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Abstract: Asset-intensive industries, such as the construction industry, have experienced major ca-

tastrophes that have led to significant operational disruptions. Physical asset failure has been the 

primary cause of these disruptions. Therefore, implementing proper asset management plans, in-

cluding continuity plans, is crucial for the business continuity of companies active in these indus-

tries. However, companies often face severe resource limitations when implementing these plans 

for all of their physical assets. Therefore, those critical physical assets that are vital for providing 

their key products should be identified. Moreover, sustainability and resilience are inseparable parts 

of organizations’ strategies, including strategic asset management plans. Therefore, any proposed 

ranking methodology for physical asset prioritization should encompass sustainability and resili-

ence measures to ensure its practicality. This paper proposes a novel framework for physical asset 

criticality analysis based on the so-called business impact analysis to ensure the continuity of 

providing products/services through the continuity of physical assets. A hybrid fuzzy BWM-TOP-

SIS method is first applied to identify the key products. Then, a hybrid fuzzy DEMATEL-Bayesian 

network is applied based on proper sustainability and resilience factors to determine the critical 

physical assets, while interdependencies among these factors are well captured. The normalized 

expected asset criticality index is defined to guide managers in taking appropriate directions while 

developing asset management plans. A case study of a gas company is provided to show the ap-

plicability of the proposed decision model. The data needed for each step of the framework is gath-

ered through experts’ judgments, historical data available on the sites, or quantitative risk assess-

ment scenarios. 

Keywords: buildings; physical asset management; criticality analysis; critical infrastructure;  

sustainability; business continuity management; business impact analysis; Bayesian network;  

multi-attribute decision making; operation research 

 

1. Introduction 

Asset-intensive industries, such as the construction industry, have been subjected to 

accidents resulting in significant catastrophes that have negatively affected their goals [1] 

[2]. These accidents may threaten the companies’ continuity due to the disruption of their 

physical assets, a key resource for their operations. Failure in physical assets may lead to 

serious safety and environmental consequences as well as financial loss [3]. Thus, ensur-

ing the continuity of physical assets can enhance the competitive advantage of asset-in-

tensive companies. For this reason, implementing well-established continuity and contin-

gency plans can strengthen companies’ resilience against disruptions [4]. 

Organizations typically face limited resources for implementing contingency plans 

for all of their physical assets. Thus, prioritizing the physical assets for determining critical 

ones is inevitable. Physical assets can be critical in terms of safety, environment, quality, 
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production, operation, or maintenance [5]. Therefore, sustainability, which covers envi-

ronmental, social, and economic issues and helps organizations meet their demands with-

out negative effects on future generations’ needs, should be highlighted while physical 

assets are prioritized. According to ISO 55000, critical physical assets have a significant 

impact on organizational goals and are vital for service providers to serve essential cus-

tomers [6]. Accordingly, identifying the impacts of disruptions on the physical assets’ op-

erations and the provision of key products/services is crucial in identifying the critical 

physical assets. 

Business impact analysis (BIA) is an efficient tool to determine critical business pro-

cesses and the impacts of disruptions on them and companies’ goals [7]. BIA provides a 

list of key products and critical functions [8]. In asset-intensive organizations, such as con-

struction companies, the continuity of key services depends on their critical physical as-

sets [9–11]. Therefore, the identification of critical functions via the BIA process can be 

replaced by identifying critical physical assets. In this way, conducting a BIA can assist 

organizations in identifying their critical physical assets and prioritizing their business 

continuity plans (BCPs) to ensure the continuity of their critical functions. Moreover, the 

resilience of physical assets that contribute to key products/services is of great importance 

since they are prone to a wide range of disruptive events that can hinder the provision of 

key products/services. Resilience is the ability of a system to withstand a major disruption 

and recover to normal operations considering time, cost, and risks [9]. Accordingly, resil-

ience factors should be considered when the criticality of the physical asset is studied. 

Furthermore, resilience and sustainability are interdependent and sometimes contradic-

tory concepts [12,13]. To comprehend this inter-relationship, a sound strategy is necessary 

to capture such relations and make the tradeoff between these two concepts. 

Considering the above-discussed points, the main research questions are as follows: 

• How to consider business continuity aspects when determining asset criticality? 

• How can asset criticality analysis reflect tradeoffs between resilience and sustain-

ability metrics? 

Accordingly, a quantitative and structured BIA-based framework is proposed in this 

paper for physical asset criticality analysis to assist asset-intensive companies in efficiently 

allocating their limited resources to physical assets’ continuity plans. The framework is 

based upon the BIA process, in which several sustainability and resilience factors that are 

suitable for the physical asset criticality analysis are assessed through a mixed multi-at-

tribute decision-making (MADM) approach. For this, the DEMATEL method is first ap-

plied to determine the interdependencies among sustainability and resilience factors. 

Then, a Bayesian Network (BN) is constructed to determine the criticality degree of each 

asset. Finally, the asset criticality index is calculated using the weighted sum operator, for 

which the weights of factors are estimated through the fuzzy best-worst method (FBWM). 

The rest of this paper is organized as follows: Section two reviews the related litera-

ture. Section three elaborates on our proposed framework for physical asset criticality 

analysis in detail. In the fourth section, our framework is implemented on an actual case 

study of a gas plant, including its infrastructure and buildings. Section five provides sev-

eral managerial insights derived from the case study. Finally, the concluding remarks and 

directions for further research are presented in Section six. 

2. Literature Review 

The continuity of asset-intensive organizations largely depends on the continuity of 

their physical assets [10,11]. Therefore, deploying appropriate plans for physical assets 

and incorporating continuity and contingency plans are inevitable in these industries. The 

literature review shows that there is just one research study in the area of physical asset 

risk management. [14] Presented is a quantitative framework for physical asset risk man-

agement by which an optimum portfolio of risk mitigation plans and business continuity 

plans are used for critical physical assets based on the associated risk network structure 
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that is derived from the physical asset life cycle. However, they did not specify how criti-

cal physical assets would be determined. As a complementary piece to that paper, this 

paper provides a quantitative framework for identifying those critical physical assets for 

which business continuity and risk mitigation plans should be implemented. For this, the 

hierarchy of physical assets should be determined based on the degree of impact on busi-

ness continuity. Such prioritization should consider sustainability and resilience factors 

to increase the quality of the workplace regarding environmental, social, and economic 

considerations while improving responses to extreme events [15]. The foundation of the 

proposed framework involves two different streams, including “physical asset criticality 

analysis” and “business impact analysis”, whose essential contributions are summarized 

below. In addition, this section discusses the sustainability and resilience assessment as 

well as the application of the Bayesian network in it. 

2.1. Physical Asset Criticality Analysis 

Physical asset prioritization is mainly addressed in the literature as criticality analy-

sis. Considering the lifecycle of physical assets, one can carry out criticality analysis in two 

different phases, namely the design phase and the operations and maintenance phase. 

Failure modes are identified and prioritized in the design phase to identify the critical 

areas that may negatively affect the asset availability target [16]. However, in the opera-

tions and maintenance phase, which is addressed in this paper, the criticality analysis 

aims to prioritize the physical assets in order to properly allocate the limited available 

resources for business continuity plans (BCPs). There are various qualitative and quanti-

tative asset prioritization methods in the literature [17]. In most cases, quantitative meth-

ods involve risk assessment techniques to evaluate physical assets’ failure modes while 

considering some influential factors. [18] presented a risk assessment method in which 

the likelihood of failure is estimated based on the mean time between failures and lost 

event criteria. They categorized failure’s impacts into production, safety, and maintenance 

cost impacts. They also applied the multi-attribute decision-making (MADM) method to 

rank physical assets. To analyze asset criticality, [19], classified failure occurrences into 

four categories: unacceptable, repetitive, acceptable, and possible. The severity of the 

functional loss is then predicted based on safety-related parameters, environmental care, 

service quality, availability, and maintenance cost. They utilized AHP to estimate the rel-

ative importance of each criterion and built a criticality matrix. [20] performed a failure 

mode, effect, and criticality analysis (FMECA) on an offshore and onshore platform and 

then used machine learning approaches to establish failure cause-and-effect relationships. 

