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Abstract: Composite pipes, which are widely used for transporting fluids, have a high strength, good
impermeability and strong resistance to external pressure. Because the pipe bears a sustained load,
and its constituent materials usually possess time-dependent properties, the creep phenomenon
unavoidably occurs in the composite pipes in the long run. The aim of this study is to propose
analytical viscoelastic solutions, which are then applied to a composite pipe structure to explore the
creep behavior of composite pipes under sustained compression. The pipe layers and the bonding
interlayer both exhibit viscoelastic properties, which are the novelty of this study. The governing
equations for the viscoelastic composite pipe are built on the basis of exact elasticity theory combined
with the viscoelastic theory. General solutions are derived by means of a Fourier series expansion in
which the coefficients are further determined by a Laplace transform. The research results indicate
that the present solution has a higher computational efficiency than the finite element solution,
because of the latter involving the time discretization method. In addition, for the viscoelastic pipe,
if the modulus degradation of the neighboring laminar layers is proportional, the stresses can keep
constant with time, as in a purely elastic material.

Keywords: creep behavior; viscoelastic composite pipe; sustained compression; Laplace transform

1. Instruction

With the rapid advances in technology and research, some next generation materials,
such as composite materials, have been proposed and manufactured [1]. Compared with
traditional materials, they have unique advantages, e.g., high specific strength, corrosion
resistance, electric insulation, and designability. As a typical structural member, composite
pipe is widely used as an underground facility in infrastructure industries and in civil
engineering [2–4]. One advantage of such pipes is that their mechanical properties can be
artificially designed by adjusting the material configuration according to the working condi-
tions. The constituent materials of composite pipes, e.g., polyethylene, polyurethane, fiber
reinforced plastic, and epoxy, to name a few, usually show viscoelastic properties. Thus,
for example, such pipes exhibit creep behavior when subjected to sustained loads [5,6]. In
addition, under many circumstances, the composite pipes are subject to sustained com-
pression caused by non-uniform surficial pressures, e.g., the soil pressure on underground
pipes [7–9]. In practical engineering, fiber-reinforced concrete pipes, in which synthetic
fibers are used to minimize the need for steel reinforcement to enhance the ductility, are
also used as buried pipeline. This pipe can be subjected to pressure from the surrounding
soil, and its constituent materials, including concrete and synthetic fibers, can creep, which
can exert effects on the performance of the pipe [10]. Additionally, glass fiber-reinforced
polymer (GFRP) pipe buried underground is subjected to long-term pressure, which can
cause a decrease in pipe stiffness. This causes deflections beyond the long-term design
limits [11]. These phenomena deserve further study and discussion. Thus, analytical
viscoelastic solutions are proposed in this paper to explore the creep behavior of composite
pipes under sustained compression.
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Studies on the mechanical behavior of composite pipes have been carried out. For
laminated fiber reinforced plastic (FRP) pipe, a new analytical approach was put forward
by Chen et al. [12] to work out the axial equivalent elastic modulus through the three-
dimensional stress state. An analytical solution for thick composite pipes subjected to
transient thermal fields was developed by Jacquemin and Vautrin in order to calculate
the internal stresses [13]. Making use of the curved composite-beam and multilayer-
buildup theory, Xia et al. researched the static behavior of composite cylindrical pipes
under transverse loads and lateral compression, respectively [14,15]. Guedes developed
an approximate elasticity-based solution to analyze the behavior of composite cylindrical
composite pipes subjected to transverse load [16]. By employing the layer-wise method,
Sarvestani and Hojjati analyzed the three-dimensional stress of orthotropic composite
curved pipes [17]. A two-dimensional model was developed by Ghosh et al. [18] to an-
alyze the elastic performance of curved anisotropic flexible pipe. By using the software
MATLAB, Cox et al. [19] conducted a stress and failure analysis for fiber-reinforced com-
posite pipes under multi-axial pressure. For composite pipes subjected to external pressure,
Silva et al. [20] explored the influencing factors of failure, including ovality and the ply
stacking sequence. Karagiozova et al. [21] established a finite element model for carbon
fiber reinforced polymer (CFRP) tubes and investigated their dynamic crushing behavior.
Utilizing linear membrane shell theory, Tashnizi et al. [22] found the optimal winding angle
of CFRP composite pipes and carried out experiments to test the accuracy of the results. A
theoretical model was provided by Li et al. [23] to obtain the global buckling force of FRP
laminated pipes subjected to axial pressure. For fiberglass reinforced pipe under tension,
Xu et al. [24] researched their mechanical properties from the perspectives of experiment,
theory and finite element analysis under the condition of material nonlinearity. A new
composite structure consisting of spiral stiffening ribs and steel pipe concrete was given by
Wei et al. [25], and its nonlinear response under axial compression was studied.

