [28,29].

1.3.3. Using Topological Interlocking in the Design of Carbon Concrete Components

Novel interlocking blocks that can be assembled in various configurations are provided
through the presented constructions. This fact opens up new possibilities for modular CRC
structures. The modularisation of structural members in construction is very important for
resource efficiency, the extension of life cycles of different components and the reuse of units,
especially in connection with new manufacturing processes. For reusability of components,
interlocking principles can be a valuable approach. If an assembly is interlocked from
many modules and fixed only by a spanning frame, no glue or material connections are
required between the modules. If the fixing frame is omitted, the modules can easily
be detached from each other. The avoidance of glue or any bonding agent between the
blocks or elements is a key property for repeatable and wasteless decomposability. Thus,
interlocking enhances the life cycle and sustainability of concrete structures.

In ongoing and unpublished research in the framework of the Collaborative Re-
search Centre CRC/TRR 280 “Design Strategies for Material-Minimized Carbon Reinforced
Concrete Structures Principles of a New Approach to Construction”, a different type of
interlocking block, distinct from the ones presented in this study, has been produced
through concrete 3D printing and subjected to preliminary testing [30]. It is also the pri-
mary aim of the presented research to fabricate the described blocks using the CRC 3D
printing methods currently in development [31,32], followed by comprehensive testing
to assess their real-world applicability and iterative design refinement. The topological
interlocking assemblies constructed in this paper serve as an inspiration for the construc-
tion of decomposable concrete columns and the transition of a column to a load-bearing
ceiling construction.

2. Methods

In this section, the fundamental definitions and concepts required to introduce the
construction of topological interlocking blocks and their respective assemblies in Section 3
are presented.
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2.1. Convex Hull

As the objective of this paper is to create topological interlocking blocks by combining
various prisms, it is essential to provide a description of these three-dimensional bodies that
facilitates further examination of these structures. In this context, the notion of generating
convex hulls from finite sets of 3D points as a means to achieve the intended construction
of interlocking blocks is revisited.

Therefore, let M = {v1, . . . , vn} ⊂ R3 be such a set of 3D points. The convex hull
conv(M) of these points is defined by

conv(M) :=

{
n

∑
i=1

aivi |
n

∑
i=1

ai = 1, ai ≥ 0

}
.

The set M is called the vertex set of conv(M). A set F ⊂ conv(M) is called a facet
of conv(M) if it is the convex hull of a maximal coplanar set P ⊆ M, i.e., F = conv(P).
Furthermore, a set f ⊂ conv(M) is called a subfacet of conv(M), if it is the convex hull of a
coplanar but not colinear subset P of M.

Example 1. For instance, a cube can be constructed by taking the convex hull of the following set
(see Figure 5):

{(0, 0, 0)t, (1, 0, 0)t, (1, 1, 0)t, (0, 1, 0)t, (0, 0, 1)t, (1, 0, 1)t, (1, 1, 1)t, (0, 1, 1)t}.

Figure 5. A cube.

The cube defined above has exactly 6 facets. For example, one of those facets is given by

F = conv({(0, 0, 0)t, (1, 0, 0)t, (1, 1, 0)t, (0, 1, 0)t}).

Moreover, the set f = conv({(0, 0, 0)t, (1, 0, 0)t, (0, 1, 0)t}) is an example of a subfacet of the
above cube.

With the notion of a convex hull, regular prisms, which are essential for the construc-
tions of the topological interlocking blocks, can be defined. Let therefore n ≥ 3 be a natural
number. An n-prism is the three-dimensional body that arises from taking the convex hull
of the set

M =

{(
α · cos

(
2πk

n

)
, α · sin

(
2πk

n

)
, h
)t
| k = 0, . . . , n− 1, h = 0, 1

}
,

where α =
∥∥(cos(0), sin(0))t − (cos(2π/n), sin(2π/n))t

∥∥−1.
Figure 6 illustrates the resulting three-dimensional body for n = 6 and n = 8.
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(a) (b)
Figure 6. (a) A regular 6-prism; (b) A regular 8-prism.

Note that for n 6= 4, an n-prism has exactly two types of facets, namely, two facets that
form regular n-gons with edge lengths 1 and n facets forming squares with edge lengths 1.
For n = 4, the resulting structure is the well-known cube with six squares as facets.

