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Abstract: Mathematical optimization can be a useful strategy for minimizing energy usage while
designing low-energy buildings. To handle building energy optimization challenges, this study
provides an effective hybrid technique based on the pelican optimization algorithm (POA) and the
single candidate optimizer (SCO). The suggested hybrid algorithm (POSCO) benefits from both the
robust local search power of the single candidate method and the efficient global search capabilities
of the pelican optimization. To conduct the building optimization task, the optimization method
was developed and integrated with the EnergyPlus codes. The effectiveness of the proposed POSCO
method was verified using mathematical test functions, and the outcomes were contrasted with those
of conventional POA and other effective optimization techniques. Application of POSCO for global
function optimization reveals that, among the thirteen considered functions, the proposed method
was best at finding the global solution for seven functions, while providing superior results for the
other functions when compared with competitive techniques. The suggested POSCO is applied for
reducing an office buildings’ annual energy use. Comparing POSCO to POA procedures, the building
energy usage is reduced. Furthermore, POSCO is compared to simple POA and other algorithms,
with the results showing that, at specific temperatures and lighting conditions, the POSCO approach
outperforms selected state-of-the-art methods and reduces building energy usage. As a result, all
data suggests that POSCO is a very promising, dependable, and feasible optimization strategy for
dealing with building energy optimization models. Finally, the building energy optimization findings
for various climatic conditions demonstrate that the changes to the weather dataset had limited effect
on the efficiency of the optimization procedure.

Keywords: building energy optimization; pelican optimization; single candidate optimizer; hybrid
algorithm

1. Introduction

The process of selecting the optimal design from a wide range of options is known
as building energy optimization, which complies with energy performance standards.
Building energy optimization creates an automated approach by combining traditional
design techniques with simulation-aided design techniques [1]. The energy simulation
system and the optimization engine are the two crucial engines that power the process and
direct the design flow. Thermostatic comfort, cost, and energy performance are examples
of optimization objective functions [1].
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As demonstrated in various significant review works [2], building energy optimization
(BEO), a new technology, has developed into an extremely active research field. Its benefits
have been demonstrated to possibly reduce building energy usage by up to 30% when
compared to a benchmark design [3]. According to Figure 1, the BEO technique uses
optimization algorithms to produce new designs depending on the outcomes of energy
simulations and predetermined design goals [4]. The use of this technique has benefited
the optimization of building envelopes, including construction, form, and double-skin
facades, building systems, including HVAC and lighting, and renewable energy generation,
including combined heat and power (CHP), solar technologies, ground energy, and storage
systems. The BEO workflow relies heavily on optimization methods, as seen in Figure 1.
Therefore, the efficacy and efficiency of the BEO approach depends significantly on the
performance of optimization algorithms.
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Several approaches for building energy optimization have been presented. They can
be grouped into three categories: analytical techniques, iterative algorithms, and meta-
heuristic algorithms. Analytical approaches extract these factors via a sequence of difficult
mathematical equations [5]. They are simple to apply, but they have several drawbacks,
including the need for particular mathematical qualities and assumptions. In some circum-
stances, these assumptions may result in large inaccuracies or a loss of solution accuracy [6].
Newton–Raphson and Lambert W-functions are iterative techniques that are extremely
sensitive to the initial guess and gradient information [7]. Furthermore, because these
approaches are multimodal, nonlinear, and limited, they need a convex optimum function
and produce unsatisfactory solutions for BEO situations [8]. Due to their great performance
on nonlinear and complicated optimizations, metaheuristic algorithms have gained a lot
of attention for BEO to overcome the disadvantages of the first two techniques [9]. Meta-
heuristic algorithms have the benefit of not being confined to continuous, differentiable, or
convex situations. Furthermore, they are simple conceptually and computationally, execute
a relatively efficient search, and offer flexibility in handling difficult issues [10–16].
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To address the constraints of numerical approaches, metaheuristic optimization pro-
cedures have recently been widely employed BEO problems. Metaheuristic optimization
approaches have several advantages, including enhanced conjunction, protection from
initial guess, lack of singularity condition, and consideration of all data points rather than
key locations [17]. To achieve the best BEO design, the literature has made extensive use of
metaheuristic optimization techniques. According to previous research [18], The majority
of the primary literature on BEO, or around 64%, makes use of these optimization strate-
gies. The GA and its modified forms dominate among intelligent optimization algorithms,
making up about 41% of the core literature. The PSO algorithm comes in second, making
up about 13% of the core literature. For instance, Lorestani and Ardehali [19] created a
simulation model for the optimization of an autonomous CHP system that used renewable
energy sources using a newly designed evolutionary particle swarm optimization (PSO)
method. In order to increase the performance of a thermal-phase change material (T-PCM)
of an office building, Pereira and Aeleneia [20] utilized a genetic algorithm (GA).