For the long-term behavior of the composite pipes with viscoelastic constituent mate-
rials, several studies exist in the published literature. By using the Euler-Bernoulli theory,
the dynamic performance of viscoelastic pipes subjected to uniform external cross flow
was investigated by Shahali et al. [26]. Gong et al. presented a hydraulic transient analysis
to study the resonant frequency of a system of viscoelastic pipelines [27]. The energy
relations and dissipation in a viscoelastic pipeline under fluid transients were investigated
by Duan et al. using the Fourier transform [28]. For reinforced viscoelastic pipes, Oyadiji
and Tomlinson used the complex moduli master curves to analyze the vibration trans-
missibility features [29]. By using the finite element (FE) solution, Zhang et al. studied
the vibration behavior of viscoelastic tubes under fluid pressure [30]. By employing the
Galerkin and shooting methods, Vassilev and Djondjorov investigated the dynamic stability
of viscoelastic pipes by using the elastic foundations of variable modulus [31]. An analytical
solution, on basis of the elasticity theory, was developed by Wu et al. for composite pipes
by considering the viscoelastic bonding interlayer [32]. Through experimental observation
and numerical simulation, Raham and Ghorbanhosseini [7,33] analyzed the creep behav-
ior of GFRP pipes under internal pressure as well as transverse compressive force. An
experiment was conducted by Yang et al. [34] to investigate the long-term creep behavior
of FRP composite tubes under a bending load. Sun et al. [35] employed a Kelvin-Voigt
model to simulate the viscoelasticity of pipes and studied the effects of water temperature
on transient pressure damping. Considering the two factors of moisture and impurity,
Khademi et al. [36] examined the long-term creep behavior of composite pipes and found
that an increase in moisture could cause a reduction of the service life of the pipe. According
to the theory of high-order displacement field, the shock process of the graphene-reinforced
composite pipes with viscoelastic interlayer was researched by Li et al. [37]. The multi-
plicative approach was applied to the model of viscoelasticity by Tagiltsev et al. [38], and a
laminated composite pipe under pressure was researched to verify this approach.

As for the long-term behavior of pipes, in the extant literature, only the viscoelastic
property of the single-layer pipe or the bonding interlayer in composite pipes has been
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investigated, while few studies have addressed viscoelastic composite pipe, in which all of
the pipe layers are viscoelastic. Additionally, the pipes in the existing studies are usually
subjected to uniform radial load which is simplified according to the axisymmetric property,
while a pipe under sustained compression is rarely studied.

This present study develops analytical solutions to explore the sustained compression
creep of viscoelastic composite pipes subjected to sustained compression, taking into
consideration the viscoelastic properties of both the pipe layers and the interlayers. The
analytical solutions are solved using the Fourier series expansion and the Laplace transform,
based on the exact elasticity theory combined with viscoelastic theory. This paper considers
the viscoelastic properties of both the laminar layer and the bonding interlayer, which is a
novelty of this study. Another novelty provided by this study is that the pressure effect of a
non-uniform load on the pipe is considered. Convergence and comparison analyses are
performed to verify the proposed solutions. The radial compressive creep performance of
the viscoelastic composite pipe is investigated through a parameter study.

2. Analytical Solutions for Composite Pipe

As shown in Figure 1, a composite pipe has an inner radius, Rin, an outer radius, Rout,
and infinite length; it consists of p pipe layers with thickness hi, bonded by interlayers with
thickness ∆h, in which i means the layer index (i = 1, 2, . . . , p).
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Figure 1. Schematic for the viscoelastic composite pipe under sustained compression as studied here.

The pipe layers and the bonding interlayer both have viscoelastic properties, which
are described by the Burgers model (Figure 2), with elastic moduli given as follows
(Equation (1)):

Ei(t) = Ei
1e−t/θi

1 + Ei
2e−t/θi

2 , E∗(t) = E∗1e−t/θ∗1 + E∗2e−t/θ∗2 , (1)

in which the symbol * denotes the variable belonging to the interlayer; Ei
1, Ei

2, E∗1 , and E∗2
are the relaxation moduli, and θi

1, θi
2, θ∗1 , and θ∗2 are the relaxation time. The pipe bears

sustained compression with non-uniform pressure loads qin(θ) and qout(θ) acting on the
inner and outer surfaces.
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Figure 3 is the flow chart of the analytical process for the viscoelastic solutions of the
composite pipes, which is described in detail in Sections 2.1–2.3.
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2.1. General Solutions for the Viscoelastic Pipe Layers

The viscoelastic composite pipe, here with an infinite length, can be regarded as a
two-dimensional plane-strain problem. On the basis of the elasticity theory combined with
the viscoelasticity theory, the constitutive equations of i-th viscoelastic pipe layer are given
in convolution form below (Equation (2)):

σi
r(r, θ, t) =

(1− µi)

(1 + µi)(1− 2µi)

∫ t

−∞

dEi(t− ξ)

d(t− ξ)

[
∂ui

r(r, θ, ξ)

∂r
+

µi
1− µi

ui
r(r, θ, ξ)

r

+
µi

1− µi

1
r

∂ui
θ(r, θ, ξ)

∂θ

]
dξ,

σi
θ(r, θ, t) =

(1− µi)

(1 + µi)(1− 2µi)

∫ t

−∞

dEi(t− ξ)

d(t− ξ)

[
µi

1− µi

∂ui
r(r, θ, ξ)

∂r
+

ui
r(r, θ, ξ)

r

+
1
r

∂ui
θ(r, θ, ξ)

∂θ

]
dξ,

τi
rθ(r, θ, t) =

1
2(1 + µi)

∫ t

−∞

dEi(t− ξ)

d(t− ξ)

[
1
r

∂ui
r(r, θ, ξ)

∂θ
+

∂ui
θ(r, θ, ξ)

∂r
−

ui
θ(r, θ, ξ)

r

]
dξ, (2)
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in which σi
r, σi

θ , and τi
rθ represent the stress components; ui

r and ui
θ are the displacement

components; and µi is Poisson’s ratio. The stresses should satisfy the equilibrium relations,
as depicted below (Equation (3)):

∂σi
r

∂r
+

1
r

∂τi
rθ

∂θ
+

σi
r − σi

θ

r
= 0,

1
r

∂σi
θ

∂θ
+

∂τi
rθ

∂r
+

2τi
rθ

r
= 0. (3)

The substitution of Equation (2) into Equation (3) and the elimination of stresses
yield partial differential equations (PDE) involving integrals in regard to the displacement
(Equation (4), as shown below):

∫ t

−∞
Ei(t− ξ)[

1
2

∂3ui
θ(r, θ, ξ)