Remark 1. It is also possible to model the prisms as polygonal complexes and manipulate the
underlying incidence structure to obtain a more precise description of these structures and the
merging of different prisms. Here, the decision is made to describe the different blocks by defining
suitable convex sets to facilitate the construction of the topological interlocking blocks and their
corresponding assemblies.

2.2. Topological Interlocking

In this subsection, the concept of topological interlocking assemblies is introduced.
More precisely, an abbreviated definition of a topological interlocking assembly, as found
in ref. [33], is revisited. Furthermore, established procedures for computationally testing
whether a given assembly meets the criteria of being a topological interlocking assembly are
examined. Here, a topological interlocking assembly is defined as follows: Let (Xi)i∈I be a
family of blocks, where a block Xi is a two-dimensional manifold with possible singularities
and I is an index set. The family (Xi)i∈I is a topological interlocking assembly for a given
frame of fixed blocks J ⊂ I if the following holds:

1. (Xi)i∈I is an assembly, that is, any two blocks can only intersect at their boundaries;
2. Any finite subset of blocks indexed by S ⊂ I \ J cannot be moved using continuous

motions (interlocking property).

A mathematically precise definition of a topological interlocking assembly can be
found in ref. [34], where the authors introduce the notion of a family of continuous
motions to establish the interlocking property. Further examples of topological interlocking
assemblies can be found in ref. [33], where the authors exploit the idea of deforming tiles of
a tessellated three-dimensional structure to construct topological interlocking blocks. Thus,
the resulting assembly realizes the surface of the underlying structure. The corresponding
topological interlocking that is based on the surface of a cube is illustrated in Figure 7. Here,
any two blocks of the assembly can form the frame of the given assembly.

Figure 6. (a) A regular 6-prism; (b) A regular 8-prism.

Note that for n 6= 4, an n-prism has exactly two types of facets, namely, two facets that
form regular n-gons with edge lengths 1 and n facets forming squares with edge lengths 1.
For n = 4, the resulting structure is the well-known cube with six squares as facets.

Remark 1. It is also possible to model the prisms as polygonal complexes and manipulate the
underlying incidence structure to obtain a more precise description of these structures and the
merging of different prisms. Here, the decision is made to describe the different blocks by defining
suitable convex sets to facilitate the construction of the topological interlocking blocks and their
corresponding assemblies.

2.2. Topological Interlocking

In this subsection, the concept of topological interlocking assemblies is introduced.
More precisely, an abbreviated definition of a topological interlocking assembly, as found
in ref. [33], is revisited. Furthermore, established procedures for computationally testing
whether a given assembly meets the criteria of being a topological interlocking assembly are
examined. Here, a topological interlocking assembly is defined as follows: Let (Xi)i∈I be a
family of blocks, where a block Xi is a two-dimensional manifold with possible singularities
and I is an index set. The family (Xi)i∈I is a topological interlocking assembly for a given
frame of fixed blocks J ⊂ I if the following holds:

1. (Xi)i∈I is an assembly, that is, any two blocks can only intersect at their boundaries;
2. Any finite subset of blocks indexed by S ⊂ I \ J cannot be moved using continuous

motions (interlocking property).

A mathematically precise definition of a topological interlocking assembly can be
found in ref. [34], where the authors introduce the notion of a family of continuous mo-
tions to establish the interlocking property. Further examples of topological interlocking
assemblies can be found in ref. [33], where the authors exploit the idea of deforming tiles of
a tessellated three-dimensional structure to construct topological interlocking blocks. Thus,
the resulting assembly realizes the surface of the underlying structure. The corresponding
topological interlocking that is based on the surface of a cube is illustrated in Figure 7. Here,
any two blocks of the assembly can form the frame of the given assembly.
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(a) (b)
Figure 7. (a) Assembled topological interlocking realizing the cube; (b) Exploded view of a topological
interlocking assembly realizing the cube.