When picking these optimization algorithms, the pace of convergence, accuracy, and
implementation complexity are all crucial things to consider [21]. Despite the fact that all
of these approaches have been shown to be perfect for parameter estimation, they each
have their own set of boundaries, such as the number of important parameters that must
be established, the difficulty of the operation, and the computational time required to
complete the estimation. In the pursuit of simple and speedier solutions, researchers are
working on developing efficient optimization algorithms for BEO problems under various
environmental situations.

Even while metaheuristic algorithms can produce satisfactory results, no algorithm
can solve all optimization problems better than others. As a consequence, a number of
research has been carried out in order to improve the performance and efficiency of the
original metaheuristic algorithms and adapt them to a specific application. The literature
study shows that providing fresh optimization algorithms to address real-world problems
is highly desired. Some of these studies are as follows: application of genetic algorithms
for the identification of structural damage location [22] and damping controller design for
power system oscillations [23]; developing moth-flame optimization (MFO) for damage
identification of bridge structures [24]; solving engineering design optimization problems
using artificial bee colony algorithm [25]; optimization of shallow foundation based on tu-
nicate swarm optimization algorithm [26]; adaptive version of particle swarm optimization
for Bayesian damage identification [27]; application of firefly optimization algorithm for
slope stability evaluation [28]; and identification of structural damage using a new version
of the whale optimization algorithm [29].

A recently developed bioinspired metaheuristic optimization technique called the
pelican optimization algorithm (POA) is motivated by the search and hunting behavior
of pelicans. The POA was first suggested by Seyyedabbasi & Kiani [30] and search agents
in this approach are pelicans that search for food sources. When it comes to finding the
best solutions, POA performs better than other competing techniques and is well suited to
problems in practical optimization.

To use any optimization approach at its best, a balance between exploitation and
exploration must be kept throughout the search procedure. POA searches a wide region
because it is a global search approach; thus, when utilized alone, it might not produce the
greatest results. Search engine approaches, such as pattern search and single candidate
optimizer, utilize the local search but can also benefit from the global search [31]. Due to
these approaches’ unique qualities, there is an opportunity for hybridization. In light of
the foregoing, a combination of the pelican optimization and single candidate optimizer,
known as POSCO, is developed and is utilized in the current task. The suggested POSCO
approach’s performance is evaluated by comparing its results in a literature-based bench-
mark problem to those of existing strategies. The results of the proposed technique are
compared with six well-established methods for BEO to illustrate the better performance of
POSCO. The numerical experiments show that the new algorithm is capable of producing
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better optimum solutions and outperforms previous approaches in the literature. The simu-
lation results show that the novel optimization approach may achieve the lowest root mean
square error and reach superior optima in diverse photovoltaic cells than prior methods.

Therefore, the key contributions of this study can be summed up as follows:

1. The development of POSCO, a powerful hybrid metaheuristic method based on single
candidate and pelican optimization, has been made.

2. Thirteen popular benchmarking functions are used to evaluate POSCO’s performance
for numerical function optimization, and the findings are contrasted with those of
other widely used optimization techniques.

3. To show how well the suggested method works when used on real-life issues, the
new method is used to build the energy optimization problem.

4. The efficiency of the proposed POSCO for BEO is investigated and the results acquired
are contrasted with those previously assessed by the other procedures.

2. Pelican Optimization Algorithm

The pelican optimization algorithm is a swarm-based technique in which pelicans are
participants (i.e., candidate solution) [32]. According to their position in the search space,
each population member recommends solutions for the problem. In the first step of the
POA, the population members are initialized at random using the problem’s lower and
upper boundaries based on Equation (1).

xi,j = lj + rand×
(
uj − lj

)
, i = 1, 2, · · · , N j = 1, 2, · · · , m (1)

A matrix entitled the population matrix (X) in Equation (2) and is used to identify
pelican population members in the POA. The columns of this matrix indicate the proposed
values for the problem variables, while the rows represent candidate solutions.

X =



X1
...

Xi
...

XN

 =



x1,1 · · · x1,j · · · x1,m
... · · ·

... · · ·
...

xi,1 · · · xi,j · · · xi,m
... · · ·

... · · ·
...

xN,1 · · · xN,i · · · xN,m

 (2)

Based on each of the potential solutions, the objective function of the given problem
can be assessed using the POA. Using a vector known as the objective function vector
in Equation (3), the values obtained for the objective function are calculated. Each of
the possible solutions can be used to assess the objective function value of the assumed
problem. In Equation (3), the values for the objective function are calculated using a vector
known as the objective function vector:

F =



F(X1)
...

F(Xi)
...

F(XN)

 (3)

where F denotes the objective function vector and F(Xi) represents the ith candidate
solution’s objective function value.