In order to determine the criticality of assets in a gas refinery, [21] suggested a fuzzy in-

ference method. The proposed criticality method considers elements, such as production 

capacity and quality, employee safety, availability, and maintenance costs. [22] also ap-

plied fuzzy set theory to analyze asset criticality for the cyber-physical system. [23] deter-

mined the criticality score of sewer pipeline assets by considering the consequences of 

failures in the assets. They highlighted deterioration pace as a major influential factor for 

criticality analysis. [24] applied a graph theory approach to determine critical assets in 

natural gas and electricity infrastructure using a vulnerability index. Criticality analysis 

has been a matter of concern in the food industry as well. [25] considered quality, availa-

bility, safety, environment, cost, and technology complexity as essential factors for asset 

criticality analysis in the food industry. 

Some scholars have addressed the continuity of service provision as the most influ-

ential factor for asset criticality analysis. [26] applied a function-based scoring system at 

the asset level that took into account the specific impact of each asset on the primary func-

tion of the entire system. The method also suggests health and safety measures as essential 

factors for asset criticality. 
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2.2. Business Impact Aanalysis 

The BIA process is the primary step in implementing the business continuity man-

agement system (BCMS), since the BCM strategies are determined and implemented 

based on the BIA results [27]. Accordingly, various procedural steps or frameworks for 

conducting a suitable BIA have been proposed in the literature [8,28], presenting a four-

step BIA that includes identifying key functions, determining business recovery and time 

recovery requirements, exploring external and internal dependencies of critical functions, 

and determining the impact of disruption. [29] elaborated on different sources of data 

required for BIA and did data analysis for identifying critical processes and required re-

sources of recovery strategies. They finally explained the structure of the BIA report. [30] 

reviewed different BIA implementation approaches, including fast-tracked and standard 

approaches, and presented the challenges and pitfalls of BIA projects. 

Although different qualitative BIA frameworks are introduced in the literature, most 

of them follow quite similar methods [8]. In general, the BIA process can be summarized 

in four main steps: (1) identifying the required activities for products/service provision, 

(2) assuming the impacts of possible disruptions on these activities, (3) setting recovery 

requirements (i.e., business continuity measures), such as the available timeframe for re-

sumption, and (4) resources dependency identification [6]. There are few quantitative BIA 

frameworks in the literature. [8]’s proposed framework includes three main steps. First, 

using a hybrid fuzzy DEMATEL-ANP method, the key products are identified. Then, the 

critical functions are determined through a functional breakdown structure mechanism 

along with a criticality analysis based on suitable criteria (factors and subfactors). Finally, 

continuity parameters are determined for critical functions in line with the organization’s 

risk appetite. 

2.3. Sustainability and Resilience Assessment 

Sustainability and resilience are inter-related and contradictory, necessitating 

tradeoffs during the decision-making process [13]. For example, a lean approach to devel-

oping processes that reduce consumption and minimize environmental impacts is used 

under the sustainability viewpoint, whereas redundancy and flexibility measures are em-

ployed under the resilience concept to boost the capacity to cope with risks and threats 

[12]. On a broader scope, the necessity of such integration has resulted in the new inte-

grated managerial paradigm called LARG (including lean, agile, resilience, and green di-

mensions) in the supply chain management area [31]. Reference [32] presented a literature 

review of different frameworks considering sustainability and resilience simultaneously. 

They suggested that these frameworks either consider the hierarchal relation between re-

silience and sustainability or take them as separate concepts with complementing or com-

peting objectives. 

In the structure and infrastructure domain, resilience and sustainability have been 

widely studied jointly. Reference [33] considered quality of life, macroeconomics, human 

development, construction, and well-being factors to analyze sustainable construction in-

dustries in the UK and Norway. They applied complex proportional assessment and de-

gree of project utility and investment value assessment (INVAR) to determine to what 

extent the country has fulfilled the sustainable construction requirements. Considering 

the sustainability assessment of projects in the structure and infrastructure domain. Ref-

erence [34] applied the SAW method to assess the sustainability of residential projects in 

Baltic states, considering different indicators for sustainability dimensions. Reference [35] 

applied hybrid multi-criteria decision attribute methods, including DEMATE, Delphi 

techniques, and ANP, to identify and rank barriers for green construction projects. Con-

sidering infrastructure projects, Reference [36] proposed a sustainable decision support 

system to predict and optimize residual cyanide to increase the resilience of the water 

treatment plant in the design phase. For this, they applied mathematical computations to 

find the best regression model and implemented a genetic algorithm to optimize the 
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model. Reference [37] compared resilience and sustainability in terms of definition, target, 

quantification, and primary calculation methods. They stated that sustainability is quan-

tified based on different quantitative and qualitative indicators, while resilience is quan-

tified based on the resilience index, which is a function of time and the area underneath 

the recovery path. The paper suggests a risk theory paradigm (combination of probabili-

ties and consequences) to analyze the sustainability and resilience of infrastructures. Ref-

erence [13] applied the DEMATEL approach to determine interdependencies among sus-

tainability and resilience factors to structure a framework for the evaluation of buildings 

with regard to environmental impacts and persistence to environmental shocks and dis-

turbances. Reference [38] conducted a literature review to gather various sustainability 

and resilience factors in the building energy domain. They also discerned indicators that 

are suitable for optimization problems. Reference [39] also discovered the sustainability 

and resilience of infrastructures. 

Similar to the structure/infrastructure sector, scholars have widely recognized sus-

tainable-resilient supply chains. For example, [40] proposed a multi-objective mixed inte-

ger linear programming model for sustainable supply chain network design, considering 

energy consumption and the number of created job opportunities as objectives of such a 

design. They have studied three choices, including remanufacturing, recycling, and dis-

posing of the returned items. Reference [41] presented a single optimization model to an-

alyze the dynamic sustainability of a supply chain, which can help make a tradeoff be-

tween sustainability and resilience. Reference [42] studied tradeoffs between sustainabil-

ity and resilience in a supply chain. The author considered different contradictory objec-

tives at the strategic level and assessed stakeholders’ choices regarding sustainability and 

resilience with the gray theory. Reference [43] proposed a mixed-integer linear program-

ming problem to minimize food supply chain cost considering resilience and sustainabil-

ity strategies. Reference [44] conducted a literature survey on different strategies for sup-

ply chain disruption, with a special focus on the COVID-19 pandemic. They revealed that 

developing methods to meet sustainability and resilience objectives simultaneously could 

be a sound but challenging strategy to cope with supply chain disruptions. 

The literature review indicates that applying the Bayesian network to analyze sus-

tainability and resilience factors jointly is scarce, while addressing either of the concepts 

through the Bayesian network has been widely studied in the literature. Reference [45] 

applied the Bayesian network model to evaluate resilience in urban transportation sys-

tems. They established their models based on three hierarchical layers: function, quality, 

and factor. Reference [46] proposed a resilience assessment process that included identi-

fying threats, designing resilience capacity, quantifying and assessing resilience, analyz-

ing results, and making recommendations for resilience improvement. They have intro-

duced different contributing factors for each resilience capacity and implemented a Bayes-

ian network to assess the resilience of a deep-water information system. Reference [47] 

quantified the resilience capacity within the context of supplier selection using the Bayes-

ian network. They structured the model with variables, including Boolean, NoisyOR, con-

tinuous, and discrete variables. Refs. [48,49] have also studied the application of the Bayes-

ian network for resilience quantification and assessment in infrastructure, power supply 

and control systems, transportation systems, and offshore power facilities, respectively. 