2.3. Infinitesimal Criterion for a Topological Interlocking

Showing that the interlocking property holds for a given assembly and therefore
analyzing families of continuous motions that are applied to subsets of blocks of this
assembly turn out to be tasks of high complexity. Thus, useful heuristics to support the
task of verifying the interlocking property are essential. One such interlocking test can be
found in ref. [21], where for a given assembly the authors present a linear optimization
problem by introducing infinitesimal motions to the blocks of the assembly such that
the interlocking property holds if the introduced optimization problem has no non-zero
solutions. More details of the corresponding linear program are presented in Section 3.3.

3. Results

In this section, the blocks that are the focus of this paper are presented and analyzed.
First, the different blocks designed by combining various regular prisms are introduced,
and their corresponding assemblies are constructed. Furthermore, an investigation is
conducted to determine whether the interlocking property is upheld for these assemblies.
This assessment is carried out using the interlocking test proposed in ref. [21] and a modified
version of this test.

3.1. Construction of the Blocks

Since the interest of this paper is designing more complex blocks by combining smaller
convex bodies, a description of the merging of convex bodies is required. For simplicity, the
merging of an n1-prism and an n2-prism is defined. Loosely speaking, the aim is to construct
three-dimensional blocks by attaching the n2-prism to the n1-prism along a common face.
More precisely, this is achieved by applying rigid transformations to the ni-prisms. Let
therefore S1 and S2 be an n1- and n2-prism, respectively. Furthermore, let Fi be a facet
of Si, respectively, with vertex sets {v1, . . . , vm} and {w1, . . . , wm}. So, either m = 4 and
the facets Fi are regular 4-gons or n1 = m = n2 and thus the facets Fi are regular m-gons.
Without loss of generality, the vertex sets are indexed in such a way that

∥∥vj − vj+1
∥∥ = ‖vm − v1‖ =

∥∥wj − wj+1
∥∥ = ‖wm − w1‖ = 1 1 ≤ j ≤ m− 1,

where ‖x− y‖ is the Euclidean distance between the points x and y. Since all vertices of
a facet lie on a circle, it follows that

∥∥vi − vj
∥∥ =

∥∥wi − wj
∥∥ for all 1 ≤ i, j ≤ m. Thus, the

following equality holds due to the law of cosines:

](v2 − v1, vm − v1) = ](w2 − w1, wm − w1).

Here, the goal is to find a rigid transformation mapping wi onto vi and therefore
achieving the alignment of the two prisms along the corresponding facets. More precisely,
an affine map τ that preserves angles and distances, such that τ(wj) = vj for 1 ≤ j ≤ m, is

Figure 7. (a) Assembled topological interlocking realizing the cube; (b) Exploded view of a topological
interlocking assembly realizing the cube.
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2.3. Infinitesimal Criterion for a Topological Interlocking

Showing that the interlocking property holds for a given assembly and therefore
analyzing families of continuous motions that are applied to subsets of blocks of this
assembly turn out to be tasks of high complexity. Thus, useful heuristics to support the
task of verifying the interlocking property are essential. One such interlocking test can be
found in ref. [21], where for a given assembly the authors present a linear optimization
problem by introducing infinitesimal motions to the blocks of the assembly such that
the interlocking property holds if the introduced optimization problem has no non-zero
solutions. More details of the corresponding linear program are presented in Section 3.3.

3. Results

In this section, the blocks that are the focus of this paper are presented and analyzed.
First, the different blocks designed by combining various regular prisms are introduced,
and their corresponding assemblies are constructed. Furthermore, an investigation is
conducted to determine whether the interlocking property is upheld for these assemblies.
This assessment is carried out using the interlocking test proposed in ref. [21] and a modified
version of this test.

3.1. Construction of the Blocks

Since the interest of this paper is designing more complex blocks by combining smaller
convex bodies, a description of the merging of convex bodies is required. For simplicity, the
merging of an n1-prism and an n2-prism is defined. Loosely speaking, the aim is to construct
three-dimensional blocks by attaching the n2-prism to the n1-prism along a common face.
More precisely, this is achieved by applying rigid transformations to the ni-prisms. Let
therefore S1 and S2 be an n1- and n2-prism, respectively. Furthermore, let Fi be a facet
of Si, respectively, with vertex sets {v1, . . . , vm} and {w1, . . . , wm}. So, either m = 4 and
the facets Fi are regular 4-gons or n1 = m = n2 and thus the facets Fi are regular m-gons.
Without loss of generality, the vertex sets are indexed in such a way that