To update possible solutions, the POA replicates pelican behavior when attacking and
hunting prey. Moving approaching prey and winging on the water surface are the two
stages of this hunting method.
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a. Moving Approaching the Prey or Exploration Phase:

The pelicans recognize the prey’s location in the first phase and then fly toward it. The
exploration capability of the POA in identifying diverse areas of search space is achieved by
simulating this pelican’s behavior. POA’s exploration capacity in the specific investigation
of the problem-solving domain is increased as a result of this. The aforementioned ideas,
as well as the pelican’s strategy for approaching the prey, are mathematically modelled
in Equation (4):

xp1
i,j =

{
xi,j + rand·

(
pi − I·xi,j

)
, Fp < Fi

xi,j + rand·
(
xi,j − pj

)
, else

(4)

where xp1
i,j represents the updated state of the ith pelican in the jth dimension based on

phase 1, I is a number that can be either 1 or 2 at random, pj is the prey’s position in the jth
dimension, and Fp is the value of its objective function.

The parameter I is chosen at random for each iteration and each participant and has
an impact on the POA’s exploration ability to accurately scan the search space.

In the POA, a new pelican position is accepted if the objective function value enhances
in that location. The algorithm is prohibited from expanding to non-optimal locations in
this kind of updating process. Equation (5) is used to model this mechanism:

Xi =

{
Xp1

i Fp1
i < Fi

Xi else
(5)

where Xp1
i denotes the recent condition of the ith pelican and Fp1

i is the value of its objective
function according to phase 1.

b. Exploitation Phase or Water Surface Winging:

In the exploitation phase, the pelicans expand their wings to lift the fish higher after
reaching the water’s surface, then collect the victim in their throat pouch. To converge
to a better result, the algorithm must investigate the points in the neighborhood of the
pelican’s location mathematically. Equation (6) mathematically simulates pelican behavior
during hunting:

xp2
i,j = xi,j + R·(1 + t/T)·(2·rand− 1)·xi,j (6)

where xp2
i,j represents the updated state of the ith pelican in the jth dimension according

to phase 2, R is a factor that has the value 0.2., R·(1 − t/T) is the community radius of xij,
while t is the counter for iterations, and T is the most iterations allowed. Efficient updating
is also employed at this stage to accept or reject the new pelican location, which is described
in Equation (7):

Xi =

{
Xp2

i Fp2
i < Fi

Xi else
(7)

where Xp2
i represents the updated state of the ith pelican and Fp2

i is the value of its objective
function, according to phase 2.

After all individuals have been adjusted according to the mentioned first and second
phases, the best candidate solution will be updated according to the new population
status and the values of the objective function. The POA moves on to the next iteration,
and the process based on Equations (4)–(7) is repeated until the entire computation is
completed. Eventually, as an optimal solution to the given problem, the best candidate
solution obtained during the algorithm iterations is presented.

The various steps of the POA are presented as a pseudo-code in Algorithm 1.
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Algorithm 1: Pseudo-code of the pelican optimization algorithm

Determine the POA population size (N) and the number of iterations (T)
Initialization of the position of pelicans randomly based on Equation (1)
Calculate the objective function of the population

For t = 1:T
Generate the position of the prey at random
For I = 1:N

Phase 1: Moving towards prey (exploration phase)
For j = 1:m

Calculate new status of the jth dimension using Equation (4)
End

Update the ith population member using Equation (5)
Phase 2: Winging on the water surface (exploitation phase)

For j = 1:m.
Calculate new status of the jth dimension using Equation (6)
End

Update the ith population member using Equation (7)
End
Update best candidate solution

End
Output best solution obtained by POA

As mentioned in this section, the POA has three parameters to be adjusted for solving
any optimization problems: population size (N), the maximum number of iterations (T),
and the R factor. To select the appropriate values for these parameters, a series of sensitivity
analyses have been conducted in the original paper [32]. According to the obtained results
presented by Trojovský and Dehghani [32], as the number of population members (N)
increases, the value of the objective function decreases. However, the computation time
will be increased. Similarly, increasing the algorithm’s maximum number of iterations (T)
from 100 to 1000 improves the algorithm’s exploitation power, allowing it to produce better
solutions. Finally, the results of the sensitivity analysis show that the POA has a very low
sensitivity to changes in the parameter R and, in most cases, provides the same solution. In
the general analysis and comparison of the results [32], it was found that POA has the best
performance for the value of R equal to 0.2.

