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Abstract: Individual surveillance methods help identify subtle health risks that may be overlooked
in room surveillance. This study aims to investigate campus environmental health issues by tracking
university students’ daily exposure processes in their living environment. A field survey was
conducted among 58 students at a university in northern China. They were equipped with a
“companion data collection device” to record exposure experiences and activity pathways related
to light, heat, and air environments. A questionnaire was also administered. Morning exposure
to adequate light (Circadian Stimulus ≥ 0.3) increased alertness, but only 57% of undergraduates
met this standard, and 67% of those waking up after 8 AM experienced this. People with different
preferences chose diverse dining spots, and those favoring “roasted,” “stir-fried,” and “deep-fried”
foods encountered higher PM2.5 pollution concentrations during meals. During periods of central
heating, there is a trade-off between ventilation and heating efficiency. “Slightly open window” for
bedroom ventilation at night resulted in a slight temperature decrease of about 1.2 ◦C but effectively
controlled the increase in CO2 concentrations (about 180 ppm). Companion-type data collection shifts
focus from buildings to individuals, providing the means and basis for identifying potential health
risks in daily campus life.

Keywords: campus environment exposure; companion-type data collection; environmental preference;
living habits; health risks

1. Introduction

University students, as potential future leaders, politicians, and managers, are increas-
ingly becoming a significant concern in global public health [1]. Many students adopt a
new, independent lifestyle away from parental guidance during their university years. The
lifestyle choices developed during this phase can become deeply ingrained and challenging
to change in the future [1]. Therefore, identifying potential health risks in daily campus life
is essential for improving the overall campus experience [2]. These risks originate from var-
ious sources, such as environmental pollution and unhealthy behaviors. On the one hand,
the high density of university campuses can lead to diverse pollutants emitted by different
campus buildings, such as air pollutants, residual chemicals, laboratory emissions, dust,
and molds [3–8]. On the other hand, students display a range of unhealthy behaviors [9],
including unhealthy eating habits, texting while walking, and excessive sitting [10–13].

With the increasing use of information and communication technology in healthcare [14],
numerous individualized digital health monitoring methods have been tested and im-
plemented on campuses across the globe [15]. For example, some devices offer constant
individual exposure information, such as air pollution data [16], volatile organic com-
pounds (VOCs), particulate matter (PM) [17,18], and noise levels [19]. Additionally, these
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devices can be used to examine the links between environmental exposure processes,
physiological responses [20], and behavior patterns [21,22]. Digital health monitoring
methods have been widely utilized to promote healthy eating and exercise through online
programs [23,24], improve thermal comfort in campus environments [25,26], and enhance
the psychological well-being of university students [20], among other areas. These technolo-
gies utilize individual monitoring methods, identify vulnerable populations, and provide
numerous advantages.

A report by the World Health Organization (WHO) emphasizes that universities and
student health institutions affiliated with the Organization for Economic Cooperation and
Development (OECD) usually develop health policies and strategies for disease prevention
and health promotion [27]. However, in campus life, the main challenge in resource-
limited environments is proactively detecting potential health risks and implementing
timely interventions.

This study was proposed based on a fundamental assumption that identifying health
risks associated with environmental exposure should focus primarily on observing daily
environmental exposure processes. In the current study, “daily environmental exposure”
refers to the environmental conditions accompanying daily life paths. It is worth not-
ing that studies research typically confined the identification of environmental exposure
risks to the assessment of different types of room environmental quality and did not
adequately consider the comprehensiveness and continuity of daily environmental expo-
sure processes. Moreover, it tends to ignore the potential influence of lifestyle habits on
this process.

This study aims to explore potential health problems associated with various phases
of campus life, including study, work, eating, and sleep, by comprehensively tracking
college students’ daily environmental exposures. A dedicated companion-type data col-
lection system was developed to facilitate data collection. This system allows for the
selection of real-time environmental parameters and activity pathways monitored through
an Internet of Things (IoT) data collection platform. On this basis, students of different
types and ages were recruited as subjects at a university campus in Northern China and
followed up in each season. Data collected via questionnaires and field measurements
were analyzed to discuss the characteristics of daily environmental exposure and subjective
environmental perceptions.

2. Methodology
2.1. Research Design

This study comprehensively investigates university students’ daily environmental
exposure process from their daily activity path. Specifically, this work delved into the
following aspects: firstly, it explored whether the environmental lighting during learn-
ing and working hours was sufficient to sustain an individual’s mental alertness. Sec-
ondly, it analyzed the dietary preferences of university students during meal times and
evaluated the potential health risks associated with their exposure to the environment.
Finally, it investigated the potential impact on health when individuals strike a balance
between room temperature and air quality by opening windows and ventilating behaviors
during sleep.

A combination of empirical surveys and questionnaires was employed in this research.
The research team developed an accompanying data collection system designed to record
the daily activity path and environmental exposure conditions (including temperature,
humidity, light, CO2, and PM2.5) of school students over a specific period of time and a
subjective environmental perception questionnaire was used to provide insights into the
students’ subjective perceptions and evaluations of the environment. The descriptions of
the specific research methods will be detailed in the subsequent chapters.
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2.1.1. The Companion-Type Data Collection System

A companion environmental data collection system was used in this study. The system
comprises two portable devices for data collection and an online monitoring platform for
remote and real-time data acquisition, as illustrated in Figure 1.
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Figure 1. Schematic diagram of the companion-type wireless automatic data collection system.

In order to accurately capture the effects of habitual environmental exposure, it is
crucial to continuously sample multiple environmental parameters in a spatially distributed
and time-varying manner. In response to this research need, a portable system was de-
veloped to autonomously collect five key environmental quality evaluation indicators,
including air temperature, relative humidity, illumination, PM2.5, and CO2 concentrations.
The system consists of two modules: Module A (equipped with GPS) is used to collect
PM2.5 and CO2 concentrations in the room/space where the carrier is located, and Module
B is used to collect indoor environmental parameters, including air temperature, relative
humidity, and vertical illuminance, as shown in Figure 2. Vertical illuminance can assess
human light-based circadian rhythm stimulation, but sensors need to be worn on the body.
To make Module B wearable on the chest, some sensors were transferred to the “satellite
module”. Module A was designed to be placed near the personnel activity area and carried
in an open backpack position during travel to avoid direct impact from personnel breathing.
For data collection accuracy, Table 1 lists the performance parameters of the sensors used
in the data collection modules and the requirements according to relevant specifications.
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Table 1. Performance parameters of sensors.

