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Abstract: Concrete can be regarded as a composite material comprising aggregates, cement mortar,
and an interfacial transition zone (ITZ) at the mesoscale. The mechanical properties and durability
of concrete are influenced by the properties of these three phases. The establishment of a mesoscale
model of concrete and the execution of numerical simulations constitute an efficacious research
method. It is an efficacious method to research concrete by establishing the mesoscale model of
concrete and executing numerical simulations. By this method, the influence of an aggregate shape on
concrete performance can be studied. This paper presents a systematic review of mesoscale modeling
methods for concrete, with a focus on three aspects: the aggregate modeling method, the collision
detection algorithm, and the particle-packing algorithm. The principal processes, advantages, and
disadvantages of various methods are discussed for each aspect. The paper concludes by highlighting
current challenges in the mesoscale modeling of concrete.
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1. Introduction

Concrete is the most widely used construction material and has been extensively stud-
ied at the macroscale, mesoscale, and microscale [1]. The choice of scale depends on the
research question being addressed. At the macroscale, concrete is treated as a homogeneous
material. At the mesoscale, it is considered a composite material composed of aggregate,
cement paste, and the ITZ between them [2]. The ITZ is a special microstructure that forms
on the surface of aggregates, and its thickness is influenced by factors such as cement
particle size and curing conditions [3]. At the microscale, cement paste is composed of
unhydrated cement particles, hydration products, and capillary pores. The key to estab-
lishing a mesoscale model of concrete is to accurately simulate the shape and distribution
of aggregates within the cement paste. The mechanical properties of concrete [4–7] and
the transport of aggressive agents within the cement paste are affected by the shape and
distribution of aggregates [8–10], which makes the development of a realistic mesoscale
model an important step in numerical simulations.

In 1983, Wittmann [11] defined the three structural levels of concrete and intro-
duced the multi-scale method to study concrete. At the mesoscale, Bažant et al. [12],
and Zubelewicz and Bažant [13] used the random particle model to study the fracture of
concrete, and Vonk [14] used the regular hexagon build concrete model at the mesoscale
to study the softening of concrete loaded in compression. After that, researchers com-
bined mesoscale geometric models of concrete with different simulation methods to
study the performance of concrete. A common simulation method is the lattice model.
Cusatis et al. [15,16] used the lattice model to study the failure behavior of concrete at the
mesoscale. Schlangen and Garboczi [17], and Lilliu and van Mier [18] combined the lattice
model with the mesoscale model of concrete to analyze the fracture of concrete materials. In
addition, the mesoscale model of concrete is often combined with zero-thickness finite ele-
ments [19], the rigid spring block method [20,21], and the discrete element method [22–24].
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From the perspective of the research object, the mesoscale model of concrete has been
widely applied to study the mechanical performance [25] and durability of concrete [26–31],
including crack initiation and propagation, and chloride-induced degradation. Jin et al. [32]
proposed the law of static and dynamic uniform size effects by building mesoscale models
of concrete. Pedersen et al. [5] used a 2D mesoscale model, and its accuracy was verified by
experimental data [33,34], to predict the dynamic tensile behavior of concrete with varying
saturation. Ma et al. [35] developed a mesoscale model of concrete with random aggregates
to study the flexural failure process of fully graded concrete. Furthermore, mesoscale mod-
els are also important to study concrete durability [36]. The transport of chemical agents
within concrete can be affected by the impermeability of aggregates, resulting in a tortuos-
ity effect [8]. This effect is largely influenced by the shape and distribution of aggregates,
making mesoscale modeling an important tool for studying the durability of concrete. Pan
et al. [37] developed a stochastic aggregate model with ellipses and polygons to study the
spatial variability of chloride caused by the heterogeneity of concrete at the mesoscale. Li
et al. [38] developed a mesoscale model of concrete to simulate the diffusion of chloride in
freeze–thaw cycles. They verified the accuracy of the multi-scale study of chloride erosion
and found that freeze–thaw cycling can accelerate chloride erosion. Numerous studies
have demonstrated that the accuracy of numerical simulations can be significantly affected
by the mesoscale model of concrete [4–10].

The mesoscale modeling of concrete can be primarily divided into three components:
the aggregate modeling method, the collision detection algorithm, and the particle-packing
algorithm. The aggregate modeling method is used to characterize the geometry of aggre-
gates. The collision detection algorithm is used to detect whether aggregates are overlapped
and obtain collision information. It should be highlighted that the collision algorithm is
closely related to the aggregate modeling method. In other words, a corresponding collision
algorithm follows the aggregate modeling method. The particle-packing algorithm is used
to pack aggregates into the concrete. It is crucial to choose a reasonable method to improve
the efficiency and accuracy of the mesoscale model of concrete.

This paper provides a state-of-the-art review of the methods used to model concrete
at the mesoscale scale. The main topics include the aggregate modeling method, the
collision detection algorithm, the particle-packing algorithm, and specific techniques for
modeling concrete at the mesoscale. This paper will introduce the development history
of the mesoscale model of concrete modeling, analyze the advantages and disadvantages
of commonly used modeling methods, and finally discuss the challenges and possible
solutions to aggregate modeling methods.