3. Single Candidate Optimizer

In contrast to the majority of the currently used searching algorithms, which rely on
a swarm of particles for the duration of the whole optimization process, single candidate
optimizer (SCO) only considers one candidate solution in its search for better alternatives.
In the suggested scheme, the Tmax function evaluations or iterations that make up the
overall optimization process are split into two phases, with the candidate solution updating
its position in each phase in a different way. In order to create a single, robust algorithm,
the SCO approach combines the single candidate technique and the two-phase strategy.
The algorithm, most importantly, uses a special set of equations to update the candidate
solution’s position exclusively on the basis of its information, i.e., its location at the time.
When T1 function evaluations are completed, the first phase of SCO comes to an end, and
T2 function evaluations are undertaken in the second phase, where T1 + T2 = Tmax. The
candidate solution adjusts its places as follows throughout the first stage of SCO:

xj =

{
gbestj +

(
w
∣∣gbestj

∣∣) i f rand1 < 0.5
gbestj −

(
w
∣∣gbestj

∣∣), else
(8)

where rand1 is a random number in interval [0, 1]. Here is how w is defined mathematically:

w(t) = exp−(
bt

Tmax )
b

(9)
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where t denotes the current function evaluation or iteration, b the constant value, and Tmax
the maximum number of function evaluations, respectively. After thoroughly examining
the area surrounding the best spot found in the first phase, the second phase of SCO
conducts a deep search. Phase Two’s last stages assist to narrow the search area and
concentrate primarily on potential areas. As the second phase progresses, the candidate
solution changes its position as seen below:

xj =

{
gbestj + w× rand2

(
ubj − lbj

)
i f rand2 < 0.5

gbestj − w× rand2
(
ubj − lbj

)
, else

(10)

where rand2 is a different random variable with a [0, 1] range, ubj and lbj are the borders’
upper and lower limits, respectively. The most crucial parameter in SCO is w, which is in
charge of striking a balance between exploration and exploitation. From Equation (9), the
number of function evaluations causes w to fall off exponentially. This behavior is essential
because a relatively high value of w at the start of the search process aids in effectively
exploring the search space, while at the completion of the optimization procedure, a small
value of w improves the exploitation capabilities. Being stuck in local optima, especially in
the later stages of the search process, is one of the key drawbacks of metaheuristic strategies.
If no fitness improvement is made in m successive function evaluations, SCO addresses this
problem by updating the location of the candidate solution in a different way in the second
phase. The number of function evaluations m that cannot successively enhance fitness is
counted using a counter c. The updated candidate’s ability to obtain successful fitness is
assessed using the binary parameter p, where p = 1 signals a successful fitness improvement
and p = 0 indicates a failed fitness improvement. A candidate solution updates its position
according to Equation (10) in the second stage of SCO; however, if completing m successive
function evaluations does not increase the fitness value, the candidate solution changes its
location as follows:

xj =

{
gbestj + rand3

(
ubj − lbj

)
i f rand3 < 0.5

gbestj − rand3
(
ubj − lbj

)
, else

(11)

The candidate solution is able to switch from exploitation to exploration in Equation (11)
and this helps it escape from the local minimum. When certain variables’ placements are
changed, it is occasionally possible for their values to deviate from the expected range or
bounds. If a variable’s value is greater than either its upper bound or lower bound, the
updated locations are set as follows to prevent it from crossing those boundaries:

xj =

{
gbestj i f xj > ubj
gbestj i f xj < lbj

(12)

In Equation (12), if the updated location is outside of boundaries, the updated dimen-
sion of a candidate solution is given the same value as the overall best value. In SCO, a
single candidate solution x is produced at random and then updated repeatedly to look for
a better one. The following is the generation of the initial potential solution:

xj = lbj + rand4

(
ubj − lbj

)
(13)

The flowchart of the single candidate optimizer (SCO) is presented in Figure 2.
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4. Hybrid Pelican and Single Candidate Optimizer

By integrating two or more methodologies, a hybrid strategy can tackle the same
problem. The objective of hybridization is to mix the benefits of each approach to increase
the accuracy of the outcome [33].

In the present work, the POSCO approach, which combines pelican optimization
algorithm (POA) and single candidate optimizer (SCO) methods, has been developed. A
global optimization strategy known as the pelican algorithm successfully explores the
solution area and is likely to produce an optimal or nearly optimum answer. It may,
therefore, be used in combination with techniques for local optimization like SCO.

The SCO is helpful for investigating a small region, but it is seldom helpful for
bigger areas. The tremendous global and local searching powers of the SCO algorithm,
as well as those of the POA, may be combined in the suggested hybrid strategy. Pelican
optimization’s (POA) global performance is outstanding, and it is simple to escape local
minima. By increasing the number of iterations, the POA can enhance the findings’ accuracy.
However, POA is unable to improve the findings’ accuracy when the number of generations
is sufficiently high. Because of this, POA’s local search functionality is still subpar. The
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single candidate optimizer is a local optimization approach, and the starting point has a
considerable influence on the algorithm’s output. However, SCO will be a straightforward
and useful tactic if a superb beginning point is selected. To find the optimum solution in
this research, we effectively combined the advantages of SCO as a local optimization and
POA as a global optimization. The hybrid approach that has been suggested begins with
the POA, since the SCO depends on the first solution. The POA is employed to continue
looking after a predetermined number of repetitions. The SCO is then permitted to perform
a local search, starting with the POA’s best option. It is worth mentioning that, in addition
to improving the accuracy of the results, choosing the right starting point will also make
the method more stable. Without any information, the SCO considers a random solution as
the starting point. If this random solution is very far from the best solution, the algorithm
will be unable to find the optimal global solution, and the stability of the algorithm will
decrease. The proposed hybrid algorithm’s process flow is depicted in Figure 3.
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5. Building Energy Optimization Problems