Parameters Sensor Model Range Accuracy Standard Limits

Air temperature SHT3-DIS −10~80 ◦C ±0.3 ◦C ±0.5 ◦C 1

Relative humidity SHT3-DIS 5~100% ±2% ±5% 1

Illuminance B-LUX-V22 1~65,535 lx ±5% ±8% 2

PM2.5 PMS5003 0~500 µg/m3 ±5 µg/m3 (0~100 µg/m3);
±10% (100~500 µg/m3) ±10% 2

CO2 SenseAir-S8 0~10,000 ppm ±8 ppm (≤2000 ppm);
±3% (>2000 ppm) ±50 ppm 2

GPS ATGM332D5N - 2.5 m -
1 GBT 50785-2012; 2 T/CECS 10101-2020.

To ensure the reliability of environmental monitoring data, the collection devices were
calibrated before the experiment, and the test results were obtained, as shown in Table 1.

The firmware was embedded in the STM32 microcontroller hardware system and was
used to manage the program running in the processor chip. The software development
platform used in this system is the ARM RealView MDK platform written in C/C++.
With the help of this software, the collected raw data of temperature, humidity, and
illuminance were received through the I2C interface, and the collected raw data such
as CO2, PM2.5, and GPS positioning information were received through the universal
asynchronous receiver/transmitter (UART) interface. In addition, the actual data were
obtained by further analysis in the software. In order to reduce the power consumption
of the system, the method of multiple measuring and one forwarding was adopted in
the software design. In this case, the data collected multiple times were stored in the
external EEPROM memory. The communication interface between the 4G communication
module and the STM32 was UART, and the STM32 could communicate with the 4G module
through the serial port. STM32 sent the collected data to the 4G communication module
through the UART interface in JavaScript object notation (JSON) format, and then the 4 G
communication module forwarded the data to a cloud platform.

This platform was employed for online monitoring and was developed using IntelliJ
IDEA software for Windows. It follows a development model that separates the front-end
and back-end and uses the Spring Boot + Vue framework. On the monitoring interface,
there are four primary parameter display interfaces (as shown in Figure 1) and other back-
end administrative interfaces. Notably, although an innovative data collection system
was used in this work, the main attention was not paid to the technical development of
this system.

2.1.2. Questionnaire Design

Three surveys were used in this study, as summarized in Table 2. Further details on
Questionnaires A and B can be found in Appendix A.

Table 2. Questionnaires.

Number Dimension Filling Time

0 Basic Information Completed during participant recruitment
A Clothing, Diet, Sleep Complete one copy each day

B Environmental Assessment, Activity Intensity,
Environmental Adjustment Behavior

Once at getting up in the morning, once in the forenoon,
and once in the afternoon, once before bedtime

The questionnaire was designed with expertise from various fields to ensure the scien-
tific validity and applicability of the questions. Traditional Chinese Medicine Constitution
(TCM constitutions) is a method for identifying personal characteristics of Chinese individu-
als that is proposed by Professor Wang Qi’s team at Beijing University of Chinese Medicine,
based on years of clinical evidence and modern medical research methods. Different consti-
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tutions correspond to environmental preferences, climatic adaptability, and emotions [28].
Hence, in questionnaire (0), this study used TCM constitutions as the reference indicator to
assess environmental adaptability. Classification was based on the questionnaire for the
classification of Chinese medicine physique proposed by Wang Qi. [29] (English translation
version [30]). The questionnaire comprised 62 items, and reliability and validity tests were
conducted by Hui-Ru et al. [31].

Participants used a “health” mobile application to automatically monitor bedtime and
wake-up time and then recorded the monitoring results in the questionnaire (A).

In questionnaire (B), the Thermal Sensation Vote (TSV) was assessed using the ASHRAE
7-point scale [32].

2.2. Data Collection
2.2.1. Location and Local Weather

This study was carried out at a university in Dalian, a coastal city in northeast China.
The climate in this area is characterized by a combination of monsoon and maritime climate,
with hot and humid summers and an average high temperature of 27.3 ◦C in August and
strong winds and cold winters with an average low temperature of −6.8 ◦C in January. The
heating period in this region usually lasts six months, from 5 November to 5 April.

The university covers an area of 218 hectares, with more than 100 buildings distributed
in two main areas, including 90 teaching, laboratory, and administrative buildings, two
main libraries, 64 student dormitory buildings, and canteens. The distribution map of the
university campus is depicted in Figure 3.
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2.2.2. Experimental Procedure

The data were collected in March, August, and October 2021, as well as in Decem-
ber 2022. For essential information regarding this data collection, please refer to Table 3.
The survey primarily concentrated on students’ activities on the university premises,
including offices, libraries, classrooms, dormitories, and dining establishments. Other
occasional visitation sites (e.g., hospitals and administrative buildings) were not exten-
sively investigated. Figure 4 shows some of the spatial environment photos involved
in the field survey, and the space size and environmental control conditions are listed
in Table 4.

Participants were instructed to wear data collection devices to monitor their environ-
mental exposure processes for approximately one week. They were required to temporarily
remove the devices during activities such as exercise, bathing, or sleeping but to carry them
at all other times.

Table 3. Basic information about the data collections.

Location Season Duration Participants Building Type

Dalian

Spring 13/03/2021~21/03/2021 20
Office, Library,

Classroom, Dormitory
Summer 02/08/2021~06/08/2021 10
Autumn 25/10/2021~29/10/2021 20
Winter 14/12/2022~17/12/2022 8
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Table 4. The size and environmental services in the typical spaces on campus.