2. Complex Aggregate Shape Modeling Method

The first stage of conducting a mesoscale model of concrete is the creation of an aggre-
gate model. The shape of the aggregate will affect the mesoscale model of concrete [39].
This section provides a comprehensive introduction and evaluation of the aggregate model-
ing method. In this section, an aggregate modeling method is evaluated from the following
aspects: accuracy, applicability, storage space, and efficiency of modeling. Five types of
aggregate modeling methods have been reported in the relevant research: virtual space
method, polygonal polyhedron methods, continuous function methods, discrete function
methods, and combined particle methods. These methods are discussed in greater detail in
this section.

2.1. Virtual Space Method

The virtual space method was first proposed by Jia and Williams [40] for particles of
arbitrary shapes. By drawing computer graphics, particles of arbitrary shapes are repre-
sented as a collection of discrete voxels as depicted in Figure 1a. If the internal structure of
the particles is not taken into consideration, the model can be further simplified by retaining
only the voxels on the surface of the aggregate as shown in Figure 1b.
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Figure 1. (a) Digitization of a real object. The grid or resolution is usually the compromise between
the accuracy required and the computational cost involved. (b) Only the outline of a solid object
is actually needed when moving it around and detecting overlaps it may have with others. This
dramatically increases the speed of the packing algorithm [40].

For translation, particles are allowed to move within spatial grids with integer cells.
For the rotation, the aggregate model based on voxels will potentially result in the creation
of voids within the aggregate as depicted in Figure 2. Byholm et al. [41] optimized the
calculation of particle voxel model rotation, thereby enhancing computational efficiency
and presenting methodologies for resolving the issue of void formation within aggregates.

Figure 2. Voxels, exemplified by the two neighboring voxels named x and y, are rotated into their
new positions, resulting in a hole in the structure denoted by the white square. The smaller squares
illustrate the voxels being rotated, and the larger squares the resulting positions [41].
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The virtual space method has been widely used in the numerical simulation of con-
crete. Research findings have consistently demonstrated that the shape and orientation of
aggregates play a crucial role in determining the properties of concrete [42,43].

The virtual space method shows excellent applicability in modeling aggregates with ar-
bitrary shapes. Jia and Williams [40] used the virtual space method to model aggregates with
regular shapes, such as circles, ellipses, and short fibers. This method was further extended
to 3D to build aggregates with spheres and ellipsoids [44,45]. Recently, new techniques, such
as X-ray CT and laser scanners, have been used to model real aggregates [9,46].

However, it is important to acknowledge that virtual space methods have certain
limitations. The accuracy of such methods depends on the voxel resolution employed [47].
The process of voxelization will decrease the accuracy of the aggregates model. The increasing
resolution will improve the accuracy of the model, but it also requires larger storage space
and thus results in lower modeling efficiency [41].

2.2. Polygon Polyhedron Method

Ghaboussi and Barbosa [48] introduced a methodology for particle modeling known
as the polygon polyhedron method. This method involves representing particles using
polyhedrons. To define a polygon polyhedron, the coordinates of all vertices are first deter-
mined, and then the vertices that make up each face are identified. Additionally, if needed,
the normal vector of each face is defined to establish the direction of the face. It should be
highlighted that the numbers of faces and vertexes are limited. When the numbers of faces
and vertexes are huge, the aggregate modeling method is more suitable for the discrete
particle method.

The polygon polyhedron method has been widely used in crushed-stone modeling.
Kruggel-Emden and Oschmann [49] used this method to model cubes, pyramids, plates,
and icosahedrons. Zhao et al. [50] proposed a method by finding the vertexes on the surface
uniformly to generate polyhedrons. Höhner et al. [51] inscribed a sphere at each vertex to
smooth the polyhedron, as Figure 3 shows below.

Figure 3. A 2D sketch of a cube (left) and its smoothed polyhedral [51].

The polygonal polyhedron method offers a straightforward modeling method that
requires minimal calculation time. Therefore, this method has been widely used [52,53].
However, this method can only be used to model polygon polyhedrons, and its effectiveness
in modeling pebbles and aggregates with real shapes is poor.

2.3. Continuous Function Method

The continuous function method characterized the shape of aggregates by employing
surface functions. Various shapes are commonly expressed using continuous functions, in-
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cluding circles [54], ellipses [55,56], two-dimensional hyper-quadratic curves, spheres [57],
ellipsoids, and three-dimensional hyper-quadratic surfaces. Figure 4 displays the two-
dimensional hyper-quadratic curves and three-dimensional hyper-quadratic surfaces calcu-
lated according to Equations (1) and (2) [58] below:

f (x, y) = (
x
a
)e1 + (

y
b
)e2 − 1 (1)

f (x, y, z) = ((
x
a1
)

2
ε2 + (

y
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)

2
ε2 )

ε2
ε1 + (

z
a3
)

2
ε2 − 1 (2)

Figure 4. Continuous functions representations [58]: (a) two-dimensional superquadrics; (b) three-
dimensional superellipsoids.