Similar to resilience assessment, the Bayesian network has been applied to analyze 

sustainability in different sectors. Reference [50] introduced several measures for four sus-

tainability dimensions, namely, social, environmental, economic, and institutional dimen-

sions for a port system. Then, a Bayesian network was constructed to analyze the relation-

ships between measures. Reference [51] proposed a methodology for the social sustaina-

bility of infrastructure projects in which a decision-making model consisting of variables 

and their relations is first developed. The Bayesian reasoning model then assesses alter-

natives based on social sustainability variables, and the optimal alternatives are deter-

mined for an infrastructure project. Another study [52] applied a Bayesian network to 

assess environmental and socioeconomic factors in catchment modeling. They analyzed 
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different scenarios to determine cost-effective management actions to improve river water 

quality. Reference [53] studied the criteria and subcriteria of sustainable supply chains. 

They introduced an aggregate supply chain performance indicator whose probability is 

calculated based on the sustainability criteria using the Bayesian network. 

2.4. Literature Gap and Our Contributions 

In order to have a structured gap analysis and to identify a number of future research 

paths in the area of physical asset criticality analysis, Table 1 provides a special focus on 

a number of relevant articles from the literature. 

Table 1. A summary of the reviewed articles and their focus. 

 Evaluation Criteria 

Reference 

Articles 

Quantitative 

Approach 

Sustainability 

Metrics Are 

Considered 

Resilience 

Metrics Are 

Considered 

Business Continuity 

Orientation 
Main Ranking Method 

[18] ◐ ◐ ○ ○ MADM 

[19] ◐ ⏺ ◐ ○ AHP 

[20] ⏺ ○ ○ ○ FMECA 

[21] ◐ ◐ ○ ○ Fuzzy inference system 

[22] ◐ ◐ ○ ○ Fuzzy inference system 

[23] ◐ ○ ◐ ○ - 

[24] ⏺ ○ ◐ ○ graph theory 

[25] ◐ ◐ ◐ ○ - 

[26] ○ ◐ ○ ◐ Function-based scoring 

[13] ○ ⏺ ⏺ ○ - 

[39] ○ ⏺ ⏺ ○ - 

Our Paper ⏺ ⏺ ⏺ ⏺ 
Mixed DEMATEL-Bayesian Net-

work 

⏺: complete focus ◐: Partially Covered ○: Not Covered. 

According to the discussion above, physical asset criticality analysis in asset-inten-

sive companies has been mainly addressed through risk assessment methods while con-

sidering safety, environmental, or financial impacts. However, the business impact of 

physical assets’ disruption, particularly resilience factors, has not been systematically 

studied in the literature, despite the high dependency of these companies’ operations on 

their physical assets. The primary tool for identifying the business impacts of disruptions 

is BIA, which is one of the main steps for implementing business continuity management 

systems. However, the lack of a structured but customized quantitative BIA for physical 

asset management is apparent in the literature. Moreover, criticality analysis has been 

mainly conducted through risk-based maintenance or risk-based inspection [54], applying 

failure modes and effect analysis tools [55], which cannot systematically capture the inter-

dependencies among different criteria, while there are extensive relationships among sus-

tainability and resilience factors. 

Accordingly, the main contributions of this study are as follows: 

 Proposing a new BIA-based physical asset criticality analysis framework that consid-

ers sustainability and resilience factors for asset-intensive companies will provide top 

managers with valuable information for deciding on their physical assets’ contin-

gency and continuity plans. 

 The relationship between business continuity management and asset management is 

addressed. 

 Proposing a probabilistic graphical model by combining fuzzy DEMATEL and the 

Bayesian network approaches to assess physical asset criticality. 
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 Introducing an aggregate asset criticality index by applying the best-worst method 

and considering environmental, social, economic, and resilience factors will help 

managers prioritize assets. 

 Providing a case study in a gas plant to show the applicability of the proposed frame-

work. 

3. Proposed BIA-Based Mixed Sustainability-Resilience Framework for Physical Asset 

Criticality Analysis 

Ensuring the continuity of physical assets in asset-intensive organizations, such as 

gas companies, is crucial for their consistent and sustainable operations. For this reason, 

these companies usually implement various physical asset plans that include continuity 

and contingency plans. However, often there are not enough resources to make use of 

strict plans for all the physical assets. Accordingly, criticality analysis should be carried 

out to provide reliable information for asset managers to prioritize physical assets and 

efficiently allocate their limited available resources such that the sustainability and resili-

ence of the company are ensured. 

This paper focuses on the physical asset criticality analysis under a quantitative BIA 

framework, considering sustainability and resilience factors. The framework includes 

three main stages: (1) determining the key products, (2) identifying the critical physical 

assets, and (3) analysis of the results to find useful clues for the improvement of physical 

assets’ conditions. To our knowledge, this is the first framework that integrates BIA with 

the physical asset management discipline to identify the critical physical assets, consider-

ing the continuity of key products’ provision. Furthermore, the framework benefits from 

a mixture of MADM techniques to propose an asset criticality index considering sustain-

ability and resilience factors and their relationships, which is a current gap in the litera-

ture. Figure 1 depicts the proposed framework for the physical assets’ criticality analysis, 

whose stages are elaborated hereafter in this section. 
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Figure 1. Proposed framework for the BIA-based physical asset criticality analysis. 
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3.1. Determination of Key Products 

Due to the severe limitations in available resources in the post-disruption situation, 

organizations cannot recover all the disrupted processes and their related physical assets. 

Hence, it is vital to identify the key products and their associated physical assets to prior-

itize recovery activities at the post-disruption stage. In this manner, different products of 

the company should be prioritized according to suitable criteria. These criteria can be de-

rived from those presented in [8] and modified by the experts in the company. 

This study applies a hybrid multi-criteria decision analysis (MCDA) tool to prioritize 

an organization’s products. Several MCDA techniques have been presented in the litera-

ture, most of which are time-consuming and require numerous pairwise comparisons [56]. 

To overcome this problem, the best-worst method (BWM) was developed by [57]. More-

over, BWM has shown more consistency compared to other pairwise comparison-based 

methods, such as AHP [57]. However, the original BWM has some shortcomings as it does 

not consider the uncertainty associated with human judgment about pairwise compari-

sons [58]. In this regard, a fuzzy BWM was applied to determine the importance of the 

identified criteria. For this reason, the fuzzy reference comparisons for the best (most im-

portant) and the worst (least important) criteria are made using appropriate linguistic 

terms. Then, the obtained fuzzy preferences are transformed into triangular fuzzy num-

bers (TFNs) for further analysis. Finally, the optimum fuzzy weights of the criteria are 

calculated through a linear programming model [59]. Fuzzy BWM has been applied in 

different contexts (see, for instance, [58,59]). We incorporate the calculated weights into a 

fuzzy TOPSIS methodology to rank the company’s products. Such a combination of fuzzy 

BWM and fuzzy TOPSIS has already been used by [60]. Due to limited space, more details 

about the hybrid fuzzy BWM-TOPSIS methodology are provided in the online Supple-

mentary Materials. 