∥∥vj − vj+1
∥∥ = ‖vm − v1‖ =

∥∥wj − wj+1
∥∥ = ‖wm − w1‖ = 1 1 ≤ j ≤ m− 1,

where ‖x− y‖ is the Euclidean distance between the points x and y. Since all vertices of
a facet lie on a circle, it follows that

∥∥vi − vj
∥∥ =

∥∥wi − wj
∥∥ for all 1 ≤ i, j ≤ m. Thus, the

following equality holds due to the law of cosines:

](v2 − v1, vm − v1) = ](w2 − w1, wm − w1).

Here, the goal is to find a rigid transformation mapping wi onto vi and therefore
achieving the alignment of the two prisms along the corresponding facets. More precisely,
an affine map τ that preserves angles and distances, such that τ(wj) = vj for 1 ≤ j ≤ m, is
required. Since w2−w1 and wm −w1 are linearly independent, there exists a unique matrix
A ∈ R3×3, such that

A(w2 − w1) = v2 − v1,

A(wm − w1) = vm − v1,

A((w2 − w1)× (wm − w1)) = −(v2 − v1)× (vm − v1).

Since A preserves the lengths and angles between basis vectors, it is an orthogonal
matrix, and the map

τ : R3 → R3, x 7→ A(x− w1) + v1

is an affine map with the desired properties. The merging of S1 and S2 along the facets F1 and
F2 is then defined as the set S1 ∪ τ(S2). Figure 8 shows all three-dimensional blocks that
can be constructed by merging a 6-prism and an 8-prism along corresponding squares.
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In this section, different constructions leading to three-dimensional blocks that allow
topological interlocking assemblies are presented and possible generalizations of those
constructions are examined.

3.2.1. Designing Topological Interlocking Blocks by Attaching 3-Prisms

In this section, two constructions of topological interlocking blocks, which arise from
merging copies of the 3-prism and an n-prism, and a discussion of their possible assemblies
are presented.

Let therefore n ≥ 6 be an even natural number, S be an n-prism, and F1, F2 be opposite
square facets of S. A topological interlocking block is then constructed by applying the
following procedure:

1. Merge three 3-prisms so that the resulting convex body is given by
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such that no facet of the attached 3-hat is contained in the plane spanned by one of
the regular n-gons that is a facet of S. The resulting block is called n-candy.

Figure 10 shows the blocks that arise from the above construction for n = 6 and n = 8
from different angles.

(a) (b)
Figure 10. n-candy for (a) n = 6; (b) n = 8.

These blocks are very versatile, since they allow different assemblies that are topologi-
cally interlocking. Here, three different assemblies of copies of the 6-candy and 8-candy
that form topological interlocking assemblies are provided.

Application 1. The first assembly is constructed by stacking the blocks along the 6- and
the 8-gon in a 2-periodic pattern introducing a 60-degree and 45-degree rotation every
other block, respectively (see Figure 11). Fixing the top and bottom block as a frame for the
assembly yields a topological interlocking in the sense of Section 2.2. The contacts between
the central n-gons of the blocks restrict translational motion in the normal direction η of
the contact surfaces and rotations not about η, while the 3-hats on the sides of the stacked
n-gons constrain the translational motions parallel to the contact surfaces and rotations
about η.

Figure 9. (a) The 3-hat disassembled into three 3-prisms; (b) The merged 3-hat.

2. For i = 1, 2, merge S and a copy of the above block along the facet Fi and the facet of
3-hat given by
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the regular n-gons that is a facet of S. The resulting block is called n-candy.

Figure 10 shows the blocks that arise from the above construction for n = 6 and n = 8
from different angles.
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Figure 10. n-candy for (a) n = 6; (b) n = 8.

These blocks are very versatile, since they allow different assemblies that are topologi-
cally interlocking. Here, three different assemblies of copies of the 6-candy and 8-candy
that form topological interlocking assemblies are provided.