Building Type Area (m2) Blind Type Air Conditioning Radiator

Office 40~60 Rolling curtain,
Venetian blinds

√ √

Library 300~500 Rolling curtain
√ √

Classroom 50~200 Rolling curtain,
Fabric curtain ×

√

Dormitory 18~24 Fabric curtain ×
√

2.2.3. Collection of Environmental Parameters

During the measurement process, participants wore devices that collected data on
their daily environmental exposure. The devices were designed to act as companions, as
shown in Figure 5. Data were collected at a consistent interval of 1 sample per minute.
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2.2.4. Correction for Sensor Placement Effects

(1) Illuminance

In the experiment, illuminance sensors recorded the lighting conditions as perceived
by the human eye. However, the sensor was not placed directly in front of the eye for mea-
surement since wearing it would be inconvenient for daily life and work. Photobiological
studies commonly use miniature sensors worn on the head or chest [33–35]. Therefore,
in this study, the illuminance sensor was installed on the surface of the sampling module
at the chest level, and preliminary experiments were performed to compare illuminance
values between eye level and chest level in different scenarios. The results showed that
in open environments such as outdoors and libraries, the relative error of illuminance
was within ±4%. However, in confined environments such as offices and dormitories,
the relative error increased to within ±7%. Since this error is affected by the particular
distribution of light sources in different locations, making a precise correction is impos-
sible. Nevertheless, relevant studies indicate that to observe variations in the effect of
illuminance on human circadian rhythms, illuminance values should differ by at least a
few hundred lux (e.g., 1000/500/100 lux) [36]. Therefore, it was speculated that the devi-
ation in illuminance recording values caused by wearing the sensor at chest level would
not significantly affect the investigation of the impact of light exposure experiences on
photobiological rhythms.

(2) Temperature

Placing temperature sensors near the human body results in a slightly higher tem-
perature reading compared to the indoor air temperature. As the thickness of clothing
increases, the difference between the temperature readings from the sensor and the indoor
air temperature gradually decreases. As can be seen in Figure 6, under typical office con-
ditions (seated posture, activity level approximately 1.2 met), the difference ∆t between
the air temperature measured at the sensor placement location and the air temperature at
2 m from the body as a function of clothing thermal resistance. The indoor air tempera-
ture was obtained from the calculations by subtracting the correction value ∆t from the
instrument reading.
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(3) PM2.5 and CO2

Participants were asked to carry Device A equipped with PM2.5, CO2, and GPS sensors
during their trips. They were instructed to place Device A inside a bag and keep it open.
However, the conditions inside the bag might affect the measured environmental conditions.
Therefore, this study did not include trip monitoring data to address the problem.

2.2.5. Collection of Activity Path

The portable data collection device was equipped with GPS to record the duration
and location of participants’ stay inside the building, as shown in Figure 7. The team
set up GPS electronic fences around the perimeter of buildings (mainly including office
buildings, libraries, teaching buildings, dormitories, and canteens) within the campus in
advance. Participants who carried their devices in and out of the electronically fenced
areas were considered to have entered or left the respective buildings. Using the location
and time information provided by the GPS, the research team was able to calculate which
buildings participants had visited and how long they had stayed. It should be noted that
GPS signals may be lost inside buildings, so the device alone cannot determine the exact
location of participants within the building. Therefore, participants need to describe their
specific room (type, window orientation, device operation, etc.) through Questionnaire B.
In addition, room size was measured after the survey.
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2.2.6. Participant Selection

(1) Selection Criteria

Eligibility criteria required participants to be currently enrolled students residing on
campus. To ensure a comprehensive and diverse sample, the research team first invited
potential participants and collected basic information detailed in Table 5. Subsequently,
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the team conducted a rigorous screening process, striving for gender equity and an equal
representation of participants with varying characteristics.

Table 5. Basic information about the participants (Questionnaire 0).

Questions

What is your academic status?
What is your original province?

How long have you lived in the university?
What is your gender?

TCM constitutions
What is your academic status?

Participant recruitment strategy included various channels, such as classroom notices,
the school’s innovation project training program, and facilitation for students who were
already participating in inviting their peers to join the study.

(2) Selection Results

In this work, 58 students were chosen as the participants, including undergraduate
and graduate students. There were 30 females and 28 males, ranging in age from 20 to
28 years. These students came from 12 different provinces in China, with 52% from the
northern region and 48% from the southern region. Their stay in Dalian varied from six
months to seven and a half years. In spring, summer, autumn, and winter, 20, 10, 20,
and 8 students participated in the experiment, respectively. Table 6 shows the specific
breakdown of participants.

Table 6. Characteristics of participants.

Characteristics N %

Academic status
Undergraduate 19 (6/3/6/4) 33
Post-graduate 39 (14/7/14/4) 67

Original province Northern China 36 (14/5/13/4) 62
Southern China 22 (6/5/7/4) 38

Duration of Stay in School Location
Less than one year 15 (4/1/5/5) 26

1~3 years 32 (12/7/12/1) 55
More than three years 11 (4/2/3/2) 19

Sex
Female 30 (10/6/10/4) 52
Male 28 (10/4/10/4) 48

TCM constitutions

BC 18 (5/6/4/3) 31
QDC 19 (7/4/6/2) 33

YADC 11 (6/0/5/0) 19
YIDC 10 (2/0/5/3) 17

N: Total number of participants, and the number of participants in the spring/summer/autumn/winter surveys.

2.2.7. Distribution and Return of Questionnaire

The participants completed the questionnaires on mobile applications. Table 2 lists the
completion times. They were instructed to wait 30 min before completing Questionnaire B
to adapt to the environment.

Participants were trained to accurately understand the content of the questionnaire
and to complete it according to the requirements before the experiment. The researchers
remotely monitored participants’ entry times and questionnaire submissions during the
experiment through the data platform. Any data that failed to meet the waiting conditions
were marked invalid or excluded, and the relevant participants were contacted to resubmit
the surveys. These measures were taken to preserve the integrity of the experimental data.
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The experiment ultimately collected 272 responses for Questionnaire A, once per
person per day, with a retrieval rate of 100%. Moreover, 1019 responses were collected for
Questionnaire B, four times per person per day, for a retrieval rate of 94%.