3.2. Identification of Critical Physical Assets 

When the key products are determined, the critical physical assets required to pro-

duce the key products should be identified. In this regard, there are suitable tools in the 

literature. For instance, Reference [8] applied a relational work breakdown structure to 

identify various functions related to key products’ provision. This tool can also be applied 

to identify all the physical assets related to provisions of key products. In the process in-

dustry, experts can refer to the associated block diagrams as well as piping and instru-

mentation diagrams (P and IDs) to ensure that all the physical assets for delivering each 

key product are considered. 

The company may not have enough resources to recover all the disrupted physical 

assets at the post-disruption stage. Therefore, physical assets should be prioritized to iden-

tify the critical ones. For this, different factors influencing physical asset criticality should 

be first determined, and then an appropriate method should be applied to prioritize phys-

ical assets regarding influential factors. In this study, a hybrid fuzzy DEMATEL-Bayesian 

network is proposed to assess each physical asset. Physical assets are then prioritized 

based on their criticality index. For this, fuzzy DEMATEL is first applied to map the in-

terdependencies among sustainability and resilience factors. The Bayesian network is then 

structured to assess the criticality of each physical asset regarding the factors. Finally, the 

best-worst method is applied to determine the weights of each factor, and then the asset 

criticality index is calculated. In the following, we elaborate on this step. 

3.2.1. Sustainability and Resilience Factors 

As mentioned earlier, sustainability and resilience are two critical concepts for phys-

ical asset criticality analysis. For this reason, it is crucial to determine the appropriate cri-

teria for each concept. 

 Sustainability 
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The World Commission, [61], describes sustainability in environment and develop-

ment as “development that meets current demands without compromising future gener-

ations’ ability to meet their own needs”. As a result, the triple-bottom-line (TBL) dimen-

sions, which include environmental, social, and economic concerns, could be used to 

achieve sustainability [62]. Environmental and societal concerns are mainly addressed in 

industrial asset operations as health, safety, and environmental matters. In order to eval-

uate the level of assets’ sustainability, relevant indicators should be discerned based on 

the literature review and customized according to expertise judgments. Relevant indica-

tors derived from the literature are shown in Table 2. The list is not exhaustive, but it 

provides practical and widely used measures of physical asset sustainability. 

Table 2. Sustainability indicators for physical asset criticality analysis. 

Sustainability Dimension Indicator References 

Environmental 

Resource Depletion [63] 

Sustainability-sourced Material [13] 

Energy Consumption/Energy Efficiency [13,38,63,64] 

Global warming [63] 

Air pollution [13,64–68] 

Water pollution [64,66]  

Soil Pollution [66,68] 

Waste Management [13,67] 

Economic 

Lifecycle Impact Reduction/adaptive reuse [13,67] 

Physical asset replacement cost [69] 

Value of Asset [70]  

Maintenance Cost [66]  

Social 

Public Safety [64,70,71]  

Safety of operational and construction staff [68] 

Security [71] 

 Resilience: 

ISO 22300 (2021) defines resilience as the “ability to absorb and adapt in a changing 

environment”. Reference [72] has also defined resilience as the “ability of a system to with-

stand a major disruption within acceptable degradation parameters and recover in a rea-

sonable amount of time and reasonable costs and risks”. Resilience capacity in the litera-

ture has been categorized into three types: absorptive capacity, adaptive capacity, and 

restoration capacity [73]. 

Absorptive capacity refers to the ability of the physical asset to absorb the disruptive 

event. In other words, absorptive capacity contributes to Physical Asset Functionality Loss 

(PAFL), the percentage loss to the normal service level of the physical asset immediately 

following a disruptive event. 

Adaptive capacity represents the ability of physical assets to avoid discontinuity after 

a disruption. It specifies the period following a disruptive event during which the physical 

asset’s service level is restored to a predefined physical asset recovery point (PARP), 

which is referred to as the physical asset recovery time (PART). Post-disaster plans should 

be developed to improve the adaptive capacity of physical assets. 

Restorative capacity refers to the capability of a physical asset to be repaired or re-

stored to its pre-degraded state. Restorative and absorptive capacities determine the total 

time required to recover the physical asset to normal operation (TTR). 

Figure 2 represents the total loss of a physical asset (�) due to the occurrence of a 

particular disruptive event ( ������ ). Considering normal operating levels (NOL), 

������ can be calculated as follows: 
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������ = (���� × ����) + (1 − ����)(
��� − ����

2
) (1)

Therefore, physical asset resilience (PAR) over a suitably long-time interval �� can 

be calculated as follows: 

��� = 1 −
������

��
 (2)

Equations (1) and (2) have been inspired by [74], which proposed a function for pre-

dicted resilience. 

To evaluate the level of resilience of assets, relevant indicators that affect three types 

of resilience capacity should be determined based on the experts’ opinions. Then, the re-

silience level of the physical asset is calculated according to Equation (2). These resilience 

metrics can be expressed and quantified using various resilience indicators. It is crucial to 

employ indicators that reflect both operational and infrastructure resilience [75]. Existing 

safety and risk management, emergency preparedness, and business continuity practices 

can be used as the foundation for the development of resilience indicators. The majority 

of these initiatives can be found in the existing standards, guidelines, and reports [76]. 

Various scholars have studied the quantification of resilience capacities [77,78]. Reference 

[78] defined a resilience equation compromising failure and recovery as functions of time 

to quantify infrastructure resilience in multi-hazard situations. Reference [79] proposed 

different internal and external resilience policies as resilience indicators to form a holistic 

framework for building critical infrastructure resilience. Reference [77] discussed relevant 

metrics for resilience capacities in the transport infrastructure domain to assess the ro-

bustness and rapidity of recovery. These indicators are identified based on the knowledge 

gathered from various experts in the related field. 

 

Figure 2. Graphical view of physical assets’ resilience. PARP is the physical asset recovery point, 

and PART is the physical asset recovery time. 
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3.2.2. Identifying Interdependencies, among Sustainability and Resilience Factors 

Either directly or indirectly, sustainability and resilience factors are interdependent. 

For instance, adaptive capacity in the resilience curve would encourage decision-makers 

to establish more ready-to-use physical assets to increase redundancy, whereas the envi-

ronmental dimension of the sustainability paradigm (such as energy efficiency or air pol-

lution reduction) would bolster the lean approach. Consequently, it is essential to capture 

these relationships between indicators of sustainability and resilience. 

Various multi-criteria decision-making (MCDM) models have been applied to select 

and rank assessment criteria in different domains, including built and infrastructure en-

vironments. Reference [80], for example, applied AHP to select and prioritize the selected 

indicators for urban disaster resilience assessment and used TOPSIS to rank urban dis-

tricts. The complex proportional assessment method was developed by [81] and applied 

to green building assessment. Reference [82] also developed the Degree of Project Utility 

and Investment Value Assessments to define the investment value of projects and opti-

mize selected criteria. In this paper, the interdependencies between sustainability and re-

silience criteria are emphasized. Therefore, the combination of DEMATEL and the Bayes-

ian network is applied. 
DEMATEL is an identified, workable solution through which the network of inter-

dependencies can be structured [83]. The method is based on graph theory, which allows 

us to visually plan and solve problems by categorizing relevant factors into cause-and-

effect groups to confirm variable interdependence and facilitate the development of a di-

rected graph to reflect variable interrelationships [84]. Accordingly, it would be an appro-

priate method whose results could be a reliable input for Bayesian network analysis. Ref-

erence [85] applied DEMATEL to determine interdependencies among supplier selection 

criteria and structured their casual graph as a Bayesian network. However, experts’ opin-

ions about the relationships between risks are mostly uncertain and cannot be expressed 

by crisp values. Thus, in this paper, the fuzzy DEMATEL (FDEMATEL) approach is ap-

plied to structure interdependencies among sustainability and resilience factors while ac-

counting for the subjective judgments of experts [86]. Notably, FDEMATEL has already 

been applied in different contexts (e.g., [84,87,88]). More details about the FDEMATEL 

method applied in this paper have been provided in the online Supplemental Materials. 