∂r2∂ξ
+

1
2r

∂2ui
θ(r, θ, ξ)

∂r∂ξ
− 1

2r2
∂ui

θ(r, θ, ξ)

∂ξ
+

1
2(1− 2µi)r

∂3ui
r(r, θ, ξ)

∂r∂θ∂ξ

+
3− 4µi

2(1− 2µi)r2
∂2ui

r(r, θ, ξ)

∂θ∂ξ
+

1− µi
(1− 2µi)r2

∂3ui
θ(r, θ, ξ)

∂θ2∂ξ
]dξ = 0,

∫ t

−∞
Ei(t− ξ)[

1− µi
1− 2µi

∂3ui
r(r, θ, ξ)

∂r2∂ξ
+

1− µi
(1− 2µi)r

∂2ui
r(r, θ, ξ)

∂r∂ξ
− 1− µi

(1− 2µi)r2
∂ui

r(r, θ, ξ)

∂ξ

+
1

2(1− 2µi)r
∂3ui

θ(r, θ, ξ)

∂r∂θ∂ξ
− 3− 4µi

2(1− 2µi)r2
∂2ui

θ(r, θ, ξ)

∂θ∂ξ
+

1
2r2

∂3ui
r(r, θ, ξ)

∂θ2∂ξ
]dξ = 0. (4)

To solve the above equations, the displacements, in terms of Fourier series, expanded,
are used as follows (Equation (5)):

ui
θ(r, θ, t) = Θ0

i (r, t) +
∞

∑
m=1

Θ1
im(r, t) sin(mθ) +

∞

∑
m=1

Θ2
im(r, t) cos(mθ),

ui
r(r, θ, t) = R0

i (r, t) +
∞

∑
m=1

R1
im(r, t) cos(mθ) +

∞

∑
m=1

R2
im(r, t) sin(mθ). (5)

For convenience, the above equations, each composed of three parts, are rearranged
into two parts as shown below (Equation (6)):

ui
θ(r, θ, t) = Θ0

i (r, t) +
∞

∑
m=1

2

∑
n=1

Θn
im(r, t)[an sin(mθ) + bn cos(mθ)],

ui
r(r, θ, t) = R0

i (r, t) +
∞

∑
m=1

2

∑
n=1

Rn
im(r, t)[an cos(mθ) + bn sin(mθ)]. (6)

in which an = 1−(−1)n

2 , bn = 1+(−1)n

2 .
By substituting Equation (6) for Equation (4), Equation (4) is turned into ordinary dif-

ferential equations (ODE) involving integrals and is decomposed as follows (Equation (7)):

∫ t

−∞
Ei(t− ξ)[

∂3Θ0
i (r, ξ)

∂r2∂ξ
+

1
r

∂2Θ0
i (r, ξ)

∂r∂ξ
− 1

r2
∂Θ0

i (r, ξ)

∂ξ
]dξ = 0,

∫ t

−∞
Ei(t− ξ)[

∂3R0
i (r, ξ)

∂r2∂ξ
+

1
r

∂2R0
i (r, ξ)

∂r∂ξ
− 1

r2
∂R0

i (r, ξ)

∂ξ
]dξ = 0,

∫ t

−∞
Ei(t− ξ)[

1− 2µi
2

∂3Θn
im(r, ξ)

∂r2∂ξ
+

1− 2µi
2

1
r

∂2Θn
im(r, ξ)

∂r∂ξ

− [(1− µi)m2 +
1− 2µi

2
]

1
r2

∂Θn
im(r, ξ)

∂ξ
+ (−1)n+1 m

2
1
r

∂2R3−n
im (r, ξ)

∂r∂ξ
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+ (−1)n+1 m(3− 4µi)

2
1
r2

∂R3−n
im (r, ξ)

∂ξ
]dξ = 0,

∫ t

−∞
Ei(t− ξ)[

1− 2µi
2

∂3Rn
im(r, ξ)

∂r2∂ξ
+

1− 2µi
2

1
r

∂2Rn
im(r, ξ)

∂r∂ξ

− [(1− µi)m2 +
1− 2µi

2
]

1
r2

∂Rn
im(r, ξ)

∂ξ
+ (−1)n+1 m

2
1
r

∂2Θ3−n
im (r, ξ)

∂r∂ξ

+ (−1)n+1 m(3− 4µi)

2
1
r2

∂Θ3−n
im (r, ξ)

∂ξ
]dξ = 0, n = 1, 2. (7)

The solutions of the above equations are as follows (Equation (8)):

Θ0
i (r, t) = 0, R0

i (r, t) = rA0
i (t) + r−1B0

i (t),

Θn
im(r, t) = rm+1 An

im(t) + r−m−1Bn
im(t) + rm−1Cn

im(t) + r−m+1Dn
im(t),

Rn
im(r, t) = (−1)n m + 4µi − 2

m− 4µi + 4
rm+1 An

im(t) + (−1)n+1r−m−1Bn
im(t) + (−1)nrm−1Cn

im(t)

+ (−1)n+1 m− 4µi + 2
m + 4µi − 4

r−m+1Dn
im(t). (8)

in which A0
i (t), B0

i (t), An
im(t), Bn

im(t), Cn
im(t), and Dn

im(t) are the undetermined coefficients.
The substitution of Equation (8) into Equation (6) gives the general solutions (Equation (9))
for displacements of the i-th pipe layer as follows:

ui
θ(r, θ, t) =

2

∑
n=1

∞

∑
m=1

[an sin(mθ) + bn cos(mθ)][rm+1 An
im(t) + r−m−1Bn

im(t) + rm−1Cn
im(t) + r−m+1Dn

im(t)],

ui
r(r, θ, t) = rA0

i (t) + r−1B0
i (t) +

2

∑
n=1

∞

∑
m=1

[an cos(mθ) + bn sin(mθ)][(−1)nα1
imrm+1 An

im(t)