2.2.8. Ethical Considerations

The university ethics committee reviewed and approved the project based on an ethical
assessment report (approval number: DUTIE22051903). Before joining the experiment,
each participant and the research team signed a consent form in which the research team
promised not to publish any personal information of the participants in any publication
and to ensure that all research data would be safely stored.

2.3. Data Analysis Methods
2.3.1. Eye Light Experience and Arousal State in the Morning

Human circadian rhythm system is light-sensitive, and continuous and sufficient light
during the day suppresses melatonin secretion, thereby keeping individuals awake [37]. In
2005, Rea et al. [38] established an empirical model to estimate the relationship between
the amount of light the human eye receives and its impact on melatonin suppression. They
introduced the term “Circadian Stimulus (CS)” as an evaluation metric. This metric takes
into account a pupil diameter of 2.3 mm exposed to light for one hour and is influenced by
factors such as spectrum, light intensity, exposure duration, and time of exposure. Figueiro
et al. [36] investigated the relationship between CS and the alertness of office workers,
suggesting that individuals should be exposed to at least one hour of sufficient light
(CS ≥ 0.3) in the morning. However, CS values were calculated based on exposure to
constant light for one hour, whereas real-world lighting conditions are dynamic. In this
study, the average illuminance at a given moment during the previous hour was used to
calculate CS values.

In this study, participants’ light exposure experiences (i.e., intensity, exposure time,
and duration) were obtained according to a companion-type data collection method. The
spectrum used for calculations followed the standards provided by the International
Commission on Illumination (CIE), specifically CIE D65 (average daylight) and CIE F3
(white fluorescent light). The CS value calculation process was implemented using a
computation program developed by the Lighting Research Center at Rensselaer Polytechnic
Institute [39].

Based on these calculations, additional statistical analyses were performed to deter-
mine the percentage of individuals who met the criteria of experiencing at least one hour
of CS ≥ 0.3 in the morning across a range of demographic and seasonal conditions.

2.3.2. Dietary Preferences and Environmental Exposure during Meal Times

“Mealtime” is an important, yet variable, aspect of daily environmental exposure.
Individuals with different dietary preferences may frequent different dining locations,
including campus cafeterias and on-campus eateries offering different culinary options.

This experiment focused on the correlation between participants’ dietary choices
and the air quality at their dining locations. During the experiment, 272 sets of meal-
time data were collected through questionnaire A, which included questions such as,
“Did you have breakfast, lunch, and dinner today? The reasons for not eating?” and
“What are your dietary choices?”. At the same time, data on participants’ exposure to
PM2.5 and CO2 concentrations at mealtimes were collected using a peer-based data collec-
tion system. Dietary choices were categorized into five types based on different cooking
methods: grilled, stir-fried, deep-fried, vegetarian, and stewed. Participants’ meals often
included various cooked foods, and each meal was summarized based on the primary
cooking method.

Further statistical analysis was then conducted to evaluate the levels of exposure to
PM2.5 and CO2 at mealtimes for participants with different dietary preferences.
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2.3.3. Ventilation Behavior and Air Quality during Sleep

The “nighttime sleep environment” is the last link in daily environmental exposure.
Dormitories are densely populated and have a long residence time, and Dalian is centrally
heated from November to April. During this period, windows are closed for long periods
of time to ensure the heating effect. This situation can cause a meager ventilation rate
between the indoor and outdoor environments, representing northern China. It has been
reported that the CO2 concentration can not only reflect air quality (air age) but also lead
to problems such as decreased sleep quality and increased tiredness the next day when
exposed to high CO2 concentration (more than 1000 ppm) at night [40]. In this study,
dormitories were single-windowed rooms measuring 18–24 m2, equipped with heating but
without air conditioning or mechanical ventilation. Students spontaneously intermittently
opened windows to renew the indoor air. The different window opening and ventilation
behaviors made by the participants when faced with the trade-off between lowering carbon
dioxide concentrations and ensuring room temperature.

2.3.4. Statistical Analysis

Multiple statistical tests were performed on different data types to ensure the validity
of the measured and questionnaire data. The corresponding statistical tests were selected
based on whether the data exhibited discrete and paired features [41], as shown in Figure 8.
The analysis was conducted with a set standard level of statistical significance with a
p-value of 0.05.
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3. Results
3.1. Daily Rhythms

The average time spent by participants in different spots and their daily activity
patterns is depicted in Figure 9. Since most of the participants were post-graduate students,
they spent most of their time in their dormitories and offices, as shown in Figure 9a. As
shown in Figure 9b, the average waking time in different seasons showed a slight deviation,
which may be related to the fact that students must attend classes at 8:00 a.m. In contrast,
there was a significant difference in bedtime. During the heating season (winter/spring), the
average bedtime of the participants was 22:50 ± 45 min, while in the non-heating season
(summer/autumn), the average bedtime was 23:35 ± 38 min. There was a significant
difference between the two (t = −3.693, p = 0.003), which also corresponds to the lifestyle of
Chinese people who tend to sleep earlier in winter than in other seasons.
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3.2. Daily Cumulative Environmental Exposure Characteristics

From the perspective of maintaining health, the amount of light in the working and
learning environment affects one’s energy levels, the dietary preferences and exposure
to the environment during meal times may pose health risks, and the environmental
conditions during sleep may affect the quality of sleep. These are all issues of concern
during the companion-type data collection process.