To create aggregate models based on real aggregates, researchers have integrated Fourier
functions into the continuous function modeling approach within the two-dimensional
domain [59,60]. By employing techniques like laser scanning, aggregate surface information
can be obtained. By Fourier functions, aggregate surface information can be used to build an
aggregate model, and the shape characteristics of aggregate can also be analyzed [61,62]. The
equation for the aggregate surface based on Fourier functions is presented as Equation (3):

R(θ) =
∞

∑
j=0

[aj cos(jθ) + bj sin(jθ)] (3)

Garboczi [63], and Garboczi and Bullard [64] expanded upon the continuous func-
tion modeling approach by incorporating spherical harmonic functions into the three-
dimensional domain. Bullard and Garboczi [65] derived the formulas to calculate aggregate
characteristic parameters, including volume and surface area, based on spherical harmonic
functions. The equations for the aggregate surface utilizing spherical harmonic functions
are presented as Equations (4) and (5):

r(θ, φ) =
∞

∑
n=0

n

∑
m=−n

anmYm
n (θ, φ) (4)

Ym
n (θ, φ) =

√
(
(2n + 1)(n − m)!

4π(n + m)!
)Pm

n (cos(θ))eimφ (5)

The modeling of star-shaped aggregates can be effectively achieved by employing
Fourier functions and spherical harmonic functions. A star-shaped aggregate is rigorously
defined as an aggregate wherein any line segment connecting a point on its surface to the
centroid intersects the surface precisely at a single point. Consequently, it is imperative that
the aggregate remains free from cavities or overhangs.
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While many studies have employed spherical or ellipsoidal equations to model aggre-
gates, research on modeling complex-shaped particles using continuous function methods
is still limited. The process of modeling real aggregates remains relatively complex. Mod-
eling aggregates using the Fourier function and spherical harmonic functions allows for
the creation of aggregate models of any shape. The obtained models are presented in func-
tion form, facilitating model preservation by storing function coefficients, which require
minimal storage space.

2.4. Discrete Function Method

Cundall and Strack [66] initially introduced discrete elements as a means to model
particle shapes. Building upon this concept, Williams and O’Connor [67] proposed the
discrete function method, which involves unfolding the aggregate surface and uniformly
selecting discrete points along the X-axis to discretize the aggregate surface function as
shown in Figure 5. For three-dimensional particles, there are two types of discrete functions.
The first type is a uniform discretization method that can be applied to particles of any
shape. It discretizes the aggregate function based on the angles θm and φm in the spherical
coordinate system. The second type is an adaptive discretization method specifically de-
signed for superquadratic particles as introduced by Hogue [58]. This method allows for the
densification of discrete points at sharp vertices or corners. It ensures that the discretization
captures the intricate details of the particles’ surfaces. X-ray CT and 3D optical scanner are
also used to obtain the discrete points [68].

Figure 5. A discretized representation of a single-valued boundary function y = f(x) [67].

Modeling aggregates using the discrete function method can lead to higher accuracy
of the model. Therefore, discrete function methods are widely used [69], but they also
take up more storage space and computing time. A GPU-based discrete element modeling
method was proposed by Xu et al. [70] to increase the efficiency of building a mesoscale
model of concrete and research the influence of ITZ on the diffusivity of concrete.

2.5. Combined Particle Method

In addition to the aggregate modeling techniques mentioned above, another method
combines simple basic particles to construct complex composite particles. The combination
sphere method, proposed by Favier et al. [71,72], is currently the most common method in
the combined particle method. It combines a specific number of spherical particles in an
overlapping arrangement to form a composite particle.

Some researchers have used combined spheres that are not permitted to overlap to
combine irregular particles for modeling purposes [73]. This method bears some simi-
larities to voxel-based methods. Compared to the combined particle method, in which
basic particles are allowed to overlap, this method improved computational efficiency but
reduced model accuracy.

Additionally, a spherosimplices method is also used in particle modeling. This method
involves moving spheres along a linear triangle or another shaped skeleton to represent
particles.
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Indeed, the combined particle method is not limited to modeling with spheres and
can incorporate other basic shapes, such as cylinders and rectangles, to construct complex
particle shapes [74,75].

The combination particle method is extensively used in the modeling of concrete at the
mesoscale [76,77]. However, each aggregate with a different shape needs to be remodeled
once. When concrete has a large number of aggregates with different shapes, a large amount
of computing resources will be used to model aggregates. The model accuracy and storage
space of the combination particle method are influenced by the number of basic particles
that compose the aggregate. For complex aggregates, more basic particles are needed to
build an aggregate model. Higher numbers of basic particles enhance authenticity but also
increase storage space.