+ (−1)n+1r−m−1Bn
im(t) + (−1)nrm−1Cn

im(t) + (−1)n+1α2
imr−m+1Dn

im(t)]. (9)

Then, by substituting Equation (9) for Equation (2), the general solutions for the
stresses in the i-th pipe layer can be obtained as follows (Equation (10)):

σi
r(r, θ, t) =

∫ t

−∞
Ei(t− ξ)[ρ1

i
∂A0

i (ξ)

∂ξ
− ρ2

i r−2 ∂B0
i (ξ)

∂ξ
]dξ +

2

∑
n=1

∞

∑
m=1

[an cos(mθ)

+ bn sin(mθ)]
∫ t

−∞
Ei(t− ξ)[(−1)nβ1

imrm ∂An
im(ξ)

∂ξ
+ (−1)nβ2

imr−m−2 ∂Bn
im(ξ)

∂ξ

+ (−1)nβ3
imrm−2 ∂Cn

im(ξ)

∂ξ
+ (−1)nβ4

imr−m ∂Dn
im(ξ)

∂ξ
]dξ,

σi
θ(r, θ, t) =

∫ t

−∞
Ei(t− ξ)[ρ1

i
∂A0

i (ξ)

∂ξ
+ ρ2

i r−2 ∂B0
i (ξ)

∂ξ
]dξ +

2

∑
n=1

∞

∑
m=1

[an cos(mθ)

+ bn sin(mθ)]
∫ t

−∞
Ei(t− ξ)[(−1)n+1χ1

imrm ∂An
im(ξ)

∂ξ
+ (−1)n+1χ2

imr−m−2 ∂Bn
im(ξ)

∂ξ

+ (−1)n+1χ3
imrm−2 ∂Cn

im(ξ)

∂ξ
+ (−1)n+1χ4

imr−m ∂Dn
im(ξ)

∂ξ
]dξ,

τi
rθ(r, θ, t) =

2

∑
n=1

∞

∑
m=1

[an sin(mθ) + bn cos(mθ)]
∫ t

−∞
Ei(t− ξ)[ζ1

imrm ∂An
im(ξ)

∂ξ
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− ζ2
imr−m−2 ∂Bn

im(ξ)

∂ξ
+ ζ3

imrm−2 ∂Cn
im(ξ)

∂ξ
− ζ4

imr−m ∂Dn
im(ξ)

∂ξ
]dξ (10)

in which

α1
im =

m + 4µi − 2
m− 4µi + 4

, α2
im =

m− 4µi + 2
m + 4µi − 4

, ρ1
i =

1
(1 + µi)(1− 2µi)

,

ρ2
i =

1
1 + µi

, β1
im =

(m + 1)(m− 2)
(1 + µi)(m− 4µi + 4)

, β2
im =

(m + 1)
1 + µi

, β3
im =

(m− 1)
1 + µi

,

β4
im =

(m− 1)(m + 2)
(1 + µi)(m + 4µi − 4)

, χ1
im =

(m + 1)(m + 2)
(1 + µi)(m− 4µi + 4)

, χ2
im =

(m + 1)
1 + µi

,

χ3
im =

(m− 1)
1 + µi

, χ4
im =

(m− 1)(m− 2)
(1 + µi)(m + 4µi − 4)

, ζ1
im =

m(m + 1)
(1 + µi)(m− 4µi + 4)

,

ζ2
im =

(m + 1)
1 + µi

, ζ3
im =

(m− 1)
1 + µi

, ζ4
im =

m(m− 1)
(1 + µi)(m + 4µi − 4)

.

2.2. Bonding Conditions

The interlayer slip effect is modeled here in this section. Here, only the shear defor-
mation in the viscoelastic interlayer is considered, since the effect of ε∗ir is negligible [39].
The constitutive equation involving the shear deformation for the i-th (i = 1, 2, . . . , p-1)
viscoelastic interlayer is as follows (Equation (11)):

τ∗irθ (θ, t) =
1

2(1 + µ∗)

∫ t

−∞
E∗(t− ξ)

∂γ∗irθ(θ, ξ)

∂ξ
dξ. (11)

The above equation is in the convolution form, which indicates the memory effect of
viscoelasticity, i.e., that the stress at some point relies on the entire strain history. Since
the interlayer thickness is far less than the thickness of the pipe layer, the displacement
distribution through the radial direction in the interlayer can be assumed to be linear.
Therefore, the geometrical relationship of the interlayers is given by (Equation (12)):

ui+1
r (di+1

0 , θ, t) = ui
r(d

i
1, θ, t),

γ∗irθ(θ, t) =
ui+1

θ (di+1
0 , θ, t)− ui

θ(d
i
1, θ, t)

∆h
+

1
di

1

∂ui
r(di

1, θ, t)
∂θ

−
ui

θ(d
i
1, θ, t)
di

1
, (12)

in which di
1 and di

0 denote the r-coordinate values of the outer and inner surfaces of each
pipe layer, respectively. The equilibrium relations for the neighboring pipe layers can be
written as follows (Equation (13)):

σi+1
r (di+1

0 , θ, t) = σ∗ir (θ, t) = σi
r(d

i
1, θ, t),

τi+1
rθ (di+1

0 , θ, t) = τ∗irθ (θ, t) = τi
rθ(d

i
1, θ, t). (13)

By combining Equations (11)–(13), a relationship between the shear stress and the
displacement components is obtained as follows (Equation (14)):

τi
rθ(d

i
1, θ, t) =

1
2(1 + µ∗)∆h

∫ t

−∞
E∗(t− ξ)[

∂ui+1
θ (di+1

0 , θ, ξ)