3.2.1. Daylighting and Alertness

This study examines two critical factors impacting light exposure: variations in student
population characteristics and seasonal influences. It defines fulfilling the light exposure
threshold (CS ≥ 0.3) for at least one hour in the morning (before 12:00 p.m.) as sufficient.
Specifically, meeting the requirement of adequate light exposure before 9:00 a.m. suggests
that individuals are alert at the start of their study or work. Figure 10 shows the proportion
of individuals who meet the requirement of at least 1 h of CS ≥ 0.3 in the morning,
depending on population and seasonal conditions.
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Figure 10 indicates that less than one-third of undergraduates and less than half of
post-graduate students could fulfill their light exposure requirements by 9:00 a.m. However,
a majority of undergraduate and nearly all post-graduate students managed to achieve their
requirements by 12:00 p.m. This indicates that satisfying the light exposure requirements
(CS ≥ 0.3) for one hour in the morning (by 12:00 p.m.) is comparatively more challenging
for undergraduate students than for post-graduate students. High-intensity light exposure
during the morning road trip had a significant impact on meeting the light requirements
by 9:00 a.m. The real-world measurements revealed that undergraduate students tended to
arrive at the classroom earlier (around 7:50 a.m.) than post-graduate students who arrived
at the faculty room around 8:30 a.m., which resulted in less time being available for the
road trip. People who rose early (before 8:00 a.m.) had a better chance of fulfilling their
light exposure requirements by 9:00 a.m. than those who got up later (after 8:00 a.m.), with
a success rate of 57% compared to 25%, respectively. Seasonal effects influenced the ability
to reach light exposure targets by 9:00 a.m., with winter (13%) being the most challenging
season and summer (54%) being the easiest, which is consistent with the sunrise time
pattern in different seasons. By 12:00 p.m., the highest percentage of people who had
fulfilled their light requirements were observed in winter (96%), which was attributed
to the low solar altitude angle during this season, allowing sunlight to enter the room
more easily.

According to the survey results, 90% of the participants were exposed to sufficient
light for an hour in the morning, which proved challenging to achieve in most instances.
The study recommends the inclusion of circadian stimulation in the assessment process
to ensure human health and improve work performance, as the current measurement of
lighting conditions based on work surface illuminance ignores the actual light received by
the human eye.

3.2.2. Mealtime: The Correlation between Dietary Choices and Air Quality in Dining Areas

During the survey, the average PM2.5 concentrations in different spots, ranked
from high to low, were as follows: canteen (34.3 µg/m3), office (31.9 µg/m3), classroom
(29.2 µg/m3), dormitory (25.3 µg/m3), and library (25.0 µg/m3). The average CO2 concen-
trations, also ranked from high to low, were dormitory (1308 ppm), canteen (1019 ppm),
classroom (912 ppm), office (905 ppm), and library (797 ppm). For the purpose of this
article, we specifically focus on analyzing the potential health effects of PM2.5 during meals
and CO2 concentrations during bedtime on the participants.

Figure 11 shows the PM2.5 and CO2 exposure levels of participants in the din-
ing area during the survey period based on different dietary choices. Stir-fried food
was the most popular choice among participants (31%), followed by stewed (24%) and
vegetarian (23%). Participants with different dietary characteristics selected dining areas
with varying levels of PM2.5 exposure. The highest average value was for the “roasted”
category, which was 41 ± 24 (SD) µg/m3, followed by the most commonly chosen “stir-
fried” category, which was 36 ± 22 µg/m3. “Vegetarian” and “stewed” had relatively
lower levels, at 24 ± 19 µg/m3 and 23 ± 16 µg/m3, respectively. It is worth noting
that the PM2.5 exposure levels in the dining areas chosen by participants with the di-
etary characteristics of “roasted,” “stir-fried,” and “deep-fried” exceeded 25 µg/m3 (the
recommended value of the 2021 WHO Global Air Quality Guidelines, 99th percentile,
i.e., 3–4 exceedance days per year) on average during the measurements. Additionally, there
were no significant differences in CO2 exposure levels among participants with different
dietary choices.
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Figure 11. PM2.5 and CO2 exposure levels of participants with different dietary choices during meal
times (dining area), with the proportion of dietary choices and number of reports in parentheses.

3.2.3. Nighttime Sleep Period: Air Environment and Bedtime Window Opening Behavior

During the experiment, 272 reports of the nighttime window opening and sleep
duration were collected through questionnaires. Considering the impact of differences in
the number of people in the dormitories, 22 unrepresentative reports from single-person
dormitories (according to the actual number of residents during the survey period) were
excluded, and 144 reports (quadruple room) and 106 reports (triple room) were included
in the final evaluation. At the same time, the corresponding environmental exposure data
were obtained through the companion-type data collection module. According to the
participants’ different window opening and ventilation behaviors, the group that closed
the windows and slept (considering the actual living scenario, the closed window behavior
in the experiment was defined as including “completely closed” and “Slightly open”) was
referred to as Group A, and the group that opened the windows and slept (excluding
“Slightly open”) was referred to as Group B.

Figure 12 shows the concentration of CO2 in the bedroom before and after sleep. At
the same time, Table 7 further distinguishes the effects of the degree of window opening
and regulation methods on CO2 concentration and room temperature before and after
sleep. In winter, Group A accounted for 87%. Completely closing the windows during
sleep (67%) led to an average increase of 80% (about 930 ppm) in CO2 concentration and a
decrease of 1% (about 0.2°C) in average room temperature before and after sleep. Choosing
“Slightly open” (20%) effectively controlled CO2 concentration, which only increased by
10% (about 180 ppm), but at the cost of a 6% decrease (about 1.2 ◦C) in average room
temperature. Regarding the window opening and closing method, 60% of the participants
chose “intermittent on” (meaning records of both open and closed windows during sleep).
In summer, 100% of the participants decided to sleep with the windows open, resulting
in an average decrease of 31% (about 330 ppm) in CO2 concentration and a decrease of
3% (about 0.8 ◦C) in average room temperature before and after sleep. Although the
nighttime outdoor temperature is similar in spring and autumn, the window-opening
behavior is quite different. In spring, most people chose to close the windows while
sleeping (Group A, 73%); in autumn, nearly half of the people decided to sleep with the
windows open (Group B, 51%). Further statistical analysis showed no reports of window
openings from north-facing rooms (facing the prevailing wind direction) during winter,
indicating that the participants avoided opening the windows facing the dominant winter
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wind direction. Although the quadruple room requires more ventilation to reduce CO2
concentration than the triple room, in the transition season (spring/autumn), the proportion
of window opening while sleeping (Group B) in the triple room was about 30% higher than
that in the quadruple room, while the proportion of “intermittent on” in the triple room
was about 20% higher than that in the quadruple room. In this test, more people in the
bedroom did not encourage window-opening behavior, possibly due to considerations for
others rather than purely for environmental needs. Further research is needed to guide the
role of window openings and ventilation in obtaining a good sleep environment.
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at night.