3.2.3. Bayesian Network Structure for Physical Asset Criticality Analysis 

The Bayesian Network (BN) helps design stochastic relationships among a group of 

variables and performs probability updating and sequential learning [89]. BNs take un-

certainty and variability into account when predicting decisions in a complex system [90]. 

BNs also aid in analyzing conditional probabilities by updating prior information or 

events. This is critical in the asset management context, as the metrics are highly depend-

ent on one another and on external events. For instance, the criticality of a physical asset 

may change in response to planned maintenance activities or changes in the asset’s envi-

ronmental condition or manufacturing process. Accordingly, a network of causes and ef-

fects is structured by showing the variables as nodes and the casual relationships among 

them as edges that are associated with conditional probabilities. BN has been an effective 

tool for decision-making in different fields, such as risk analysis and reliability engineer-

ing in social, economic, or biological disciplines [48,91,92]. 

BN is based on Bayes’ theorem for calculating conditional probabilities, and its algo-

rithm follows Equations (3) to (5) [93]. 

�(�) = �(��, ��, … , ��) = � ��������(�)�

��∈�

 (3)

�(��) = � �(�)

������ ��

 (4)
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�(�|��) =
�(�, ��)

�(��)
=

�(��|�)�(�)

�(��)
 (5)

where Equation (3) is the joint probability, where ���(�) is the set of parents of the node 

��. Equation (4) calculates the marginal probability of �� and Equation (5) is the proba-

bilities of the occurrence of some nodes given evidence where �� is the evidence found 

and �(�|��) is the posterior probability and �(��) is the prior probability [94]. To quan-

tify the dependencies among variables, a node probability table (NPT) is usually given. In 

NPTs, information on the probability of a variable is provided according to the values of 

other variables. In this study, �� determines whether or not the sustainability and resili-

ence factors and sub-factors are realized/true. 

By applying FDEMATEL, an initial structure for physical asset criticality analysis is 

determined. For further analysis, we need to restructure the initial network into a BN, 

since it must be a directed acyclic graph [95], while there might be some cycles in the 

structure derived from the FDEMATEL method. Therefore, possible cycles in the initial 

network should be eliminated. For doing so, we apply those guides provided by [85]. In 

this regard, we consider the following reasons for eliminating some cycles: 

• The initial threshold for determining the causal relations may be defined imprecisely 

by experts. Therefore, the threshold can be modified to identify strong relationships 

between sustainability and resilience factors. 

• In conducting the FDEMATEL survey, experts may indicate the correlation among the 

factors rather than causal relationships. Therefore, experts should review the graph to 

identify such correlations and eliminate them. 

 The proposed general BN structure for physical asset criticality analysis is illustrated 

in Figure 3. The target variable is physical asset criticality analysis, which is condi-

tioned on economic, social, environmental, and resilience factors. According to Equa-

tions (1) and (2), the resilience factor is calculated based on physical asset functionality 

loss, physical asset recovery point, physical asset recovery time, and total time to re-

cover, which are conditioned on absorptive, adaptive, and restorative capacities. In 

addition, interdependencies may exist among sub-factors of different main factors, 

which are shown by the dotted line. The BN model may have different variable types: 

• Equation type or continuous variables: these variables capture uncertainty via a prob-

ability distribution. These variables may be functions of other related variables. 

• State Variables: uncertainty is captured based on a discrete probability distribution. 

• Deterministic or fixed variables: these variables have either constant values or values 

that are determined based on the states of other related variables (parent variables). 

Note that the parameters of the variables and their values would change regarding 

each physical asset. 
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Figure 3. General BN structure for physical asset criticality analysis. 

3.2.4. Asset Criticality Index 

Physical assets should be prioritized based on the physical asset criticality analysis 

conducted in the previous step. For this, an asset criticality index is proposed in this paper. 

As shown in the general BN structure, the criticality of the physical asset is conditioned 

on sustainability and resilience factors. Therefore, the asset criticality index is a probabil-

istic statement about whether a physical asset is critical, conditioned on economic, social, 

environmental, and resilience factors. Moreover, according to companies’ strategies, each 

factor may have a different importance level. To calculate the relative importance of fac-

tors, fuzzy BWM is applied. Finally, asset criticality analysis is calculated by the following 

equation: 

���� = � ��. ����(������� = ����)�

�

 (6)

where ���� denotes the asset criticality index for physical asset �, ��  is the defuzzified 

relative importance of factor �, which is derived from fuzzy BWM, and ����(������� =

����) states the probability that the physical asset � is������� − ��������  (for example 

economic-critical), where � covers all the economic, social, environmental, and resilience 

factors. This probability is derived from the BN structure. 

3.3. Analysis of the Results 

When choosing asset management plans, it is crucial to trigger factors that signifi-

cantly influence the criticality of assets. In this way, the condition of physical assets could 

be improved with limited available resources. For this, the expected asset criticality index 

(EACI) for each variable should be calculated. (�����) is defined as the asset criticality 

index if variable � is in critical condition. For instance, consider physical assets as critical 

if maintenance cost is higher than 16,000 USD. In this case, the maintenance cost is set to 

more than 16,000 USD, and the asset criticality index is calculated by running the BN net-

work. The result is equal to ��������������� ���� . The normalized expected asset criticality 

index is proposed as Equation (7) to prioritize variables. Factors with higher ����� 

should have priority over other factors in developing asset management plans. 
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������ =
�����

∑ ������
    ∀� ∈ �ℎ��� �������� ������������ �� ����������� (7)

4. Case Study 

In this section, the proposed BIA-based mixed sustainability and resilience frame-

work for physical asset criticality analysis is applied to a gas plant of a gas company (here-

after called the GP). The plant produces different products, including propane, butane, 

elemental sulfur, and condensate. There are different equipment in the plant, such as slug 

catchers, tanks and pumps, exchangers, furnaces, drums, etc. GP has planned to improve 

its physical asset management system by implementing proper physical asset continuity 

plans to ensure the continuity of the entire system. Sustainability and resilience factors are 

considered according to the physical asset management strategy and business strategies. 

Accordingly, our proposed framework would provide the top managers with valuable 

information about critical physical assets. Notably, the data needed for each step of the 

framework is gathered through experts’ judgments based on historical data available on 

the sites or quantitative risk assessment scenarios. 

4.1. Key Product Determination in GP 

As stated before, GP produces four products, including propane, butane, elemental 

sulfur, and condensate. Five criteria, including the loss of revenue (Ca), the degree of dam-

age to the company’s reputation (Cb), the importance of the product for the country ac-

cording to the country’s policies (Cc), the defection of customers (Cd), and the loss of in-

terested party’s supports (Ce) are first chosen from [8] considering industry requirements. 

Then, four top managers (i.e., the GP manager, sales manager, marketing manager, and 

financial manager) were asked to fill out the BWM questionnaire, indicating the most and 

least important criteria and comparing other criteria with them. The fuzzy weights of 

product prioritization criteria are calculated by solving the corresponding optimization 

model introduced in the fuzzy BWM [59]. The derived fuzzy weights are then incorpo-

rated into the fuzzy TOPSIS method to identify the products’ ranking vectors. The con-

densate with a closeness coefficient of 0.987 is the most important product of GP, which 

was selected as the key product for further analysis. The details of the calculations are 

provided in the online Supplementary Materials. 