∂ξ
−

∂ui
θ(d

i
1, θ, ξ)

∂ξ

+
∆h
di

1

∂2ui
r(di

1, θ, ξ)

∂θ∂ξ
− ∆h

di
1

∂ui
θ(d

i
1, θ, ξ)

∂ξ
]dξ. (14)
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2.3. Determination of the Coefficients

The various loads which act on the surfaces of the pipe are described as follows
(Equation (15)):

σ1
r = −qin(θ), τ1

rθ = 0, at r = Rin,

σ
p
r = −qout(θ), τ

p
rθ = 0, at r = Rout. (15)

In view of the general solutions, as given in series form, the loads qin(θ) and qout(θ)
should also be expanded, as below (Equation (16)):

qin(θ) = q0
in +

∞

∑
m=1

qm1
in cos(mθ) +

∞

∑
m=2

qm2
in sin(mθ),

qout(θ) = q0
out +

∞

∑
m=1

qm1
out cos(mθ) +

∞

∑
m=2

qm2
out sin(mθ), (16)

where
q0

in =
1

2π

∫ π

−π
qin(θ)dθ, q0

out =
1

2π

∫ π

−π
qout(θ)dθ,

qm1
in =

1
π

∫ π

−π
qin(θ) cos(mθ)dθ, qm1

out =
1
π

∫ π

−π
qout(θ) cos(mθ)dθ,

qm2
in =

1
π

∫ π

−π
qin(θ) sin(mθ)dθ, qm2

out =
1
π

∫ π

−π
qout(θ) sin(mθ)dθ.

Equations (12)–(15) are then converted using the Laplace transform and expressed in
matrix form, as shown below (Equations (17) and (18)):

Ψ̂i
0(s)Ĉ

i
0(s)− Φ̂i+1

0 (s)Ĉi+1
0 (s) = 0, Ψ̂i

mn(s)Ĉ
i
mn(s)− Φ̂i+1

mn (s)Ĉ
i+1
mn (s) = 0, (17)

Ω̂in
0 Ĉ1

0(s) + Ω̂out
0 Ĉp

0 (s) =
1
s

Q0, Ω̂in
mnĈ1

mn(s) + Ω̂out
mnĈp

mn(s) =
1
s

Qmn, (18)

where

Ĉi
0(s) = [Â0

i (s) B̂0
i (s)]

T , Ĉi
mn(s) = [Ân

im(s) B̂n
im(s) Ĉn

im(s) D̂n
im(s)]

T ,

Q0 = [q0
in q0

out]
T , Qmn = [qmn

in 0 qmn
out 0]T ,

and the over arcs mean that the variables are in the Laplace domain, such as Ĉi
0(s); the

details of the elements Ψ̂i
0(s), Φ̂i

0(s), Ψ̂i
mn(s) and Φ̂i

mn(s) can be found in Appendix A
Equation (A1); the details of Ω̂in

0 , Ω̂out
0 , Ω̂in

mn and Ω̂out
mn can be found in Appendix A

Equation (A2). The combination of Equations (17) and (18) yields the following (Equation (19))
matrix equation for the undetermined coefficients in the Laplace domain:

M̂0(s)X̂0(s) =
1
s

A0, M̂mn(s)X̂mn(s) =
1
s

Amn, (19)

where

X̂0(s) =


Ĉ1

0(s)
Ĉ2

0(s)
· · ·

Ĉp
0 (s)

, X̂mn(s) =


Ĉ1

mn(s)
Ĉ2

mn(s)
· · ·

Ĉp
mn(s)

, A0 =


0
· · ·
0

Q0

, Amn =


0
· · ·
0

Qmn

,
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M̂0(s) =



Ψ̂1
0(s) −

..
Φ

2
0(s) 0 · · · · · ·

0 Ψ̂2
0(s) −Φ̂3

0(s) 0 · · ·
· · · · · ·

· · · 0 Ψ̂i
0(s) −Φ̂i+1

0 (s) 0
· · · · · ·

· · · · · · 0 Ψ̂
p−1
0 (s) −Φ̂

p
0 (s)

Ω̂in
0 0 · · · 0 Ω̂out

0


,

M̂mn(s) =



Ψ̂1
mn(s) −Φ̂2

mn(s) 0 · · · · · ·
0 Ψ̂2

mn(s) −Φ̂3
mn(s) 0 · · ·
· · · · · ·

· · · 0 Ψ̂i
mn(s) −Φ̂i+1

mn (s) 0
· · · · · ·

· · · · · · 0 Ψ̂
p−1
mn (s) −Φ̂

p
mn(s)

Ω̂in
mn 0 · · · 0 Ω̂out

mn


.

By using the Cramer rule and fraction expansion, the coefficients are further expressed
as follows (Equation (20)):

X̂ j
0(s) =

∣∣∣M̂j
0(s)

∣∣∣
s
∣∣M̂0(s)

∣∣ =
p−1
∑

λ=0
ω

jλ
0 sλ

p−1
∑

λ=0
ηλ

0 sλ+1

=
p

∑
α=1

cα
0

s− sα
0

,

X̂k
mn(s) =

∣∣∣M̂k
mn(s)

∣∣∣
s
∣∣M̂mn(s)

∣∣ =
2p−2

∑
λ=0

ωkλ
mnsλ

2p−2
∑

λ=0
ηλ

mnsλ+1

=
2p−1

∑
β=1

cβ
mn

s− sβ
mn

, j = 1, 2, . . . , 2p, k = 1, 2, . . . , 4p, (20)

where

ω
jλ
0 = lim

s→+∞

1
sλ

(∣∣∣Mj
0(s)