The purpose of the current study is to analyze POSCO’s efficiency in building energy
optimization. As a result, two benchmark structures with a weather profile for Houston,
Chicago, and Seattle were chosen as the benchmark instances. The building’s energy
consumption was then optimized using the POSCO algorithm. There are three components
to the building energy optimization (BEO) challenge. Building energy modeling, which
simulates a building’s energy model and calculates energy consumption, makes up the first
section. The optimization method, which is the second component, uses the simulation
data to modify the building factors and arrive at an ideal outcome. The integration of the
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optimization algorithm and simulations is the third component. We will talk about these
three components later in this section.

5.1. Simple Office Building

A benchmark office building with four choice factors was used to conduct a case study.
The structure has already been covered in a variety of literary works, including [34,35]. The
building model is depicted schematically in Figure 4. The decision factors X1–X4 are shown
in Table 1.
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Table 1. The modest office building’s decision factors.

Variables X1 X2 X3 X4

Description Building orientation Window width West Window width East Shading transmit-tance
Bounds [−180, 180] [0.1, 5.9] [0.1, 5.9] [0.2, 0.8]
Units ◦ m m -

These factors include building orientation, window sizes for the East and West facades,
and shading transmittance. The external walls are built of wood siding (1 cm thick),
insulation (10 cm thick), and concrete (20 cm thick), and have a U-value of 0.25 W/(m2 K).
Carpet, 5 cm of concrete, padding, and concrete (18 cm) make up the floor and ceiling.
Bricks used for the internal walls have a 12 cm thickness. There is an outside shading
mechanism, and the double-panel windows are Krypton gas-filled and low-emissivity. The
objective function is the sum of the energy consumption of a chiller, a boiler, and lighting
as presented in the following equation:

F(X) = EChiller + EBoiler + ELight (14)

The energy consumption of chillers and boilers is related to cooling and heating loads.
Therefore, heating and cooling loads related to energy consumption can be defined by the
following equations:

EChiller =
QC(X)

µC
(15)

EBoiler =
Qh(X)

µh
(16)

ELight = PEF× E(X) (17)

where Qh(.), Qc(.), and E(.) stand for the yearly energy usage for heating, cooling, and zone
lighting electricity consumption in kWh/a, respectively.
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According to Waibel et al. [35], the plant’s heating and cooling efficiencies of ηh = 0.44
and ηc = 0.77 were utilized, respectively. In addition, the primary energy factor (PEF) for
electricity is set to 3.0 to convert site electricity to source fuel energy consumption.

Finally, the following equation illustrates the goal of minimizing the building’s energy
consumption:

F(X) =

[
Qh(X)

0.44
+

Qc(X)

0.77
+ 3E(X)

]
/A, X = {X1, X2, X3, X4} (18)

where A represents the building’s conditioned surface area. The annual energy consump-
tion is divided by the floor area A; hence, the objective of these problems is to minimize the
primary annual energy consumption in kWh/m2a.

In general, load and weather conditions affect performance coefficients, which may be
altered. In order to consider the effect of external climate conditions on energy consumption,
three different types of weather data are utilized in the analysis [34]. In the first case, typical
meteorological year (TMY2) weather data for Houston Intercontinental (TX), in the second
case, TMY2 weather data for Chicago O’Hare (IL), and for the third case, TMY2 weather
data for Seattle Tacoma (WA) are considered [34].

5.2. Detailed Office Building

A more identical version of the first building can be found in the second structure.
Wetter and Wright also conducted research on this structure [34]. A huge zone in the west
and east of the structure is encircled by five smaller zones on either side that are facing
north and south, with well-insulated floors and ceilings (adiabatic). Figure 5 shows a view
of the building model.
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As listed in Table 2, this structure has 13 decision variables. The goal is to reduce the
office’s annual primary energy consumption per square meter of area (kWh/m2 a). Energy
use for cooling coils, fans, heating, and zone lighting is included in the energy consumption.
The BOP can be written as follows:

F(X) =
[
PEFel(Eel(X) + Ec(X)) + PEFgasEh(X)

]
/A (19)
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where the heating coil (Eh), cooling coil (Ec), fans and zone lighting energy consumption
(Eel) were considered. Here, the primary energy factors for electricity (PEFel = 3) and gas
(PEFgas = 1) are also taken into consideration.

Table 2. The detailed office building’s decision factors.