Table 7. Changes in indoor environmental parameters before and after sleep using different window
ventilation methods.

Window Opening Degree
and Mode 1 (Percentage)

Changes before and after Sleep 2

Average Change in
CO2 (ppm)

Average Change in
Indoor AT (◦C) Outdoor AT (◦C)

Winter +640 (+52%) −1.3 (−7%)
Quarter-open (13%) −110 (−11%) −1.5 (−8%)

−6.2~−4.8

Slightly open (20%) +180 (+10%) −1.2 (−6%)
Completely closed (67%) +930 (+80%) −0.2 (−1%)

Always off (33%) +910 (+70%) −0.4 (−2%)
Intermittently on (60%) +570 (+45%) −1.2 (−6%)

Always on (7%) −10 (−2%) −1.5 (−8%)

Spring +430 (+32%) −1.0 (−5%)
Quarter-open (28%) −180 (−12%) −1.1 (−5%)

7.6~9.5

Slightly open (24%) +180 (+13%) −1.3 (−7%)
Completely closed (49%) +890 (+71%) −0.3 (−1%)

Always off (15%) +680 (+61%) −0.5 (−2%)
Intermittently on (75%) +410 (+30%) −1.1 (−5%)

Always on (10%) +200 (+15%) −1.0 (−5%)

Summer −330 (−31%) −0.8 (−3%)
Fully open (20%) −1500 (−72%) −1.6 (−6%)

23.2~27.4
Half-open (33%) −250 (−28%) −1.3 (−5%)

Quarter-open (28%) 0 (0%) −0.3 (−1%)
Slightly open (20%) +250 (+21%) −0.1 (−0.4%)

Always on (100%) −330 (−31%) −0.8 (−3%)
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Table 7. Cont.

Window Opening Degree
and Mode 1 (Percentage)

Changes before and after Sleep 2

Average Change in
CO2 (ppm)

Average Change in
Indoor AT (◦C) Outdoor AT (◦C)

Autumn +350 (+31%) −0.4 (−2%)
Half-open (25%) −180 (−19%) −2.0 (−9%)

8.8~12.8

Quarter-open (26%) −40 (−5%) −0.7 (−4%)
Slightly open (12%) +220 (+19%) −0.3 (−1%)

Completely closed (37%) +1030 (+75%) +0.9 (+5%)

Intermittently on (79%) +450 (+40%) −0.3 (−1%)
Always on (21%) −40 (−4%) −0.8 (−4%)

Note: 1 The external window has five degrees of opening (Fully open, Half-open, Quarter-open, Slightly open,
and Completely closed). It can be adjusted in three modes (Always on, Intermittently on, and Always off). 2 The
indoor environmental parameters were measured before and after sleep; the difference is shown here. AT refers to
air temperature.

3.3. Adaptability to Environment (TCM Constitutions) and Clothing, Environmental Acceptability

During the experiment, participants of different constitutions were given a thermal
sensation vote (TSV) from Questionnaire (B) four times a day, totaling 1019 votes. The
environmental exposure process during the participants’ testing period was considered
as a whole, and the overall environmental acceptability was evaluated using an average
TSV value.

The thermal sensation voting of participants with different constitutions is shown in
Table 8. As shown in Table 8, the overall average level of sensation voting for different
seasons was −0.16 ± 1.00 (winter), −0.08 ± 0.73 (spring), 0.47 ± 0.79 (summer), and
−0.34 ± 0.99 (autumn). Among all types of constitution participants, the thermal sensation
evaluation of BC participants was closer to neutral in each season, and they wore less
clothing indoors in winter. Although QDC participants wore the warmest clothing indoors
during winter (1.32 clo) and the coolest clothing during summer (0.38 clo), their thermal
sensation evaluation was further from neutral to the overall level, demonstrating poor
tolerance to both cold and heat. The general voting reflected that the thermal sensation
in spring and autumn was colder, but participants with a YIDC felt the environment was
warmer (0.38 ± 0.19 in spring and 0.40 ± 0.27 in autumn).

Table 8. Thermal sensation votes of participants with different TCM constitutions.

TCM
Constitutions

TSV (Percentage of Votes) Average
TSV (−)

Indoor AT
(°C)

RH (%)
Average
Iclo (clo)−3 −2 −1 0 +1 +2 +3

Winter 2% 8% 19% 48% 21% 2% 0% −0.16
12.6~25.5

avg. = 20.7
25~37

avg. = 30
BC 0% 0% 20% 57% 23% 0% 0% 0.03 1.08

QDC 6% 15% 18% 30% 27% 3% 0% −0.33 1.32
YIDC 0% 9% 17% 61% 9% 4% 0% −0.17 1.20

Spring 2% 5% 13% 63% 16% 0% 1% −0.08

16.7~26.6
avg. = 21.9

22~63
avg. = 38

BC 0% 2% 13% 68% 15% 0% 2% 0.04 1.10
QDC 2% 6% 14% 61% 16% 0% 1% −0.15 1.48

YADC 0% 14% 0% 71% 14% 0% 0% −0.14 1.53
YIDC 0% 0% 0% 63% 38% 0% 0% 0.38 1.35

Summer 0% 0% 3% 57% 29% 10% 0% 0.47 24.1~32.4
avg. = 27.7

33~76
avg. = 59BC 0% 0% 1% 65% 23% 11% 0% 0.43 0.43

QDC 0% 0% 6% 40% 45% 9% 0% 0.57 0.38

Autumn 7% 4% 15% 65% 9% 0% 0% −0.34

17.4~26.7
avg. = 22

45~74
avg. = 58

BC 0% 0% 9% 82% 9% 0% 0% 0.00 0.93
QDC 5% 2% 18% 68% 7% 0% 0% −0.30 1.08

YADC 21% 14% 14% 43% 7% 0% 0% −1.00 1.03
YIDC 0% 0% 0% 60% 40% 0% 0% 0.40 0.96

Note: RH refers to relative humidity; Iclo refers to clothing insulation.
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3.4. Lunchtime Nap: The Impact of Lunchtime Nap on Environmental Acceptability