2.6. Summary

When modeling aggregates, it is necessary to select an appropriate method based on
the computational cost and the accuracy requirements of the modeling. Three aspects must
be considered when choosing a modeling method, including model accuracy, storage space,
and efficiency. It should be emphasized that accuracy refers to the degree of similarity
between the model and aggregates when modeling complex-shaped aggregates with the
otherwise same conditions. The efficiency refers to the computational resources consumed
when modeling complex-shaped aggregates with the otherwise same conditions. Table 1
summarizes the advantages and disadvantages of various aggregate modeling methods
from these four aspects.

Table 1. Comparisons between the different modeling approaches for aggregate modeling.

Model Accuracy Model Storage Space and Modeling Efficiency

Virtual Space
Method

Influenced by the density of the grid division and
accuracy is middle.

Large storage space and middle modeling
efficiency.

Polygon and
Polyhedron
Method

Accuracy for polygon and polyhedron is high. Accuracy
for others is low. Large storage space and high modeling efficiency.

Continuous
Function
Method

Accuracy for spherical, ellipsoid, etc., is high. Accuracy
for complex shapes is influenced by spherical harmonics
calculate order. The accuracy is middle.

Small storage space and high modeling efficiency
for spheres and ellipsoids, and lower modeling
efficiency for complex shapes.

Discrete
Function
Method

Influenced by the density of the discrete points, and
accuracy is middle.

Large storage space and low modeling efficiency. It
is commonly used in modeling based on
continuous function algorithms.

Combined
Particle
Method

Influenced by the number of basic particles and accuracy
is low. Middle storage space and low modeling efficiency.

3. Collision Detection Algorithm

After building the aggregate model, the second stage of building a mesoscale model of
concrete is detecting the collision between aggregate models. There are certain theoretical
foundations that should be introduced in order to better comprehend collision detection
algorithms. The collision of aggregates is an inevitable occurrence when constructing a
mesoscale model. The detection of such collisions constitutes the core content of building
a mesoscale model of concrete. The theoretical foundations pertaining to the detection of
such collisions will be summarized. Based on the theoretical foundations, the choice of the
collision detection algorithm is a crucial step in building a mesoscale model of concrete. The
choice of the collision detection algorithm depends on the storage format of the aggregate
models. Although the storage format of the aggregate can be converted, the change process
consumes a lot of computing time. In this way, this section introduces collision detection
algorithms that correspond to the aggregate modeling methods. Contact detection can be
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divided into a spatial sorting phase and a contact resolution phase. The spatial sorting
phase avoids all-to-all aggregate collision detection by screening aggregates that may
collide. The contact resolution phase detects the details of the contact between aggregates.
There are five prevalent types of aggregate modeling methods and their corresponding
collision detection algorithms in the contact resolution phase: the virtual space method
with voxel-based detection algorithms; polygon polyhedron methods with separation axis
common plane algorithms; continuous function methods with the geometric potential
algorithm; discrete function methods with the simplified geometric potential algorithm;
and combined particle methods with the combined particle collision detection method. In
general, a collision detection algorithm is deemed superior if it has high detection efficiency
and detection accuracy. In this section, the collision detection algorithm in the spatial
sorting phase is sketched, and various methods of collision detection algorithms in the
contact resolution phase and the theoretical foundations are summarized.

3.1. Spatial Sorting Phase

Spatial sorting algorithms try to lock aggregates that may collide to avoid the detailed
collision detection of all aggregates. Through this phase, the efficiency of the collision
detection is improved. Some spatial sorting algorithms, including the grid subdivision
method, adaptive grid method, octree method, body-based cells, and spatial heapsort, have
been proposed to improve computational efficiency [78]. Among them, the grid subdivision
method and adaptive grid method are commonly used methods.

The grid subdivision method disperses the concrete model into cells uniformly. Every
cell contains zero or more aggregates, and every cell is still associated with all the aggregates
inside it. When searching for aggregates that may collide with aggregate A, only the aggre-
gates in the cells near the associated cells of aggregate A need to be considered. This method
needs to balance the size of the cell and the number of aggregates. When the aggregates are
distributed in the concrete model evenly, the spatial sorting method will yield good results.
If all the aggregates are clustered in one cell, this method will yield no advantage [67]. To
overcome the spatial heterogeneity of the grid subdivision method, the adaptive grid method
was proposed. In this method, the model is divided by a cutting plane, and there is approxi-
mately the same number of aggregates on either side of the cutting plane. However, when
the aggregates are distributed in the model evenly, the grid subdivision method consumes
additional computing resources to calculate the cutting plane [79].

3.2. Voxel-Based Detection Algorithms

The voxel-based detection algorithms for virtual space method collision detection are
illustrated in Figure 6. The concrete model is discretized into voxels, with the occupied
voxels being marked to denote the presence of aggregates. The algorithm iterates through
all the voxels, and if a voxel is marked by multiple aggregates, it indicates a collision.