Variables Description Bounds Units

X1 Window width North [1.224, 5.8321] m
X2 Window width West [7.344, 25.668] m
X3 Window width East [7.344, 25.668] m
X4 Window width South [1.224, 5.8321] m
X5 Overhang depth West [0.05, 1.05] m
X6 Overhang depth East [0.05, 1.05] m
X7 Overhang depth South [0.05, 1.05] m
X8 Shading set point West [100, 600] W/m2

X9 Shading set point East [100, 600] W/m2

X10 Shading set point South [100, 600] W/m2

X11 Night cooling summer, set point [20, 25] ◦C
X12 Night cooling winter, set point [20, 25] ◦C
X13 Supply air temperature cooling [12, 18] ◦C

Similar to the last instance, three different weather files are taken into account in this
problem. Weather data from the typical meteorological year (TMY2) for Seattle Tacoma
(WA), Chicago O’Hare (IL), and Houston Intercontinental (TX) are considered.

5.3. Simulation Software for Building Energy Consumption

An EnergyPlus (EP) simulation tool is utilized in the current work to model the
building’s thermal action and calculate the relevant energy usage. EnergyPlus, one of the
US Department of Energy’s software programs, can simulate an energy analysis of an entire
building [36]. There is no graphical user interface for the EP; instead, it calculates energy
usage by reading input data from a text file. The results are then reported in an output text
file. During the building simulations, EP determines a building’s fundamental heating and
cooling demands based on the supplied thermal control set points. The primary plant’s
energy consumption, secondary HVAC system conditions, and coil loads are all included
in the loading conditions. Due to the fact that EP’s calculations are based on the venerable
DOE-2 and BLAST algorithms, they are precise and quick [36]. In order to start the transient
calculations, the starting situations were evaluated during warm-up until the structure
achieves a stable state. Using the meteorological data, convection and radiation were
combined to provide the exterior walls’ and roof’s boundary conditions. The transient
energy equation was solved using a 15-min time step and the conduction transfer function.
Each month, more shading-related information was added. The calculations were run over
the course of a full year.

5.4. Combining the POSCO Algorithm with EP

The EP was coupled with the POSCO optimization algorithm using a coupling sub-
routine. As previously noted, EP’s input and output files serve as the primary means of
communication. To simulate and estimate the building’s yearly energy consumption, a
subroutine was created that defined the building model, changed the building control
settings, and executed the EP in conjunction with a climate profile. The subroutine will
then hold off on writing the outcomes to the output file until the EP has finished computing.
The subroutine will then read the building’s predicted energy consumptions. The control
parameters (also known as optimization variables) are modified by the optimization code
before being sent via the subroutine into the EP’s input file. The EP is then excited, the en-
ergy consumptions are read (objective), and the results are passed to the POSCO algorithm.
The POSCO selects a fresh set of ideal design parameters and inputs them into EP’s input
file through the function.
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6. Verification of the POSCO

The accomplishment and efficacy of the proposed POSCO have been compared and
confirmed in this part using a set of numerical reference test functions. These func-
tions are frequently utilized in the literature on empirical data to assess the effectiveness
of optimizers [37,38].

Tables 3 and 4 illustrate the mathematical model and properties of these test functions.
This standard set is broken down into two groups: unimodal functions, with a single global
best for testing the speed and enslavement power of algorithms, and multi-modal functions,
with multiple local minimums and a global ideal for testing the ability of algorithms to
avoid local optima and conduct exploratory analysis. The recommended algorithms were
developed in MATLAB R2020b. It is best to minimize each of these functions. Additionally,
the dimension of all functions is 30.

Table 3. Unimodal benchmark functions.

Function Range fmin n (Dim)

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30

F2(X) = ∑n
i=1|xi|+ ∏n

i=1|xi| [−10, 10]n 0 30

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30

F4(X) = max
i
{|xi|, 1 ≤ i ≤ n } [−100, 100]n 0 30

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n 0 30

F6(X) = ∑n
i=1([xi + 0.5])2 [−100, 100]n 0 30

F7(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n 0 30

Table 4. Multimodal benchmark functions.

Function Range fmin
n

(Dim)

F8(X) = ∑n
i=1 −xi sin

(√
|xi |
)

[−500, 500]n 428.9829 × n 30

F9(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30

F10(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

( 1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e [−32, 32]n 0 30

F11(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30

F12(X) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi , 10, 100, 4)

yi = 1 +
xi+4

4 u(xi , a, k, m) =

k(xi − a)m xi > a
0 a < xi < a

k(−xi − a)m xi < −a

[−50, 50]n 0 30

F13(X) = 0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi , 5, 100, 4) [−50, 50]n 0 30

The original POA and some famous and efficient optimization techniques, such as
particle swarm optimization (PSO) introduced by [39], firefly algorithm (FA) proposed
by [40], Multi-Verse Optimizer (MVO) introduced by [41], Tunicate Swarm Algorithm
(TSA) developed by [38], and Salp Swarm Algorithm (SSA) [42], are contrasted with the
suggested POSCO. To preserve consistency in the evaluation of competitive techniques,
the population size is set at 30, and the maximum number of function evaluations (FE) is
chosen to be 30,000 for all metaheuristics. As a result, each algorithm’s maximum number
of iterations is changed depending on the maximum number of FE that was chosen.