During the investigation, it was found that some participants took lunchtime naps.
These participants usually chose to take a nap for 0.5 to 1.5 h after lunch. Figure 13 shows
the thermal sensation votes of participants who took a lunchtime nap and those who
did not during the afternoon working period. The figure includes 157 evaluations with
a lunchtime nap and 102 evaluations without a lunchtime nap. As shown in Figure 13,
participants who took a lunchtime nap during all survey months had thermal sensation
votes that were closer to neutrality than those who did not take a lunchtime nap. The mean
thermal sensation votes for participants who took a lunchtime nap were as follows: spring
(−0.22 ± 0.79), summer (0.00 ± 1.00), autumn (−0.16 ± 0.75), and winter (−0.11 ± 0.96).
The mean thermal sensation votes for participants who did not take a lunchtime nap were
as follows: spring (−0.64 ± 0.78), summer (0.54 ± 1.00), autumn (−0.29 ± 1.14), and winter
(−0.40 ± 0.70). In particular, there was a significant difference in the impact of a lunchtime
nap on the thermal sensation vote in the spring, with Z = −2.391, p = 0.017.
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4. Discussion

In this study, a database reflecting the real environmental exposure of students during
the survey period was obtained by using a simultaneous survey method, a questionnaire,
and a matching type of environmental parameter collection equipment. From the per-
spective of the daily exposure process, some typical problems of campus life in different
activities (study and work, dining, and sleep) were analyzed.

4.1. Applicability and Limitations of the Companion-Type Data Collection Method

This study adopts an innovative perspective that emphasizes the importance of ob-
serving the process of daily environmental exposure when assessing health risks. In order
to achieve this goal, environmental monitoring equipment has shifted from traditional
sentinel spatial monitoring to companion-type monitoring methods. This reorientation of
data collection methods has reshaped the traditional view of problem analysis.

Regarding the light environment, traditional approaches mainly focus on visibility,
safety, and glare reduction to optimize indoor lighting. In contrast, companion-type moni-
toring is better suited to analyzing the impact of light exposure on individual physiological
rhythms and alertness, among other factors, to enhance the overall health experience.

With respect to the thermal environment, companion-type monitoring primarily
records an individual’s history of heat exposure. However, it is worth noting that ra-
diant temperature is typically used for room-level assessments and may not be suitable
for individual sensors. Therefore, the lack of radiant temperature information may pose
challenges in calculating the most current comfort assessment indices. Further research is
needed to explore how to incorporate radiant temperature into the framework of individual
monitoring methods.
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In terms of air quality, traditional approaches usually require pre-selecting monitoring
locations before starting the study. However, companion-type data collection methods
may introduce issues related to the correlation between location selection and air quality.
Location choices may closely relate to individual characteristics, lifestyles, or preferences.
This presents interesting opportunities for future research.

Most importantly, companion-type data collection methods introduce a new dimen-
sion: “pathways.” Pathway data consider the environment and an individual’s behavior
and activity patterns in specific environments. This allows researchers to gain a deeper
insight into the differences between individuals, such as why some people may be exposed
to higher environmental risks while others are not. Nevertheless, there are limitations to
this approach as each study participant has unique characteristics in terms of environmental
exposure, which may not be amenable to statistical analysis.

4.2. Discoveries of Daily Environmental Exposure Characteristics

Here, a companion-type environmental data collection system employed was to track
the environmental exposure experiences of university students throughout the day over
a certain period. This study aimed to identify potential environmental health issues and
assess individual differences in environmental perception.

Firstly, the study investigated whether light exposure in the morning was sufficient for
vigilance. Morning exposure to sufficient light for at least 1 h (CS ≥ 0.3) met the lighting
requirement for vigilance. It was found that graduate students were more likely to meet
this requirement compared to undergraduate students, with achievement rates of 92% and
57%, respectively. Early risers (≤8:00 a.m.) were also more likely to meet the morning
light exposure requirement before 9:00 a.m. compared to late risers (>8:00 a.m.), with
achievement rates of 57% and 25%, respectively. Of all the seasons, the most challenging was
meeting the morning light exposure requirement by 9:00 a.m. in the winter (achievement
rate of only 13%). The results indicate that over half of the university students did not
receive enough morning light before 9:00 a.m., which negatively impacted their morning
alertness. Additionally, less than 90% of students meet the required lighting conditions
before 12:00 p.m. A study by Ignacio Acosta et al. [42] in educational buildings suggests
that rooms with low reflectance on interior surfaces or work surfaces tend not to provide
appropriate CS values (CS ≥ 0.3), regardless of window size, orientation, or location.
Thus, it is recommended to prioritize high reflectance on interior surfaces, especially when
selecting colors for work surfaces in classroom design. Furthermore, a study by Irena Iskra-
Golec et al. [43] indicates that exposure to intermittent bright light (IBL) during the day has
a significant impact on improving task performance compared to ordinary room lighting
(ORL) conditions. This finding further supports the notion that early risers are more likely
to fulfill lighting requirements because they have more opportunities to experience outdoor
light exposure during their commute.

Secondly, the study explores whether there are health risks associated with dietary
preferences and environmental exposure during meal times. Participants with different
dietary preferences were likely to eat frequently at different dining locations. In this survey,
“stir-fried” food was the most common choice among participants, accounting for 31%. The
study observed that participants who selected heavy-flavored cuisines such as “roasted,”
“stir-fried,” and “deep-fried” tended to have higher PM2.5 exposure levels in their chosen
dining locations. In contrast, those who chose lighter foods such as “vegetarian” and
“stew” had lower exposure levels. This trend suggests that individuals who prefer Chinese-
style “heavy-oil, heavy-flavor” dishes are more likely to be affected by higher PM2.5
concentrations in their dining environments. Given the specificity and complexity of
Chinese cooking, air pollution caused by Chinese cooking may be more severe than that
caused by Western cooking. [44,45]. Some traditional Chinese cooking methods (e.g., stir-
frying, pan-frying, and deep-frying) were found to produce high levels of fine particulate
matter (PM2.5) at temperatures exceeding 170 ◦C. Research by Tom Deliens et al. [46]
suggests that the university years are considered to be a critical period of change in students’
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dietary behavior. Meanwhile, in addition to individual dietary preferences, factors such as
price and convenience are also considered to be important factors in eating behavior. These
research findings should be considered as the first step in implementing a healthy dietary
program for students to improve their dietary behavior.