∣∣∣− p−1

∑
a=λ+1

ω
ja
0 sa

)
, ηλ

0 = lim
s→+∞

1
sλ

(
|M0(s)| −

p−1

∑
a=λ+1

ηa
0sa

)
,

ωkλ
mn = lim

s→+∞

1
sλ

(∣∣∣Mk
mn(s)

∣∣∣− 2p−2

∑
a=λ+1

ωka
mnsa

)
, ηλ

mn = lim
s→+∞

1
sλ

(
|Mmn(s)| −

2p−2

∑
a=λ+1

ηa
mnsa

)
,

cj
α0 =

p−1
∑

λ=0
ω

jλ
0 (sα

0)
λ

p−1
∑

λ=0
(λ + 1)ηλ

0 (s
α
0)

λ

, ck
βmn =

2p−2
∑

λ=0
ωkλ

mn(s
β
0 )

λ

2p−2
∑

λ=0
(λ + 1)ηλ

mn(s
β
0 )

λ
,

and sα
0 and sβ

mn are roots of
p−1
∑

λ=0
ηλ

0 sλ+1 = 0 and
2p−2

∑
λ=0

ηλ
mnsλ+1 = 0, respectively. Taking

the inverse Laplace transform of Equation (20), the coefficients of the time domain can be
obtained as follows (Equation (21)):

X j
0(t) =

p

∑
α=1

cj
α0e−sα

0 t, Xk
mn(t) =

2p−1

∑
β=1

ck
βmne−sβ

mnt, (21)

Finally, the analytical solutions for the viscoelastic composite pipe are determined via
substitution of the coefficients of the time domain into Equation (10).
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3. Results and Discussion

In the following, for the purpose of investigating the compressive creep of the vis-
coelastic composite pipe, several analyses of viscoelastic sandwich pipes are carried out,
with parameters fixed at qin(θ) = 0.2 N/mm2, Rin = 600 mm, h1 = h3 = 20 mm, h2 = 60 mm,
∆h = 0.5 mm, and µi = µ∗ = 0.3, unless otherwise stated.

As shown in Figure 4, the two non-uniform load functions are defined beforehand,
including the elliptic load qell(θ) and the sinusoidal load qsin(θ), which are expressed as
follows (Equation (22)):

qell(θ) =
gb

2
√

g2 cos2(θ) + sin2(θ)
, qsin(θ) = 0.5 + 0.5k sin(2θ − π

2
), (22)

where g = b/a; a and b are the lengths of minor axis and major axis in the ellipse, re-
spectively; and k is the non-uniformity degree for the sinusoidal load. Some variables are
defined as follows (Equation (23)):

σf = σ1
θ at θ = 0.5π, r = d1

0; τ∗ = τ1
rθ at θ = 0.25π, r = d1

1;

τc = τ2
rθ at θ = 0.25π, r = 0.5(d2

0 + d2
1); u f

r = u1
r at θ = 0.5π, r = d1

0, (23)

in which a variable with superscripts f or c respectively attaches to the facial (i = 1, 3) or
core (i = 2) layer. Additionally, the symbol ||means the absolute value and the subscript
max represent the maximum value.
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3.1. Convergence and Comparison Verifications

The first step is to verify the convergence property of the present solution. Here,
the viscoelastic sandwich pipe with interlayers is under qout(θ) = qell(θ) with g = 2, in
which all layers follow a proportion relation with Ec(t) = E f (t)/3 = 104 E∗i (t), and the
viscoelastic parameters of the core layer are set as Ec

1 = 1125.11 MPa, Ec
2 = 2144.89 MPa,

θc
1 = 2.519 × 107 s, and θc

2 = 2.097 × 105 s [40]. The results of the stresses and displacements
with different series terms, N, which are truncated from the infinite series in the present
solutions, are listed in Table 1. Table 1 shows the rapid convergence of the present results,
which reach an accuracy of four significant digits when N = 10. Hence, from here onward,
the number of series term will be fixed at N = 10.
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Table 1. The stresses and displacements of the solution here with different series terms.

N σ1
θ [MPa] σ1

r [MPa] τ1
rθ [MPa] u1

r [mm] u1
θ [mm]

2 −42.94 0.1024 −0.3672 −83.24 −25.37
4 −43.97 0.1022 −0.4251 −83.60 −25.54
6 −43.56 0.1046 −0.4289 −83.54 −25.54
8 −43.45 0.1059 −0.4288 −83.54 −25.54

10 −43.45 0.1059 −0.4287 −83.54 −25.54

Note: The stresses and displacements are at t = 105 s and located at θ = π/3, r = 620 mm in pipe layer 1.

Additionally, the present solution is compared with the FE solution from ANSYS,
in which the PLANE-183 element is taken to simulate the viscoelastic pipe layers and
interlayers. Figure 5 shows the schematic diagram of the FE model, which only considers
1
4 of the pipe due to the symmetry of the structure. The interlayer, facial layer, and core
layer of the pipe are divided into 1, ζ and 2ζ equal parts in the r direction, respectively; all
layers are evenly divided into 8ζ parts in the θ direction. The results of the comparison
between the present solution and the FE solution with different ζ when t = 105 s are shown
in Table 2. It can be seen from Table 2 that the FE solution tends to approach the present
solution as the density of the mesh increases. σ1

θ , τ1
rθ and u1

r have errors of 0.941%, 0.956%,
and 0.534%, respectively, when ζ = 30. That is to say, the results of the FE solutions can
become more precise when the FE mesh is more refined. It is worth noting that this model
takes more time and has a high cost in terms of computation due to the fine mesh and
the time step division. The present analytical model is advantageous in its computational
efficiency compared with the FE method. The reason for this is that the FE model calculates
results from the beginning to a certain time gradually by using the viscoelastic material in
question, while the present analytical model has the ability to calculate the results at any
time directly.
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Table 2. The results of comparison between the present solution and the FE solution.