The outcomes of a single metaheuristic technique run are unpredictable and may
not be accurate. In order to offer a fair comparison and assess the effectiveness of the
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algorithms, statistical analysis should be carried out. The results of 30 runs for each of the
aforementioned approaches are reported in Tables 5 and 6 in order to solve this issue.

Table 5. Results of unimodal test functions comparison.

F Index POSCO POA PSO FA MVO SSA TSA

F1 Mean 0.00 2.42 × 10−97 4.98 × 10−9 7.11 × 10−3 2.81 × 10−1 3.29 × 10−7 8.31 × 10−56

Std. 0.00 7.22 × 10−97 1.40 × 10−8 3.21 × 10−3 1.11 × 10−1 5.92 × 10−7 1.02 × 10−58

F2 Mean 0.00 1.16 × 10−52 7.29 × 10−4 4.34 × 10−1 3.96 × 10−1 1.9111 8.36 × 10−35

Std. 0.00 2.55 × 10−52 1.84 × 10−3 1.84 × 10−1 1.41 × 10−1 1.6142 9.86 × 10−35

F3 Mean 4.37 × 10−178 7.84 × 10−81 1.40 × 10 1.66 × 103 4.31 × 10 1.50 × 103 1.51 × 10−14

Std. 5.76 × 10−181 3.49 × 10−80 7.13 6.72 × 102 8.97 707.05 6.55 × 10−14

F4 Mean 2.58 × 10−106 4.57 × 10−46 6.00 × 10−1 1.11 × 10−1 8.80 × 10−1 2.44 × 10−5 1.95 × 10−5

Std. 4.49 × 10−108 9.98 × 10−46 1.72 × 10−1 4.75 × 10−2 2.50 × 10−1 1.89 × 10−5 4.49 × 10−4

F5 Mean 2.71 × 10−1 2.80 × 10 4.93 × 10 7.97 × 10 1.18 × 102 136.56 28.4
Std. 5.68 × 10−1 8.73 × 10−1 3.89 × 10 7.39 × 10 1.43 × 102 154.00 0.842

F6 Mean 4.77 × 10−17 2.15 6.92 × 10−2 6.94 × 10−3 2.02 × 10−2 5.72 × 10−7 3.67
Std. 2.25 × 10−7 4.47 × 10−1 2.87 × 10−2 3.61 × 10−3 7.43 × 10−3 2.44 × 10−7 0.3353

F7 Mean 3.73 × 10−6 1.51 × 10−4 8.94 × 10−2 6.62 × 10−2 5.24 × 10−2 8.82 × 10−5 0.0018
Std. 3.36 × 10−6 1.33 × 10−4 0.0206 4.23 × 10−2 1.37 × 10−2 6.94 × 10−5 4.62 × 10−4

Table 6. Results of multimodal test functions comparison.

F Index POSCO POA PSO FA MVO SSA TSA

F8 Mean –1.22 × 104 −1.01 × 104 −6.01 × 103 −5.85 × 103 −6.92 × 103 −7.46 × 103 −7.89 × 103

Std. 5.21 × 102 1.70 × 103 1.30 × 103 1.61 × 103 9.19 × 102 634.67 599.26
F9 Mean 0.00 0.00 4.72 × 10 1.51 × 10 1.01 × 102 55.45 151.45

Std. 0.00 0.00 1.03 × 10 1.25 × 10 1.89 × 10 18.27 35.87
F10 Mean 8.88 × 10−16 8.77 × 10−16 3.86 × 10−2 4.58 × 10−2 1.15 2.84 2.409

Std. 0.00 0.00 2.11 × 10−1 1.20 × 10−2 7.87 × 10−1 6.58 × 10−1 1.392
F11 Mean 0.00 0.00 5.50 × 10−3 4.23 × 10−3 5.74 × 10−1 2.29 × 10−1 0.0077

Std. 0.00 0.00 7.39 × 10−3 1.29 × 10−3 1.12 × 10−1 1.29 × 10−1 0.0057
F12 Mean 1.35 × 10−5 1.25 × 10−1 1.05 × 10−2 3.13 × 10−4 1.27 6.82 6.373

Std. 1.48 × 10−5 5.41 × 10−2 2.06 × 10−2 1.76 × 10−4 1.02 2.72 3.458
F13 Mean 2.46 × 10−4 1.99 4.03 × 10−1 2.08 × 10−3 6.60 × 10−2 21.31 2.897

Std. 2.92 × 10−4 2.51 × 10−1 5.39 × 10−1 9.62 × 10−4 4.33 × 10−2 16.99 0.643

Tables 5 and 6 demonstrate that, for all functions, POSCO may offer superior solutions
than traditional POA and other optimization approaches, according to the average value of
the goal functions. The outcomes also demonstrate that the POSCO algorithm’s mean and
standard deviation are substantially lower than those of the other techniques, demonstrat-
ing the algorithm’s stability. According to the results, POSCO beats both the conventional
method and additional optimization techniques.