4.2. Critical Physical Assets in GP 

The first step in this stage is to identify all the required equipment for condensate 

production. For this, the block diagrams and P and IDs related to condensate production 

are checked with experts from the process engineering, operations, and asset management 

departments of GP. As a result, eight pieces of equipment were identified. 

4.2.1. Sustainability and Resilience Factors for GP’s Physical Assets 

For the sake of criticality analysis, the relevant sustainability and resilience factors 

should be selected. For this, we held some group meetings with experts from GP and its 

parent company. Plant managers, asset managers, and health, safety, and environmental 

engineers from the GP and the parent company participated in these meetings. It is noted 

that factors derived from the literature (Table 2) and the company’s strategies are consid-

ered to determine suitable sustainability and resilience factors. Table 3 represents the sus-

tainability and resilience factors for GP’s physical asset criticality analysis. 
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Table 3. Sustainability and resilience factors for GP’s physical asset criticality analysis. 

Sustainability Dimension Criteria 

Environmental 

Air Pollution/ 

Water Pollution/ 

Soil Pollution 

Flaring from Storage Tanks 

Flaring From the unit 

Caustic Leakage 

Flaring from the Gas Plant 

Economic 

Maintenance Cost 

Equipment Costs 

Production Loss without BCPs 

Social 

Safety 

Pressure 

Failure in Emergency Response Equipment 

Leakage Possibility 

Types of fluid leaks 

Temperature 

Resilience Dimension criteria 

Absorptive Capacity 
Safety Relieve Valve 

Critical Alarms 

Adaptive Capacity Backup Asset 

Restorative Capacity 
Availability of Spare Parts 

Skilled Personal or Contractor to Repair 

4.2.2. Bayesian Network Structure for Physical Asset Criticality Analysis 

In this step, interdependencies among identified sustainability and resilience factors 

are determined based on the process explained in Section 3.2.2. To this end, the members 

of the asset management committee were asked to indicate to what extent they believe a 

criterion affects others. The initial relationship network among the identified factors was 

obtained based on their subjective judgments. The threshold value was set at 0.5 to deter-

mine the initial interdependency graph. Based on the initial graph, a cycle existed between 

“Skilled Personal or Contractor to Repair” and “Maintenance Cost”. According to the cal-

culated total relation matrix, the value of the dependency of skilled personnel or contrac-

tors on repair and maintenance cost is 0.5102, which is close to 0.5. Hence, the threshold 

value is modified to 0.52. Therefore, the cycle was eliminated. The final interdependency 

graph is a directed acyclic graph which is modelled as a Bayesian network. The Bayesian 

network structure is depicted in Figure 4, which is modeled by GeNIe [96]. 
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Figure 4. Bayesian network structure for GP’s physical asset criticality analysis. 

4.2.3. Modeling Sustainability and Resilience Criteria in Physical Asset Criticality Analy-

sis Bayesian Network 

The next step is to model each criterion and factor determined in the Bayesian net-

work. BN encompasses different types of variables, including equation type / continuous, 

state, and deterministic/fixed variables, which help quantify sustainability and resilience 

factors for asset criticality analysis. At this step, these variables and their parameters are 

elaborated for one of the critical physical assets derived from P and IDs and block dia-

grams (which is called PA1 hereafter). Note that variables for all physical assets are the 

same, while parameters are different. 

 Modeling sustainability factors: 

Sustainability consists of triple-bottom-line dimensions, including economic, social, 

and environmental factors. As depicted in Figure 4, the economic factor is conditioned on 

the maintenance cost, equipment cost, and production loss. Maintenance cost is defined 

with a truncated normal distribution (TNORM) whose parameters are determined based 

on the availability of skilled personnel or contractors to repair. Similarly, equipment cost 

is modeled with TNORM, whose parameters are defined according to the availability of 

spare parts. Failure in a physical asset may cause production loss in the key product, 

which is a major attribute for the economic factor in the criticality analysis. Maintenance 

and equipment costs are other influential criteria in the economic criticality of physical 

assets. These variables are explained in Table 4. 
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The social factor has five criteria, including failure in emergency response, leakage 

possibility, types of fluid, pressure, and temperature. Based on the hazard diamond intro-

duced in [97], the level of hazard for fluids can be calculated. Four measures, including 

flammability, instability, health, and specific hazard, were defined to assess the level of 

hazard for fluids. To calculate the level of hazard for fluids, the corresponding numbers 

for each measure are summed. Noteworthy, the degree of hazard of each measure is de-

termined by an arithmetic number between 0 (no hazard) and 4 (maximum hazard). 

Therefore, the fluids’ level of hazard would be a number between 0 (no hazard) and 16 

(maximum hazard). 

Pressure and temperature contributors are also categorized based on their quantity. 

Note that, the higher the temperature and the pressure are, the higher level of safety risks 

will exist. Categories for pressure and temperature are described in Table 5. These num-

bers are determined based on the experts’ judgments. NPTs for failure in emergency re-

sponse equipment, leakage possibility, and social criticality are presented in Table 6. 

Table 4. NPT of the variables describing the economic factor and economic criticality. 

Variable Name NPT Meaning 

Maintenance cost 

If (availability of skilled personnel or con-

tractor to repair =“True”, TruncNormal 

(15,000, 1000, 10,000), TruncNormal (25,000, 

4000, 13,000)) 

If there are skilled personnel or contractor available in 

the country, the maintenance cost would be TNORM 

(15,000, 1000, 10,000); otherwise its TNORM (25,000, 

4000, 13,000)   

Equipment cost 

If (availability of spare parts =“True”, Trun-

cNormal (5000, 250, 2000), TruncNormal 

(8000, 1000, 3000)) 

If there are spare parts available in the country, the 

equipment cost would be TNORM (5000, 250, 2000); 

otherwise its TNORM (8000, 1000, 3000)   

Production loss 
False:           0.9 The probability of production loss due to the failure in 

the physical asset is 0.1 True:           0.1 

Economic Critical-

ity 

If(Or(And(Maintenance cost >16,000,  

Equipment cost >7500), Production loss 

=“True”), True, False) 

The Physical asset is economically critical if mainte-

nance cost is higher than 16,000 and equipment cost is 

higher than 7500, or production loss would occur in 

case of failure  

To model environmental factors, air, water, and soil pollution are considered. Flaring 

is one of the significant contributors to air pollution in GP. Therefore, the amount of added 

flaring from storage tanks, units, and the whole plant due to failure in the physical assets 

should be calculated to model air pollution. For this, a random triangular distribution is 

considered. Table 7 represents NPTs for the criteria contributing to the environmental fac-

tor and environmental criticality. 

Table 5. Pressure and temperature categorization. 

Criteria Category Corresponding Number 

Pressure 

1–25 barg 1 

25–45 barg 3 

45–70 barg 5 

>70 barg 8 

Temperature 

1–39 °C 1 

40–69 °C 3 

70–100 °C 5 

>100 °C or <0 °C 8 
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Table 6. NPT of the variables describing safety factors and social criticality. 