Application 1. The first assembly is constructed by stacking the blocks along the 6- and
the 8-gon in a 2-periodic pattern introducing a 60-degree and 45-degree rotation every
other block, respectively (see Figure 11). Fixing the top and bottom block as a frame for the
assembly yields a topological interlocking in the sense of Section 2.2. The contacts between
the central n-gons of the blocks restrict translational motion in the normal direction η of
the contact surfaces and rotations not about η, while the 3-hats on the sides of the stacked
n-gons constrain the translational motions parallel to the contact surfaces and rotations
about η.

(a) (b)

Figure 11. The 2-periodic topological interlocking assemblies of the (a) 6-candy and (b) 8-candy.
The frames are shown in red.

Application 2. The second assembly is achieved in a similar manner by stacking the blocks
along the central n-gons. In this application, however, the assembly is constructed by a
3-periodic pattern. The second blocks in this pattern are obtained from the first one by
introducing a 60-degree or 45-degree rotation about η and the third ones by rotating by
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−60 or −45 degrees (see Figure 12). The same reasoning as above shows that this yields a
topological interlocking assembly.

(a) (b)

Figure 12. The 3-periodic interlocking assemblies of the (a) 6-candy and (b) 8-candy. The frames are
shown in red.

Application 3. The above assembly allows a wide range of arrangements of the introduced
block, where the corresponding blocks of the assembly are not limited to being assembled
in a stack. An example of such an assembly is illustrated in Figure 13. Pillars of the form
described in Example 2 are taken, and they are connected by inserting another copy of the
underlying block between two subassemblies.

Figure 13. Interlocking assembly of the 6-candy as a linkage of the assemblies in Application 2 by
inserting 6-candies between two pillars (blue). The frame is shown in red.

It is already known that the assemblies described in Application 2 interlock. Hence,
by a symmetry argument it is enough to show that the subassembly shown in Figure 14 is
topologically interlocking.

The subassembly itself contains a pillar as in Application 2 as a subassembly, so it
is only necessary to show that the introduced block, indicated in blue, is kinematically
constrained by the other blocks. This is easy to see as the frame constrains the new block
in a way that only allows for it to slide out along a linear path perpendicular to the
trapezoid faces of the attached 3-hats. This motion is restricted in both directions by the
3-hats attached to the two other blocks in contact with the new block. Thus, the block is
kinematically constrained and the assembly in Figure 13 is topologically interlocked.
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Figure 14. Subassembly of the assembly in Figure 13. The frame is coloured in red.

This construction can be generalized such that copies of the hat are attached to a subset
of facets of S that form squares. For example, copies of the hat can be attached to every
second square facet of S. This construction is illustrated in Figure 15 by attaching three
3-hats to the 6- and four to the 8-prism.

(a) (b)

Figure 15. Generalized (a) 6-candy and (b) 8-candy, where 3-hats are attached every second square facet.

Since more 3-hats are used in the generalized construction, the resulting blocks are not
versatile and allow only one type of assembly. This type results from stacking copies of the
block as seen in Figure 16. It is easy to see that this assembly of blocks indeed interlocks
topologically; the assemblies in Applications 1 and 2 are a subset of the assembly below
and thus they are topologically interlocking—attaching more copies of the 3-hat only adds
further constraints to the motion of a block in the assembly.

(a) (b)

Figure 16. The 2-periodic interlocking assemblies of the generalized (a) 6-candy and (b) 8-candy of
Figure 15. The frames are shown in red.
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3.2.2. Designing Topological Interlocking Blocks by Attaching Cubes

Inspired by the construction in Section 3.2.1, two constructions that yield topological
interlocking blocks that can be decomposed into six copies of a cube (4-prism) and an n-
prism are introduced. Moreover, possible topological interlocking assemblies are presented.

As in the above construction, let n ≥ 6 be an even natural number, S be an n-prism,
and F1, F2 be opposite square facets of S. Then, the n-cube-candy is defined by applying the
following procedure:

1. Merge three cubes so that the resulting convex body is a cuboid with edge lengths 3
and 1. Such a convex body can be constructed by the following convex hull:

conv({(0, 0, 0)t, (1, 0, 0)t, (1, 1, 0)t, (1, 1, 0)t,

(0, 0, 3)t, (1, 0, 3)t, (1, 1, 3)t, (1, 1, 3)t}).