7. Results and Comparison

The POSCO was used in this part to decrease the energy usage of the buildings
mentioned in Section 5. This structure, as previously indicated, was also optimized in [35].
In [35], To ensure a fair comparison of different optimization strategies, the number of
evaluations for the function was set to 100 (dim + 1). The number of choice variables in this
situation is dim, which is 4 and 13 in the considered cases. Moreover, the problem is solved
20 times, and the findings were presented as a box plot.

7.1. Simple Office Building Results

Figure 6 compares the findings of the current investigation by POSCO with those
found in the literature for various optimization techniques described by Waibel et al. [35].
Figure 6 shows the POSCO box plot findings for the best and worst instances relevant for
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each weather condition. FIPSunt and GA perform the poorest in this task in terms of median
and spread, but other algorithms regularly outperform them with low median and spread.
As can be observed, when compared to the algorithms used in the literature, the POSCO
worst case might still produce usable results. Additionally, POSCO’s best-case scenario
might deliver exceptional performance in locating the optimal solution. The PSO technique,
which provides the best solution for the basic office in Seattle in the range of 132.9–133.5, is
one of the finest approaches. The POSCO offers the best option, which falls between 132.6
and 133, with a few points outside of that range. As a result, the worst possible outcome for
PSO may be calculated as 133.5, while POSCO results in 133. For the other area, the results
are almost the same. The best values of the annual energy usage for Chicago and Houston
are 152.2 and 185.5, respectively, which are lower than those evaluated by PO and other
techniques. The algorithm was run 20 times, as indicated. The optimum control settings
attained for the straightforward office are shown in Table 7.
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Table 7. Optimized decision variables of the simple office building.

Variables X1 X2 X3 X4 F(x)

Description Building orientation Window width
West

Window width
East

Shading
transmittance Objective function

Units ◦ m m -
Optimum value

(Seattle) 71.924 5.9 5.9 0.2876 132.6

Optimum value
(Chicago) 70.342 4.1 5.9 0.3126 152.2

Optimum value
(Houston) 75.564 5.1 3.5 0.4873 185.5
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7.2. Detailed Office Building Results

For each weather situation, the final cost values determined by the chosen algorithms
are box plotted in Figure 7. Even though the boxes of the weakest, non-competitive
optimizers will be cropped, the Y-axes have been resized such that the better optimizers’
boxes can still be identified. As can be observed, FIPSunt and GA have the worst median
and spread values.
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The outcomes appear to be similar to the first issue. PO, SGA, PSO, FIPS, and SA could
find acceptable results with low medians and spreads. Surprisingly, the proposed POSCO
outperforms other methods in all cases, and the annual energy consumption calculated by
POSCO is lower than that achieved by the competitive approaches. According to the results
of Figure 7, the most accurate yearly energy usage values for Seattle, Houston, and Chicago
are 90.3, 136.4, and 110.5, respectively. These values are almost 0.5 percent lower than the
best values obtained in the literature. Aside from this, it appears that the performance of
individual optimizers has not been impacted by the change in the weather file.

8. Conclusions

This study presented a hybrid optimization strategy built on the pelican optimization,
as well as single candidate optimizer (POSCO), for evaluation of the minimum energy
consumption of buildings. The proposed methodology takes advantage of the pelican
optimization’s powerful exploratory ability, as well as the single candidate technique’s
efficient local search capacity. Several unimodal and multimodal benchmark functions
are used to evaluate how well the suggested approach performs. In light of the findings,
POSCO surpasses basic POA and other techniques in terms of determining the global
solution. When compared to competing methodologies, the proposed method could deter-
mine the global best for seven of the thirteen functions that were taken into consideration,
and it also produced better results for the remaining functions. The suggested POSCO
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is then applied to reduce an office building’s yearly energy consumption. Based on the
findings of the experiment, the solutions generated by the proposed POSCO are superior
to the comparative algorithms for optimizing building energy consumption. The best
annual energy usage values for Seattle, Houston, and Chicago, per the results, are almost
0.5 percent less than the best records found in the literature. Additionally, the change to
the weather file does not seem to have influenced how well each optimizer is performing
individually. The competition simulation results suggest that POSCO may be regarded as a
promising candidate approach for BEO models and can estimate the best design effectively
and reliably.
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