Virtual space methods offer a straightforward representation of particles with arbitrary
shapes. The voxel-based detection algorithms are relatively straightforward and provide
comprehensive information regarding aggregate collisions [80]. The accuracy and efficiency
of voxel-based detection algorithms depend on the resolution of aggregate models. With
the increase in resolution, the accuracy of collision detection will be improved but the
efficiency will be reduced [41].
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Figure 6. Two-dimensional illustration of a packing matrix containing two distinct particles. Each
particle is described by a set of voxels identified by the id of the particle [41].

3.3. Common Plane Separation Axis Algorithms

The common plane separation axis algorithm is used to detect the collision of the
aggregate model built by the polygon polyhedron method. In 1988, Cundall [81] intro-
duced the common plane algorithm for collision detection between convex polyhedral
aggregates. This algorithm identifies a common face that bisects the space between two
convex polyhedral particles. If this common face intersects both aggregates, a collision is
detected; otherwise, no collision is reported. The key aspect of this method lies in the iden-
tification of the common face, which involves determining an initial plane and performing
multiple corrective iterations. Nezami et al. [82] proposed the shortest link method and a
fast algorithm based on the original common face algorithm to expedite the common face
identification process.

Another frequently used algorithm for collision detection between polygons or poly-
hedrons is the separation axis algorithm. For polygons, if a normal vector exists for one side
such that the projections of the particles on this vector do not overlap, it can be concluded
that the two polygons do not collide. Similarly, for a polyhedron, if a normal vector exists
for one face or edge such that the projections of the particles on this vector do not overlap,
it can be concluded that the two polyhedrons do not collide [83,84].

The common plane separation axis algorithms can detect collision between two dif-
ferent aggregate models accurately and efficiently. The subsequent operations, such as
rotations and displacements, are uncomplicated, with only vertex coordinates requiring
transformation during rotations and displacements. However, the information regarding
aggregate collisions cannot be obtained from the common plane separation axis algo-
rithms directly.

3.4. Geometric Potential Algorithm

The geometric potential algorithm has been widely used to detect the collisions of
aggregates modeled by the continuous function method. This algorithm combines the
surface functions of the aggregates to formulate a contact equation. By examining whether
the collision equation possesses a solution, it is determined whether a collision has occurred
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between the aggregates. This particular method is commonly employed when dealing with
aggregates characterized by relatively simple surface functions, such as spheres.

Ng [85] and Ting [86] introduced the concept of the geometric potential as a means
to detect collisions between aggregates. Figure 7 illustrates their approach, where a set
of concentric ellipses is constructed both inside and outside the examined ellipse 1 and
ellipse 2. Points lying on the same concentric ellipse exhibit identical geometric potential.
Specifically, the geometric potential of points located within ellipse 1 and ellipse 2 is
negative, whereas the geometric potential of points situated outside ellipse 1 and ellipse 2
is positive. Notably, there exists point P1 on ellipse 1, which possesses the lowest geometric
potential relative to P2. If the geometric potential of point P1 to ellipse 2 is less than zero, it
implies that P1 lies within ellipsoid 2, representing that a collision has occurred between
the two aggregates [87].

Figure 7. Definition of the overlap and contact normal of super-quadric particles based on the geometric
potential concept [87].

To achieve collision detection that aligns more closely with the mechanical definition
of collision, Lin and Ng [88] proposed the common normal vector method based on the
geometric potential algorithm. This algorithm identifies collision points that are more con-
sistent with the mechanical interpretation of collision, although it necessitates the increased
computational time. Džiugys and Peters [80] further optimized the geometric potential
algorithm by streamlining the calculation process for the point with the lowest geometric
potential.

Qian [89] conducted collision detection based on contact equations for aggregate
models of arbitrary shapes. Initially, spherical harmonic functions were utilized to model
the aggregates and derive their respective surface functions. Subsequently, the surface
functions were combined to establish contact equations between the aggregates. Finally, the
Newton–Raphson iteration method was employed to solve the contact equations, enabling
collision detection between particles with complex shapes based on these contact equations.

The geometric potential algorithm can detect collisions of aggregates accurately and
obtain comprehensive information regarding aggregate collisions. However, multiple
iterations, which lead to increased computational costs, are needed when using contact
equations to detect collisions between complex particles.

3.5. Simplified Geometric Potential Algorithm

The discrete function method serves as an alternative to the continuous function
method by replacing the particle’s surface function with discrete points on the surface.
In this method, the invasion of one particle by another is determined by comparing the
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geometric potential of discrete points on the surface [90,91]. If the geometric potential of a
discrete point on the surface of particle 1 to particle 2 is less than zero, it indicates that the
discrete point on the surface of particle 1 has invaded particle 2. Therefore, in the discrete
function method, the geometric potential method is simplified, eliminating the need to find
the minimum geometric potential point. Instead, the discrete points on the particle surface
are traversed to identify any points that have invaded other particles [58,87,92].