FE results with Different ζ Present

ζ 2 4 6 10 20 30 Solution

σ1
θ [MPa] −54.62 −48.27 −45.51 −44.37 −43.98 −43.86 −43.45

Error (%) 25.7 11.1 4.74 2.11 1.23 0.941 /
τ1

rθ [MPa] −0.4689 −0.4420 −0.4399 −0.4368 −0.4336 −0.4328 −0.4287
Error (%) 9.37 3.11 2.63 1.89 1.15 0.956 /
u1

r [mm] −84.28 −84.16 −84.08 −84.03 −84.02 −83.99 −83.54
Error (%) 0.886 0.737 0.651 0.583 0.569 0.534 /
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The present solution can be degenerated into the solution for a laminated arch by
keeping one part of the expansion term from the Fourier series for displacements in
Equation (5) and replacing m with mπ/β, as follow (Equation (24)):

ui
θ(r, θ, t) =

∞

∑
m=1

Θ2
im(r, t) cos(mπθ/β),

ui
r(r, θ, t) =

∞

∑
m=1

R2
im(r, t) sin(mπθ/β). (24)

in which β is the angle of the laminated arch. A comparison between the present solution
and the EB solution from Galuppi and Royer-Carfagni [41] is made. In the EB solution,
the interlayers are regarded as viscoelastic material and are simulated by a generalized
Maxwell model, with a time-dependent modulus written in Prony series form, expressed
as follows:

G∗(t) = G∗∞ +
M

∑
j=1

G∗j e−t/θG,j . (25)

The arches are considered to be composed of 2 elastic layers with a viscoelastic in-
terlayer, which is subjected to the uniform radial load q(θ) = 7.5 × 10−4 N/mm2. S and
Rm, calculated by S = βRm and Rm = Rin + 0.5 H, mean the average arch length and radius,
respectively. The parameters of the arch are defined as E1 = E2 = 70 GPa, µ1 = µ2 = µ∗ = 0.3,
β = 0.25π, h1 = h2, S = 4000 mm, ∆h = 0.5 mm. The viscoelastic parameters of the interlayer
are taken from the research by Wu et al. [42]. Table 3 reveals the comparison results for
the mid-span deflection, i.e., ui

r at θ = 0.5β, r = Rm, when t = 1010 s at different arch length-
thickness ratios S/H. In Table 3, the mid-span deflection based on the present solution and
the EB solution has a high consistency for a large S/H. Nevertheless, as S/H diminishes,
the error of the results becomes larger, and the results have a maximum error of 9.61% at
S/H = 10.

Table 3. Comparisons of the mid-span deflection among the present and EB solution when t = 1010 s
at different ratios S/H.

S/H 100 50 30 20 15 10

Present [mm] −30.61 −3.863 −0.8480 −0.2560 −0.1099 −0.03373
EB [mm] −30.49 −3.811 −0.8232 −0.2439 −0.1029 −0.03049

Error of EB (%) 0.392 1.35 2.92 4.73 6.37 9.61

3.2. Effect of Material Configuration

The effect of the material configuration is investigated in this section. Here, the pipe is
under the sinusoidal load qsin(θ) with k = 0.4. Five patterns of material configuration are
analyzed, as shown in Figure 6.
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The moduli of the viscoelastic layers are the same as those in Section 3.1, while
the modulus for the elastic layer is taken as the initial value of the viscoelastic case, i.e.,
Ec = Ec(0) or E f = E f (0). The interlayer in pattern 4 has the standard linear solid model [43],

with viscoelastic parameters taken as G∗1 = 1 MPa, G∗∞ = 0.1 MPa, and θ∗G,1 = 1 × 105 s. The
interlayer in the pattern 5 exhibits elasticity, in which G∗ = 1.1 MPa. Figure 7 shows the
changes in the stresses and displacements with time in the five patterns.
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From Figure 7, it is found that, in pattern 1,
∣∣σi

θ

∣∣
max,

∣∣τi
rθ

∣∣
max and τ∗ always remain

constant with time, which is like the behavior of a purely elastic material. A reason can be
given to elucidate this phenomenon. Although the pipe is made up of viscoelastic materials,
the bending moment of any cross-section in the pipe remains unchanged as time goes
on. Furthermore, based on the findings of the studies of laminated structures [44,45], the
proportion of the modulus between neighboring layers determines the stress distribution
with a constant cross-section bending moment, but the deformation is dependent on the
absolute value of the modulus. In pattern 2,

∣∣σi
θ

∣∣
max decreases with t but

∣∣τi
rθ

∣∣
max and τ∗

increases with t. This is because the moduli of the viscoelastic facial layers degenerate
with t, and

∣∣σi
θ

∣∣
max and

∣∣τi
rθ

∣∣
max occur in the facial and core layers, respectively. Compared

with pattern 5, when the elastic interlayer is exited,
∣∣σi

θ

∣∣
max shows little change, while the

values of
∣∣τi

rθ

∣∣
max, τ∗ and

∣∣ui
r
∣∣
max decrease. The change rules for the stresses in pattern 3

are exactly in contrast to those of pattern 2. The values of
∣∣ui

r
∣∣
max in patterns 1–3 and 5 all

increase with t, and the rates of increase gradually tend to become constant. In pattern 4,∣∣σi
θ

∣∣
max,

∣∣τi
rθ

∣∣
max, τ∗ and

∣∣ui
r
∣∣
max all increase with time, the values are always constant, and

the long-term values that represent the adjacent layers in the pipe are almost not bonded.
This study can be referenced for the design of composite pipes taking into account their
long-term performance.
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3.3. Effect of Load Uniformity Degree