Next, this study reveals that the average TSV of participants who napped was close to
“neutral” in all seasons compared to those who did not nap. This phenomenon suggests that
taking a brief nap after lunch seems to positively impact participants’ comfort levels during
the afternoon work period. Medically relevant studies have found that an hour-long nap
can have a positive impact on health, performance, and stress reduction [47,48]. Therefore,
ensuring a midday nap in students’ daily lives is vital for both comfort and health.

Finally, air quality during the sleep period was examined. During the central heating
season, the habit of keeping windows closed while sleeping leads to a rapid increase in
CO2 concentration in the dormitory during sleep. In winter, when faced with the trade-off
between ventilation and ensuring heating effectiveness, the “Slightly open” method slightly
lowers the average room temperature by approximately 1.2 ◦C. However, it effectively
controls CO2 concentration (increasing by about 180 ppm). These findings suggest that
appropriate window opening width can slightly lower indoor temperatures but signifi-
cantly reduce CO2 concentrations. Research by Zhangping Lei et al. [49] supported this
view and calculated that once the number of students per dormitory exceeds eight, window
ventilation alone may not be able to meet indoor air quality requirements.

Investigations of individual differences in participants have shown variations in
the tolerance of cold and hot environments among individuals with different traditional
Chinese medicine (TCM) constitutions. BC and QDC are two extreme examples. Even
though participants with lower adaptability constitutions (QDC) dress the warmest indoors
during winter (1.32 clo) and the coolest during summer (0.38 clo), they still perceived the
indoor environment to be colder in winter and hotter in summer compared to the overall
average. Medical-related studies have found differences in metabolism rates and heat
tolerance between BC and QDC constitution individuals [50], which could be physiological
reasons for the differences observed. Regarding heat preference, a summer study by JIAN
Yiwen et al. [51] also verified that individuals with BC constitutions are heat-tolerant,
while those with QDC constitutions are heat-sensitive. This study provides an exploratory
analysis of the differences in thermal sensation assessment among students with different
TCM constitutions, providing a basis for the correlation between TCM constitutions as a
method of individual differentiation and thermal comfort.

This study has limitations, including a small participant pool and uneven seasonal
distribution. If the study was intended to draw generalizable conclusions, it would be
necessary to conduct studies in multiple schools and not attempt to cover so many research
questions. Despite the limited number of participants, this study was groundbreaking in
that it used an innovative data collection method that allowed for the proactive detection
of potential health hazards in the school environment. With the current sample size, this
study successfully pinpointed some key issues and demonstrated the effectiveness of
the devices.

5. Conclusions

Using the bespoke monitoring system, this study tracked and investigated the contin-
uous companion-type environmental parameters and subjective environmental feelings of
students on campus. Although this is a preliminary exploration, the following significant
conclusions were addressed:

(1) The companion-type environmental data collection and monitoring system based
on IoT technology provides an effective data collection method to identify potential
health risks of students in universities during the pandemic lockdown.

(2) Only 57% of undergraduate students fulfilled their light exposure requirements
(CS ≥ 0.3) due to inadequate exposure to morning light. Moreover, the rate was
67% among students who woke up after 8:00 a.m.
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(3) The presented measurements indicate that the PM2.5 concentration levels in dining
areas selected by participants who prefer roasted, stir-fried, or deep-fried food were
generally higher than those selected by those who prefer vegetables or stewed food.

(4) In accordance with the questionnaire surveys, participants who took naps at lunchtime
showed better heat acclimatization and tended to rate their heat sensation as neutral
throughout the survey month.

(5) Participants with BC constitution demonstrate greater adaptability to seasonal tem-
perature changes.

6. Patents
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Appendix A

Part I: Questionnaire A (Once per Day)

1. Indoor attire during the day: Please fill in:
2. Outdoor attire during the day: Please fill in:
3. Nap situation at noon: Please select: �1 No nap �2 Lie down and sleep �3 Sleep on

a chair �4 Sleep on a desk
4. Record today’s diet: Please fill in:
5. Record your sleep period (check with the mobile app): Please fill in:

Part II: Questionnaire B (Four Times per Day)

1. Type of room you are currently in: Please select: �1 Classroom �2 Office �3 Library
�4 Dormitory �5 Other:

2. Indoor ventilation situation: Please select: �1 Completely closed �2 Slightly open
�3 Quarter-open �4 Half-open �5 Fully open

3. Room lighting situation: Please select: �1 Fully on �2 Partially on �3 Off
4. Type of indoor light source (multiple choice): Please select: �1 Daylight �2 Incandes-

cent lamp �3 Fluorescent lamp �4 LED �5 Other:
5. Your current thermal sensation (TSV): Please select: �1 Hot �2 Warm �3 Slightly

warm �4 neutral �5 Slightly cool �6 Cool �7 Cold
6. How do you expect the surrounding environment to change? Please select: �1 A little

cooler �2 No change �3 A little warmer
7. Your current perception of humidity: Please select: �1 Very dry �2 Dry �3 Slightly

dry �4 Moderate �5 Slightly humid �6 Humid �7 Very humid
8. Control strategy of the building you are currently in: Please select: �1 Air conditioning

�2 Heating �3 Natural ventilation �4 Mixed mode: ()
9. Which of the following activity statuses did you most closely resemble in the past

15 minutes? Please select: � Lying (0.8 met) � Sitting (relaxed) (1.0 met) � Sitting
(working, studying) (1.2 met) � Slow walking (2 km/h) (1.9 met) � Fast walking
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(4 km/h) (2.8 met) � Light activity (shopping, laboratory work) (1.6 met) � Moderate
activity (household chores, manual labor) (2.0 met) � Other:
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