By a simplified geometric potential algorithm, comprehensive aggregate collision
information can be obtained. The accuracy and efficiency of the simplified geometric
potential algorithm depend on the number of discrete points. With the increase in the
number of discrete points, the accuracy of the collision detection is improved, but the
efficiency is reduced.

3.6. Combined Particle Collision Detection Method

This method detects collisions between composite particles by examining collisions
between basic particles. However, due to the disparity between the combined sphere
model and the original particle, the smooth surface of the original particle becomes uneven,
resulting in a single collision between composite particles being recognized as multiple
collisions. This discrepancy is illustrated in Figure 8, where a single contact point between
a sphere and a plane becomes three contact points in the spherical particles produced by
the composite particles. Consequently, when calculating the contact force between particles,
a significant error arises [93].

Figure 8. Definition of the overlap and normal contact of super-quadric particles based on the
geometric potential concept [87].

Kruggel-Emden et al. [94] utilized the combination particle method to model spherical
particles and conducted numerical simulations of impact tests involving these particles
striking a flat wall. The results revealed that using the combination sphere method to model
composite particles led to significant errors. Kodam et al. [95] made revisions to the force
model generated by particle contact and attempted to address this issue, but a complete
resolution was not achieved. Additionally, calculating the mass and moment of inertia of
composite particles becomes complex when allowing spherical particles to overlap with
one another. Despite these challenges, the combination sphere method remains a relatively
accurate particle modeling technique. Markauskas et al. [96] employed the combination
sphere method to model ellipsoids and compared the angle of repose of smooth ellipsoids
with that of the combination sphere models. The results demonstrated that as the number
of component spheres increased, the angle of repose of the combination sphere model
gradually converged with that of the smooth ellipsoids.

Galindo-Torres and Pedroso [97] introduced a collision detection algorithm to address
the issue of collisions between particles modeled using the spherosimplices method. The
algorithm first determines the shortest distance between the two particle skeletons and then
compares this distance with the sum of the radii of the two moved spheres to determine
whether a collision has occurred between the particles.

However, when using multiple basic shapes to model particles, collisions between
different basic particles need to be considered. This problem makes the process of collision
detection become more intricate.
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Collision detection efficiency will decrease with the increase in the number of basic
particles. Models created with the combination particle method are prone to recognizing a
single collision point as multiple collision points during collision detection. Furthermore,
obtaining collision detection information between aggregates requires solving collision
equations between basic particles, which is relatively complex compared to discrete function
methods and voxel-based methods.

3.7. The Definition of Collision

The definition of collision has a significant impact on the movement of aggregates. As
such, it is imperative to elucidate how collisions are defined and which key information
pertaining to collisions should be obtained. As depicted in Figure 9, for 2D circular aggre-
gates, R1 and R2 represent the radii of the circles, while C1 and C2 represent their respective
centers. B1 and B2 denote the intersections of C1C2 with the circles. The overlap length
δ between the two circles can be defined as B1B2. The contact point P is defined as the
midpoint of B1B2. The contact normal is defined by the vector C1C2, while the tangential
direction of the contact is given by the direction perpendicular to C1C2. For non-spherical
aggregates, there is no consensus on the definition of the collision information. In summary,
it is necessary to obtain information pertaining to the overlap length, contact point, contact
normal, and tangential direction of the collision [98].

Figure 9. Definition of the contact point, contact normal and tangential, and contact overlap for two
colliding identical spheres [98].

3.8. Summary

There are several factors that must be considered when evaluating a collision detec-
tion algorithm. These include the collision detection accuracy and efficiency of collision
detection. Table 2 summarizes the characteristics of various collision detection algorithms
as follows. It should be highlighted that accuracy refers to whether the algorithm can accu-
rately determine whether there is a collision between aggregates and accurately calculate
the basic information of the collision. The efficiency refers to the computational resources
consumed when detecting aggregate collisions.
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Table 2. Comparisons of the different modeling approaches for collision detection.

Correspond Aggregate
Modeling Method Collision Detection Accuracy Efficiency of Collision

Detection

Voxel-based collision
detection algorithm Virtual Space Method

Related to the density of the virtual
space grid partitioning and
accuracy is middle.

Related to the density of the
virtual space grid partitioning.

Separation axis common
plane algorithms

Polygon and Polyhedron
Method High High

Geometric Potential
Algorithm

Continuous Function
Method High Low

Simplified Geometric
Potential Algorithm Discrete Function Method Related to the density of the discrete

points and accuracy is middle.
Related to the density of the
discrete points.

Combined Particle
Collision Detection
Method

Combined Particle Method
Related to the density of the
number of basic particles and
accuracy is low.

Related to the number of basic
particles.

4. The Aggregate Packing Algorithm

The aggregate packing algorithm is a fundamental approach for incorporating aggre-
gates into concrete models. The commonly used algorithms can be categorized into the
following five types: the random sequential packing algorithm, the sequential deposition
algorithm, the collective rearrangement algorithm, the Voronoi tessellation algorithm, and the
CT image algorithm. An effective aggregate packing algorithm plays a crucial role in creating
a precise concrete representation while achieving a higher volume fraction in the model.