Variable Name NPT Meaning 

failure in emergency re-

sponse equipment 
Weibull(2700, 2.8) 

failure in emergency response equipment is 

Weibull with a shape factor of 2.8 and characteristic 

life of 2700 h 

leakage possibility 

False:           0.9995 
The probability of leakage in the physical asset is 

0.0005. The amount is the average of leakage possi-

bility in different leakage scenarios defined in 

quantitative risk assessments conducted in GP 
True:            0.0005 

social criticality 

Safety = If(Or(fluid’s level of hazard + 

Pressure + Temperature > 20, And(leak-

age possibility = “True”, fluid’s level of 

hazard > 8), failure in emergency re-

sponse equipment <1500), 1, 0) 

The Physical asset is social-critical if the summation 

of the fluid’s level of hazard, Pressure, and Tem-

perature corresponding number is more than 20; or 

if leakage possibility states true, and the fluid’s 

level of hazard is more than 8, or if failure in emer-

gency response equipment occurs before 1500 h. 

Table 7. NPT of the variables describing environment criticality. 

Variable Name NPT Meaning 

flaring from storage tanksTriangular distribution (0, 2, 6) 

Flaring from storage tanks follows a triangular distribution 

with a minimum, mode, and maximum amount of 0, 2, and 

6 million cubic meters in a week 

flaring from unit Triangular distribution (0, 5, 10) 

Flaring from unit follows a triangular distribution with a 

minimum, mode, and maximum amount of 0, 5, and 10 mil-

lion cubic meters in a week 

flaring from the whole 

plant 
Triangular distribution (0, 15, 30) 

Flaring from the whole plant follows a triangular distribu-

tion with a minimum, mode, and maximum amount of 0, 

15, and 30 million cubic meters in a week 

Air pollution 

flaring from storage tanks+ flar-

ing from unit+ flaring from the 

whole plant 

Air pollution equals the sum of flaring from storage tanks, 

a unit, and a whole plant 

Caustic Leakage 

False:           0.9997 
The probability of caustic leakage in the physical asset is 

0.0003. The amount is the average of leakage possibility in 

different caustic leakage scenarios defined in quantitative 

risk assessments conducted in GP 
True:            0.0003 

Environment criticality 

If (Or (Air pollution >15, Water 

Pollution = “True”, Soil pollution 

= “True”), True, False)  

The Physical asset is environment critical if the amount of 

flaring (air pollution factor) is more than 15, or water or soil 

pollution occurs  

 Modeling resilience factors: 

To model the resilience factor, physical asset functionality loss, physical asset recov-

ery point, physical asset recovery time, and total time to recovery are calculated based on 

the absorptive, adaptive, and restorative resilience capacities. For this, the probabilities of 

relative criteria are determined based on historical data available in GP. Then, NPTs for 

absorptive, adaptive, and restorative capacities are described in Table 8, and NPTs for 

physical asset functionality loss, physical asset recovery point, physical asset recovery 

time, and total time to recovery are determined in Table 9. 
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Table 8. NPT of the variables describing resilience capacities. 

Variable Name NPT Meaning 

Failure in the Criti-

cal Alarm system 
Weibull (3900, 3.8) 

failure in a critical alarm system is Weibull with a shape factor 

of 3.8 and characteristic life of 3900 h 

Failure in the safety 

relief valve system 
Weibull (1700, 3.9) 

failure in the safety relief valve system is Weibull with a shape 

factor of 3.9 and characteristic life of 1700 h 

Absorptive capacity 

If (And (Safety_Relieve_Valve > 

1800, Critical_Alarms > 2500), 

True, False) 

The absorptive capacity of the physical asset will be in accepta-

ble condition if failure in the safety relief valve system does not 

occur sooner than 1800 h and failure in the critical alarm system 

does not occur sooner than 2500 h   

Availability of 

Backup Contractor 
Normal (0.9, 0.1) 

The backup contractor is available 90% of the time with a stand-

ard deviation of 10%  

Availability of 

Backup Asset 
Normal (0.85, 0.05) 

The backup contractor is available 85% of the time with a stand-

ard deviation of 5%  

Adaptive capacity 

If (Or (Availability of Backup As-

set > 0.85, Availability of Backup 

Contractor > 0.95), True, False) 

The adaptive capacity of the physical asset will be in acceptable 

condition if the Availability of the Backup Asset is more than 

85% of the time or the Availability of the Backup Contractor is 

more than 95% of the time  

Availability of spare 

parts 

False:           0.2 80% of the time, spare parts are available, while 20% of the time 

spare parts are not available in the plant True:            0.8 

availability of skilled 

personnel or con-

tractor to repair 

False:           0.1 90% of the time, skilled personnel or contractors are available, 

while 10% of the time there are no skilled personnel or contrac-

tors for maintenance or recovery activities True:            0.9 

Restorative capacity 

If (And (Skilled Personnel or Con-

tractor to Repair =“True”, Availa-

bility of spare parts =“True”), 

True, False) 

Conditional logic is applied to determine whether the restora-

tive capacity is in acceptable condition.  

Table 9. NPT of the variables describing resilience. 

Variable Name NPT Meaning 

Physical asset 

functionality loss 

If (Absorptive_Capacity = True, Triangu-

lar (0.05, 0.5, 0.8), Triangular (0.2, 0.5, 0.9))

Physical asset functionality loss following disruptive events 

is triangular distribution (0.05, 0.3, 0.8) if absorptive capac-

ity is in acceptable condition. Otherwise, the parameters are 

(0.2, 0.5, 0.9) 

Physical asset re-

covery point 

If (Adaptive_Capacity_Indicator = “True”, 

Triangular (0.6, 0.7, 0.8), Triangular (0.3, 

0.4, 0.5)) 

The physical asset recovery point follows triangular distri-

bution (0.6, 0.7, 0.8) if adaptive capacity is in acceptable con-

dition, otherwise, the parameters are (0.3, 0.4, 0.5) 

Physical asset re-

covery time 

If (Adaptive_Capacity_Indicator = “True”, 

Triangular (1, 15, 30), Triangular (30, 60, 

110)) 

Physical asset recovery time follows triangular distribution 

(1, 15, 30) if adaptive capacity is in acceptable condition. 

Otherwise, the parameters are (30, 60, 110) 

Total Time to Re-

covery 

If(Restorative_Capacity_Indicator = 

“True”,Triangular (5, 30, 110) + PART, Tri-

angular (30, 75, 360) + PART) 

Total time to recovery follows the sum of triangular distri-

bution of (5, 30, 110) and physical asset recovery time if the 

restorative capacity indicator is in n acceptable condition. 

Otherwise, the parameters for the triangular distribution 

are (30, 75, 360) 

The aggregate resilience variable is then calculated according to Equations (1) and (2) 

to determine resilience factors. For values lower than 0.98, the related physical asset is 

attributed as the resilient-critical one. 
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4.2.4. Calculating the Asset Criticality Index 

Based on the variables and parameters defined in the previous section, the Bayesian 

network is run, and the probability of it being economically, socially, environmentally, or 

resiliently critical is calculated. The results are shown in Figure 5. To calculate the asset 

criticality index, the weights of resilience, economic, social, and environmental criticality 

are first determined. Thus, we convened some group meetings with the plant manager, 

mother company manager, and asset manager to determine the most and least important 

factors. The experts were questioned about their fuzzy preferences for the most important 

factors over all other factors (Table 10) and their fuzzy preferences for all factors over the 

least important factors (Table 11). Then, the weights of the factors were calculated using 

the fuzzy BWM [59]. The results are shown in Table 12. 

Table 10. The linguistic terms describing the fuzzy preferences of the most important factor over all 

the factors. 

Factor Economic Critical Social Critical 
Environment 

Critical 
Resilience Critical 

The Most Important Factor 
Economic Criti-

cal 
Equally Important Fairly Important Very Important Weakly important 

Table 11. The linguistic terms describing the fuzzy preferences of factors over the least important 

factor. 