Here, the effects of the degree of load uniformity on the stress and displacement
distribution are explored. For this, the pipe is under the sinusoidal load, qsin(θ), and
k is variable. The special case k = 0 means that the load is uniform, and the degree of
load uniformity increases with k. The moduli in the layers have the same value as those
in Section 3.1. The r-direction distribution of stresses and displacements through the
circumferential direction are shown in Figure 8.
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As shown in Figure 8, for the uniform case of k = 0, σi
θ , σi

r, τi
rθ , and ui

r have very small
values, while these values increase remarkably as k increases. Along the circumference
of the pipe, the changes in stresses and displacements follow the shapes of trigonometric
functions, and the location of each maximum has a difference of π/2 from the location of
its respective minimum. The maxima of σi

θ , σi
r, τi

rθ , and ui
r happen at θ = 0, π/2, 3π/4, and

0, respectively. Through the thickness direction of the pipe, σi
θ shows a zig-zag distribution,

σi
r and τi

rθ exhibit multi-peak distributions, and ui
r stays constant. In practical engineering,

for composite pipes under long duration loads, the effect of the degree of load uniformity
cannot be ignored, and a reasonable structure design is necessary for composite pipes
under different environmental conditions.

3.4. Optimization of Stresses and Displacements

When the pipe is under the sinusoidal load qsin(θ) with k = 0.4, h1 = h3 and E1(t) = E3(t),
in which the moduli of all viscoelastic layers remain proportional. Here, an optimization
of the stresses and displacements in the pipes achieved by adjusting the modulus and the
thickness of each layer is presented in Figure 9. The optimization is based on the premise
that the average modulus, E(t), calculated by ∑ Ei(t)hi/H, is equal to Ec(t) in Section 3.1.
The modulus in the core layer is defined by λcE, and, therefore, that in the facial layer can
by calculated by λ f E = 0.5E(H − λch2)/h1. Figure 9 shows the variations of σ

f
θ , τc, and u f

r

with respect to λc and h2/H. It can be seen from Figure 9 that
∣∣∣σ f

θ

∣∣∣ increases with h2/H
and decreases with λc. On the contrary, |τc| decreases with h2/H but increases with λc;∣∣∣u f

r

∣∣∣ decreases with h2/H, and, as λc increases, it decreases initially and then increases. The

minima of
∣∣∣σ f

θ

∣∣∣, |τc|, and
∣∣∣u f

r

∣∣∣ happen at (h2/H, λc) = (0.49, 0.1), (0.1, 0.9), and (0.28, 0.9),
respectively. The above findings provide a reference for designs optimizing the thickness
of each layer and the modulus in viscoelastic pipes.
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4. Conclusions

Analytical solutions for viscoelastic composite pipes subjected to sustained compres-
sion are developed in this paper so as to explore the radial compression creep. On the basis
of the present study, it can be concluded that:

1. The present solution and the FE solution have good consistency, while the present
solution has a higher computational efficiency, because, in the FE solution, the cal-
culating data in a time step depended on the previous outcome involving the time
discretization method.

2. The material configuration of neighboring viscoelastic laminar layers has an obvious
effect on the long-term stress distribution in the pipe. If the modulus degradation
of the neighboring laminar layers is proportional, the stresses remain unchanged as
time goes on, as in a purely elastic material. If the modulus degradation is out of
proportion, the stresses transfer step by step to the position where the modulus is
relatively large.

3. The load parameter has a great influence on the distribution of stresses and displace-
ments in viscoelastic composite pipes. For a uniform load, the pipe has small stresses
and displacements, while these values in the non-uniform case increase remarkably
as the scope of the load non-uniformity increase. For a sinusoidal load, the positions
of the maximum stresses and displacements have a difference of π/2 from those of
their minima.

4. The modulus and thickness of each layer has a significant influence on the stresses
and displacements, which can be optimized by adjusting the modulus and thickness
of each layer in the viscoelastic composite pipe.
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Appendix A

The details of Ψi
0(s), Φi

0(s), Ψi
mn(s) and Φi

mn(s) in Equation (17) are as follows
(Equation (A1)):

Ψi
0(s) =

ρ1
i − ρ2

i

(di
1)

2

di
1

1
di

1

, Φi
0(s) =

ρ1
i − ρ2

i

(di
0)

2

di
0

1
di

0

,

Ψi
mn(s)(1, 1) = (−1)nβ1

im(d
i
1)

m
, Ψi

mn(s)(1, 2) = (−1)nβ2
im(d

i
1)
−m−2
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mn(s)(1, 3) = (−1)nβ3
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im(d
i
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i
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i
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,
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Ψi
mn(s)(4, 1) = ζ1

im(d
i
1)

m
+ [(

1
∆h

+
1
di

1
)(di

1)
m+1 −

mα1
im

di
1

(di
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m+1
]sĜ∗(s),
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di
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Φi
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im(d
i
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m
, Φi

mn(s)(1, 2) = (−1)nβ2
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i
0)
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,
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,
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,
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im(d
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in which

Ê∗(s) =
Ei

1

s + t/θi
1
+

Ei
2

s + t/θi
2

, Ĝ∗(s) = 2(1 + µ∗)Ê∗(s). (A1)

The details of Ωin
0 , Ωout

0 , Ωin
mn and Ωout

mn in Equation (18) are as follows (Equation (A2)):

Ωin
0 =

[
ρ1

i − ρ2
i

(Rin)
−2

0 0

]
, Ωout

0 =

[
0 0
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]
,
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,

Ωout
mn =
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0 0 0 0
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im(Rout)
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. (A2)
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