4.1. The Random Sequential Packing Algorithm

The random sequential packing algorithm, which is also known as the Monte Carlo
algorithm, stands as one of the most widely employed methods for aggregate packing [6,52].
Within this algorithm, aggregates are put into the concrete one by one in order from largest
to smallest. Each aggregate is assigned a random coordinate and an initial orientation
when it is put into the concrete. Subsequently, it is examined whether any collisions occur
between the aggregate and the aggregates already placed. A new coordinate is randomly
generated until no collisions are detected.

The random sequential packing algorithm operates on a simple principle and results in
a concrete model with excellent randomness. However, the volume fraction of the concrete
model tends to be lower. Cooper [99] utilized the random sequential packing algorithm to
construct a sphere pack model, demonstrating that the packing-limit volume fraction of
single-size spheres reaches approximately 0.385 [99]. On this basis, aggregate gradation is
also considered in the concrete mesoscale model. Xu and Chen [52] use random sequential
packing algorithm to build a cement model and assess the effect of particle size distribution
on the random packing of the dodecahedral particles. Huang et al. [6] used Monte Carlo
simulations of 2D and 3D mesoscale concrete to research the dynamic damage and fracture
behavior of concrete. It becomes challenging to incorporate the last few aggregates into
the concrete model, as the trial aggregate possesses a high probability of colliding with
existing aggregates.

4.2. The Sequential Deposition Algorithm

In contrast to the random sequential packing algorithm, Visscher and Bolsterli [100]
introduced the sequential deposition algorithm, which offers a partial simulation of the
aggregate falling process. In this algorithm, aggregates are dropped sequentially from a
random point located at the top of the concrete model. Upon collision with other aggre-
gates, the new dropped aggregate initiates a rolling motion. The rolling ceases once the
aggregate reaches a stable position. For monosized spheres, stability is achieved when the
sphere contacts three other spheres or the underside of the concrete model. The sequential
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deposition algorithm allows for the simulation of aggregate packing processes and yields
higher volume fractions compared to the random sequential packing algorithm. In this way,
the sequential deposition algorithm is widely used in the modeling of particle accumulation
models [101,102].

However, the arrangement of aggregates may still lack compactness. To address this
concern, Visscher and Bolsterli [100] proposed a method to enhance the volume fraction.
This method involves conducting multiple attempts at depositing aggregates and identify-
ing the lowest (minimum energy) positions to simulate the shaking of the model. In the
case of monosized spheres, the volume fraction of the concrete model can reach up to 58%.
Shashidhar and Gopalakrishnan [101] studied the aggregate structure in hot-mix asphalt
under the consideration of aggregate gradation.

4.3. The Collective Rearrangement Algorithm

The collective rearrangement algorithm represents a category of packing algorithms
commonly used in conjunction with other aggregate packing methods [103–106]. Typically,
an initial concrete model is constructed using the sequential deposition algorithm or the
random sequential packing algorithm. During the initial stage, numerous particles are
placed in a confined space, allowing for overlapping. Subsequently, various algorithms
employ different techniques to eliminate the overlap [107].

One such algorithm is the force-biased algorithm proposed by Jodrey and Tory [107].
It involves moving all aggregates and reducing their sizes until the overlap is eliminated.
Jodrey and Tory [107] utilized this algorithm to construct a packing model, achieving a
volume fraction of 64.2–64.9% when the particles were equal-sized spheres. Another collec-
tive rearrangement algorithm was introduced by Lubachevsky and Stillinger [108]. Their
method begins with a random distribution of points, which then undergo random move-
ments and expansion during the simulation. Donev et al. [109] employed Lubachevsky
and Stillinger’s approach to creating an ellipsoid packing model with a volume fraction of
74%. Both the force-biased algorithm and Lubachevsky and Stillinger’s method involve
modifying the particle sizes during the packing process.

In contrast, He et al. [110] proposed a novel method that eliminates overlap without
altering the particle sizes. Their approach incorporates particle movement considering
gradation. Similarly, Williams and Philipse [111] introduced the mechanical contraction
algorithm, which also accounts for gradation in the particle packing model. This algorithm
begins by constructing a dilute particle packing model using the Monte Carlo method.
This initial model is then compressed to achieve a higher volume fraction by reducing
the model’s volume and scaling all particle coordinates accordingly. Trofimov et al. [112]
used an algorithm based on the modified collective rearrangement method to build a fiber
concrete model, and the elastic properties of fiber concrete were researched.

Although the collective rearrangement algorithm generally results in higher volume
fractions compared to the sequential deposition algorithm or the random sequential packing
algorithm, it does have certain drawbacks. The iterative nature of particle coordinate
calculations in the packing process can lead to longer computation times.