Factors 
The Least Important Factor 

Environment Critical 

Environment critical Equally Important 

Social critical Fairly Important 

Resilience critical Very Important 

Economic Critical Absolutely important 

Table 12. Fuzzy weights of factors. 

Fuzzy Weights of Factors Crisp Weighs 

���������� �������� = (�. ���, �. ���, �. ���) 0.367 

�������� �������� = (�. ���, �. ���, �. ���) 0.207 

������������� �������� = (�. ���, �. ���, �. ���) 0.104 

������������ �������� = (�. ���, �. ���, �. ���) 0.322 

The asset criticality index for PA1 is calculated by applying Equation (6). The results 

for all ten key physical assets for GP are shown in Figure 6. As the figure shows, PA4 and 

PA2 are the most critical physical assets in GP. Note that the higher the critical asset index 

is, the more its corresponding physical asset will need proper asset management plans. 

Therefore, PA2 and PA4 should be given priority when asset management plans are de-

veloped or implemented. 
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Figure 5. Results for economic, social, environmental, and resilient criticality of PA1 in GP. 

 

Figure 6. Asset criticality index for key physical assets in GP. PA stands for physical assets. 

4.3. Model Validity and Analysis of the Results 

To validate our proposed framework, we applied face validity, which is one of the 

most prevalent tests for expert-elicited BNs [98]. For this, we gathered experts from vari-

ous departments of the Gas Company’s gas plants as well as scientists from the process 
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engineering, mechanical engineering, and industrial engineering departments of three 

Iranian universities. We posed questions regarding the suitability of the proposed BN 

structure and parameterization. According to [98], we asked the following questions: 

 Are the model’s node and arc structures consistent with expert predictions? 

 Does the model’s structure resemble that of other networks in the resilience domain? 

 Are the parameters of each node consistent with what experts would expect? 

The results of the questionnaire were satisfactory, and the structure and parameters 

were validated. Another useful method to investigate the validity of an expert-built model 

is to perform sensitivity analysis [91]. 

In this section, a sensitivity analysis is conducted to determine the impact of variables 

on the asset criticality index. For this, ����� and ������ for all criteria are calculated. 

The criteria are ranked based on their ������ value. The results are presented in Table 

13. 

Table 13. Variables priorities based on expected asset criticality index. 

Variable ���� ����� Priority 

Maintenance Cost 0.52684 0.098053412 4 

Equipment Costs 0.64937 0.120858219 1 

Production Loss without BCPs 0.61607 0.114660552 2 

Failure in Emergency Response Equipment 0.46904 0.0872959 5 

Leakage Possibility 0.29985 0.055806916 12 

Air Pollution 0.54405 0.10125647 3 

Caustic Leakage 0.30649 0.057042727 9 

Safety Relieve Valve 0.30252 0.056303846 11 

Critical Alarms 0.30252 0.056303846 10 

Availability of Backup Contractor 0.33369 0.062105085 8 

Backup Asset 0.22317 0.041535532 13 

Availability of Spare Parts 0.41276 0.076821286 6 

Skilled Personal or Contractor to Repair 0.38662 0.071956211 7 

Based on the results shown in Table 13, equipment cost is the most influential varia-

ble on the criticality of the physical asset, while the availability of backup assets is the least 

influential variable. As backup contractors are likely to be available in disastrous situa-

tions, the availability of backup assets has little influence on the criticality of assets. Note-

worthy, the priority of variables guides the company in prioritizing their asset manage-

ment plans regarding their influence on asset criticality. 

5. Contributions 

5.1. Contributions to Practice and Managerial Insights 

To conduct the physical asset criticality analysis, the following managerial tips 

should be considered: 

 Continuity of key products/services provided in every situation, including disastrous 

ones, helps organizations foster their reputation. There is a strong relationship be-

tween the continuity of physical assets and the continuity of products in asset-inten-

sive organizations. Therefore, the relationship between the continuity of key prod-

ucts’ provision and the continuity of physical assets should be addressed in criticality 

analysis. Accordingly, our framework proposes a business impact analysis approach 

through which required physical assets for the continuity of product/service provi-

sion are identified. 

 Sustainability and resilience are crucial factors for organizations’ sustained success. 

For this reason, our framework for criticality analysis not only considers these two 
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main factors and their corresponding criteria, but it also captures the interdependen-

cies that exist between them. Accordingly, the framework provides sufficient tools 

for asset managers to be consistent with organizations’ strategies while prioritizing 

physical assets. 

 Organizations usually struggle with limited resources for their asset management 

plans. Therefore, the normalized expected asset criticality index is proposed in this 

paper to prioritize the contributing criteria of criticality analysis. This index will 

guide managers in taking appropriate directions while developing asset manage-

ment plans. The priority of variables guides the company in prioritizing their asset 

management plans. 

5.2. Contributions to Knowledge and Theoretical Insights 

The theoretical contributions of the proposed framework are as follows: 

 To our knowledge, this is the first study that applies business impact analysis to de-

termine key physical assets as a prerequisite to criticality analysis. Therefore, our 

proposed framework acts as a bridge between physical asset management and busi-

ness continuity management. 

 In the literature, a majority of studies on criticality analysis conduct failure mode and 

affect analysis (FMEA) or similar risk management tools in which interdependencies 

among contributing factors to criticality are not incorporated. It should be noted that 

the presented BIA-based criticality analysis framework proposes a combined fuzzy 

DEMATEL-Bayesian network model to capture interdependencies among sustaina-

bility and resilience contributing factors to the asset criticality analysis. 

 Unlike other relevant studies to the physical asset criticality analysis, we consider the 

sustainability and resilience factors as the contributing factors in the criticality anal-

ysis. Moreover, a fuzzy BWM is applied to determine the relative importance of each 

factor in the asset criticality index, which makes the physical asset ranking procedure 

more realistic. 

6. Conclusions 

This paper develops a comprehensive framework for physical asset criticality analy-

sis. The framework is developed based on the BIA framework and helps asset managers 

take into account those assets that are crucial for the continuity of key products’ provision. 

In this way, a hybrid fuzzy BWM-TOPSIS methodology is proposed to rank the organiza-

tion’s products based on relevant criteria. Then, the physical assets required for producing 

the key products are determined through proper tools based on the industry type (e.g., 

block diagrams and P and IDs for the process industry). To prioritize the required physical 

asset, sustainability and resilience factors are determined as the contributing factors to the 

criticality analysis. Then, the physical asset criticality index is calculated through a hybrid 

fuzzy DEMATEL-Bayesian network approach, in which interdependencies among sus-

tainability and resilience factors are captured. Accordingly, the availability of “spare 

parts” and “skilled personnel or contractors to repair,” which are indicators of the restor-

ative capacity of resilience, is inter-related with “maintenance costs,” which is an indicator 

of the economic dimension of sustainability. Furthermore, the availability of a “safety re-

lieve valve”, which is an indicator of the absorptive capacity of the resilience paradigm, is 

associated with safety, an indicator of the social factor of sustainability. In the meantime, 

in the case study, we have provided a comprehensive guide to constructing the Bayesian 

network for physical asset criticality analysis in a gas plant. In this regard, we presented 

NPTs for each variable contributing to the asset criticality index for one of the required 

physical assets for the continuity of the key products’ provision. The NPTs are constructed 

based on the historical data available for the gas plant or quantitative risk assessment sce-

narios conducted for the plant. 
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Future research may focus on the applicability of the proposed framework in differ-

ent industries, including the service sector. Moreover, the application of the INVAR 

method and its combination with the Bayesian networks for sustainability and resilience 

criteria may be studied. 
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