This block shall be referred to as 4-hat.
2. As seen above, the n-prism S can be merged with a copy of the above block for i = 1, 2

along the facet Fi and the subfacet of 4-hat given by

F = conv({(0, 0, 1)t, (0, 0, 2)t, (1, 0, 1)t, (1, 0, 2)t})

such that no facet of the 4-hat is contained in a plane spanned by one of the regular
n-gons that is a facet of S.

For n = 6 and n = 8, the resulting n-cube-candies and a corresponding topologi-
cal interlocking assembly analogous to the construction in Application 2 can be seen in
Figures 17 and 18.

(a) (b)

Figure 17. (a) The 6-cube-candy and (b) its corresponding topological interlocking assembly analo-
gous to the construction in Application 2. The frame is coloured in red.

(a) (b)

Figure 18. (a) The 8-cube-candy and its (b) corresponding topological interlocking assembly analo-
gous to the construction in Application 2. The frame is coloured in red.
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Similar to the construction above, generalized versions of the constructed topological
interlocking blocks by attaching copies of the 4-hat to a subset of the square facets of S
(see Figure 15) are provided. In Figure 19, n = 12 and four 4-hats are attached to the
12-prism. The assembly is realized in a spiral pattern, where the blocks are stacked by
introducing a 30-degree rotation at every step.

(a) (b)

Figure 19. (a) The 12-cube-candy and (b) a corresponding topological interlocking assembly following
a spiral pattern. The frame is coloured in red.

Since the n-candy described in Section 3.2.1 is a subset of the n-cube-candy investigated
in this subsection, the interlocking property of the assembly of the n-cube-candy can be
established as in Section 3.2.1.

3.3. Proving the Interlocking Property

Next, some details for the rigorous verification of the interlocking property for the
assemblies presented above are provided. This is achieved by building upon the existing
interlocking test introduced by Wang et al. [21] and generalizing it.

Here, a brief summary of the details of the existing interlocking test is provided
in order to emphasize the modifications that are implemented to derive an interlocking
test capable of verifying the interlocking property for the topological interlocking blocks
presented in this paper. For a more comprehensive description of the original interlocking
test, the reader is directed to the publication by Wang et al.
Given an assembly of convex blocks, the algorithm proposed in ref. [21] produces a linear
program whose solubility directly translates into a certificate of the interlocking property
of the input assembly. For such an assembly, Wang et al. consider two types of contacts:

1. Contact points, i.e., zero-dimensional intersections, that result from the intersection of
two non-parallel edges of two different blocks;

2. Contact facets (given as the convex set of a finite number of contact points), i.e.,
two-dimensional intersections, that result from the intersection of two facets of two
different blocks.

These contact points form the foundation of the linear program. By introducing
infinitesimal motions to the blocks (that can be expressed as a six-dimensional vector where
the first three components correspond to the translation of the block and the last three
components to its rotation), the computed contact points move according to the motions
of the corresponding blocks. Wang et al. formulate linear constraints for the blocks not
to intersect by requiring that the infinitesimal motion of the contact points relative to one
of the blocks be restricted to the outside of that block. That is achieved by enforcing the
relative infinitesimal motion of the contact points to be towards the halfspace not containing
the reference block. Such a constraint is called point–plane constraint as it can be modelled as
a point being restricted to one side of a plane. In particular, the authors model the different
contacts in the following way:
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1. For a contact point of two non-parallel edges, the necessary plane for the constraint is
spanned by the corresponding two edges;

2. For each contact point of a contact facet, a constraint is derived by considering the
plane spanned by the corresponding contact facet.

Thus, the indeterminates of the resulting linear program are the infinitesimal motions
given by the translations and rotations of the different blocks. After adding the constraint
for the frame blocks not to move, the interlocking property for a given assembly holds if
the described linear program has no solutions besides the trivial zero solution.