4.4. The Voronoi Tessellation Algorithm

The Voronoi tessellation method was initially used for modeling crystalline materials
and has since been applied to granular material modeling. The first step of this method
involves generating Voronoi cells. These cells fill the model space. Subsequently, there are
two approaches to generating the concrete model. In the first approach, different attributes,
such as aggregates or cement, are assigned to distinct Voronoi cells. In the second approach,
the Voronoi cells are contracted, with the cells themselves representing aggregates and the
spaces between them representing cement. The Voronoi tessellation method allows for the
straightforward generation of mesoscale models of concrete with high-volume fractions [113].
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4.5. The CT Image Algorithm

The CT image method is becoming increasingly popular for constructing mesoscale
models of concrete. Advanced facilities, such as X-ray computed tomography (XCT) scan-
ners, are now commonly used to acquire digital images of real concrete samples at the
mesoscale level [9,114,115]. These XCT images can be directly converted into mesoscale
models of concrete. One of the significant advantages of this method is that it provides
direct access to the real size, shape, and distribution of aggregates and cement, eliminating
the need for assumptions required in other aggregate modeling methods.

However, it is important to note that the CT image method can be costly and time
consuming. Conducting XCT tests and processing the acquired images can be resource
intensive. Additionally, when a significant number of samples are needed to perform
meaningful statistical analyses, the costs associated with XCT can become more challenging
to manage.

4.6. Summary

When conducting particle-packing simulations, different algorithms are adopted
depending on the focus of the study. There are certain considerations that must be taken
into account when numerically simulating aggregate packing. Questions that need to be
addressed include the efficiency of the packing algorithm, the cost associated with using a
specific packing method, whether the packing algorithm can simulate the packing process of
aggregates, the maximum achievable volume fraction of aggregates in the packing model,
and whether the packing algorithm can handle aggregates with arbitrary shapes and
size distributions. This paper summarizes the characteristics of various particle-packing
algorithms in Table 3.

Table 3. Comparisons between the different modeling approaches for aggregate packing.

Packing
Efficiency

Algorithm
Cost

Packing
Process

Volume
Fraction *

Aggregates
Shape

Aggregate
Gradations

Random
Sequential

Packing
Algorithm

Low volume
fraction: High
High volume
fraction: Low

Low No 0.385 [99] Arbitrarily Yes

Sequential
Deposition
Algorithm

Middle Low Yes 0.58 [100] Arbitrarily Yes

Collective
Rearrangement

Algorithm
Low Low No 0.64 [107] Arbitrarily Yes

Voronoi
Tessellation
algorithm

High Low No --- Arbitrarily Yes

CT Image
Algorithm High High No --- --- No

* The volume fraction in the table represents the maximum achievable volume fraction when using a single-sized
spherical particle for packing using the respective algorithm.

5. Conclusions

This paper provides an overview of the current state of mesoscale modeling methods
for concrete based on existing literature. The theoretical foundations of concrete mesoscale
modeling are initially discussed, followed by an exploration of various methods for the
three essential steps of concrete modeling: aggregate modeling, collision detection algo-
rithms, and particle-packing algorithms. Based on this review, the following conclusions
can be drawn.
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1. The choice of the aggregate modeling method depends on the requirement of the
model accuracy.

2. The choice of the collision detection algorithm is often influenced by the selected
aggregate modeling method, although this relationship is not absolute.

3. To build models that are reasonable and effective, it is crucial to select mutually
adaptive methods for the three modeling steps based on specific requirements and
available resources.

Benefiting from the collective effort of numerous scholars, concrete mesoscale model-
ing has made significant progress in recent years. However, there are still some limitations
for concrete mesoscale modeling. In our view, the concrete mesoscale modeling can be
improved from the three aspects of accuracy, packing fraction, and efficiency as follows.

1. Accuracy. Although the concrete mesoscale modeling method based on the real aggre-
gate shape has been developed, the most commonly used concrete mesoscale modeling
method is still based on regular aggregate shapes. There are a few promising methods
that have been proposed. The first one is directly obtaining the mesoscale model of
concrete by X-ray CT [114,116]. The second one is obtaining the shape of real aggregates
by X-ray CT or laser scanning to build the library of aggregate. The aggregate model
in the library will be packed to model concrete at the mesoscale [89], but both of these
methods are needed to solve the high cost which is produced in the scan.

2. Packing fraction. The random sequential packing algorithm is the most commonly
used algorithm. However, the packing fraction of concrete modeled by the random
sequential packing algorithm is limited. In order to obtain the concrete model with a
higher packing fraction, some more advanced algorithms have been used. Based on
the concrete model built by other packing algorithms, a dynamic physics engine can
be used to simulate compaction and vibration and improve the packing fraction [117].

3. Efficiency. As the packing fraction increases, the computational efficiency will inevitably
decrease. However, the efficiency must be controlled within an acceptable range.
For this goal, researchers have tried to simplify the collision detection algorithm and
propose a more efficient packing algorithm [9]. The parallel computing and GPU-based
acceleration methods are also used to improve computational efficiency [118].
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