Note that the convexity of the blocks is not required to formulate the above linear
program. All that is needed is to be able to define an interior and an exterior of a given
block, which is the case for the blocks described in this section. For the assemblies of
the n-cube-candies illustrated in Figures 18 and 19, the formulation of the linear pro-
gram described above already verifies the interlocking property of the given assemblies.
On the other hand, for any of the assemblies of the n-candy presented in Section 3.2.1, the
constraints considered by the linear program are not sufficient to prove the interlocking
property as it finds non-zero solutions; since there are no edge–edge contacts of non-parallel
edges, the constraints of the corresponding linear program only consist of the point–plane
constraints arising from the two-dimensional intersection of facets of different blocks, i.e.,
the modelled contacts are solely the contacts of the n-prisms and thus the modelled assem-
bly is equivalent to a pillar of stacked n-prisms. Intuitively, these contacts are not sufficient
to establish the interlocking property in that case. The above test is therefore generalized by
also modelling one-dimensional contacts between faces of different blocks, which will be
called contact edges. There are three types of contact edges that can arise from an intersection
of a block a with a block b:

1. An edge of block a intersects with a facet of block b. In that case, the point–plane
constraints of the plane spanned by that facet for the corner points of the intersecting
line segment is added. An example of such a contact is depicted in Figure 20. There,
two cubes intersect at an edge of one cube and the interior of a facet of the other.

Figure 20. Two blocks with one-dimensional intersection between a facet and an edge. The contact
between the blocks is coloured in red.

2. A convex edge of block a intersects a convex edge of block b. There are two facets of
block a adjacent to the edge of a. In that case, it suffices that one of the two point–plane
constraints of the planes spanned by those facets is fulfilled for both corner points of
the intersecting line segment. This can be achieved by introducing a binary variable
to the linear program that keeps track of which of the two constraints is fulfilled.
An example of that contact type is the contact of two cubes along an edge. Figure 21
shows a picture of such a contact.
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Figure 21. Two blocks with one-dimensional intersection between two convex edges. The contact
between the blocks is coloured in red.

3. A concave edge of block a intersects a convex edge of block b. In that case, the feasible
region for the infinitesimal motions of the contact points on b relative to a is convex.
This is realized in the linear program by adding the point–plane constraints for both
planes spanned by the facets of a adjacent to the concave edge for the corner points of
the intersecting line segment. This contact type arises, for example, in the assembly in
Application 1 (see Figure 22). Not modelling those contacts in the linear program is
the reason why it is not possible to give a certificate of the interlocking property for
the assemblies in Section 3.2.1 by applying the method proposed by Wang et al.

Figure 22. Two blocks with one-dimensional intersections between a convex and a concave edge.
See Application 1. The one-dimensional contacts between the blocks are coloured in red.

Introducing this slight modification in the algorithm yields a linear program that
verifies the interlocking property for the remaining assemblies in Section 3.2.1. Hence, the
interlocking property holds for all the assemblies presented in Section 3.

4. Conclusions

The concept of topological interlocking harbours significant potential for enhancing
the sustainability of concrete constructions, provided that the constituent blocks of an
assembly can be manufactured efficiently. The proposed blocks are easily describable
and offer versatility, as a single block type can be used to create various interlocking
structures, promoting the reusability of building blocks. Since the presented modular
approach to constructing interlocking blocks using different n-prisms can be extended to
create interlocking blocks by combining arbitrary basic blocks, it facilitates the design of
specialized construction kits for specific applications. In order to establish the interlocking
property of the presented assemblies, an existing interlocking test [21] is extended to
consider more general cases.
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As described above, the focus of this paper is on blocks that can be decomposed into
different n-prisms. Therefore, it might also be interesting to see more general constructions
of blocks with interlocking properties. In a forthcoming publication, the second author will
investigate the construction of topological interlocking blocks that can be decomposed into
a finite number of octahedra and tetrahedra. Furthermore, the first and second authors
will present the precise mathematical details of the implemented interlocking test in a
future publication and will work on a Julia package based on the implementations in [27]
to enable a user to manipulate and explore the combinatorial and geometrical properties of
three-dimensional non-convex polyhedra.

Though the notion of topologically interlocking assemblies as a structural design
concept has already been applied to build different structures, such as dry-stone and
masonry walls, the applicability of the presented blocks still has to be tested. These tests
include checking whether these blocks can be manufactured with concrete 3D printing [31],
as well as numerical simulations and real-world tests of the interlocking property and
failure behaviour of the concrete blocks under certain loads. It is acknowledged that
realizing the blocks with 3D printing, as presented in this paper, appears to be quite
challenging. Therefore, these blocks will undergo several design iterations to facilitate
manufacturing with CRC 3D printing.
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