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Abstract: The usage of foam concrete (FC) was extended from being used as a filler material to an
alternative concrete due to the effect of conventional concrete on global warming. The diversified
perspective on FC as an alternative to conventional concrete is due to its low density (400–1800 kg/m3)
and good thermal conductivity, which also results in the reduction of costs in production, labor, and
transportation. Generally, FC is produced by adding a pre-made foam to the cement slurry consisting
of cement and aggregates. Here, the study was carried out by the addition of a coarse aggregate
and foaming agent (i.e., 12%, 6%, 3%, 2%, 1%) at varying percentages in FC to improve the strength
characteristics. FC was tested for its physical and mechanical properties. From the experimental
results, an Artificial Neural Network (ANN) was developed to predict the strength of FC. The results
from training and testing of the Polynomial Regression Analysis model (PRA) through ANN have
shown great potential in predicting compression, split tensile, and flexural strength of FC. It was
found that the strength of FC is increased with the reduction of foam volume and increase in coarse
aggregate volume. However, a strength of 25.6 N/mm2 is achieved when 1% foam and 50% coarse
aggregate is used.

Keywords: foam concrete; Artificial Neural Network; polynomial regression analysis; mechanical
properties; density

1. Introduction

Concrete is one of the most broadly used construction materials around the globe.
Constructing massive structures requires a huge amount of concrete and a heavy foundation.
Due to this, the self-weight of the structure also increases [1]. The self-weight of the
structure can be reduced by replacing conventional concrete with other types of lightweight
concrete [2–11]. Foam Concrete (FC) is one such material that is light in weight, durable,
sustainable, and environmentally friendly [1,12]. FC is produced by mixing cement, sand,
water, and a stable foaming agent [13]. In FC, air voids are induced in the mortar with the
help of a suitable foaming agent [14]. The amount of foam added to the slurry significantly
impacts the density of FC, which ranges between 400 kg/m3 and 1800 kg/m3 [1].

Foam is produced using a foam generator by infusing compressed air in a diluted
foaming agent. This foaming solution is diluted with water in 1:20 ratio. It is then added to
the premade slurry, made up of cement, sand, and water. The air voids in FC range from
10% to 70% based on the added foam volume [6,15].

To minimize the experimental work, probabilistic models and constitutive equations
are typically developed [16–18]. Most probabilistic modeling research focuses on develop-
ing mathematical models that illustrate the connection between a material’s behavior and
its components. However, predicting a material’s behavior mathematically in the case of
non-linear behavior is a highly challenging endeavor. Regression models are one of the
traditional methods used in model generation. The main benefit of regression analysis is
that it makes predictions easier and faster [18,19].

The use of Multiple Regression Analysis (MRA) can improve the model’s accuracy in
a big way [20]. It has been found that the accuracy of a model decreases with the increase
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in the number of independent variables. In these kinds of complicated situations, methods
such as Artificial Neural Networks (ANNs) [21–23], the adaptive neuro-fuzzy inference
system [24,25], factorial design [26], genetic-based algorithms [27], model tree [28], and
fuzzy logic [29] can be used to make predictions more accurate [30]. Regression analysis
is divided into five types, which are simple linear, multiple linear, logistic, polynomial,
and cox regression. They were chosen based on the dependent and independent variable
types [31].

The ability of Artificial Neural Networks (ANNs) to learn from experimental or
numerical data has led many researchers to use them in predicting the strength of concrete.
An ANN requires enough input and output data but it does not require any specific
equation. The essential attribute of ANN is its capacity for direct learning from examples.
As a result, complicated or partial data problems can be handled effectively by ANN [19].

In this study, an ANN model was developed by using the data from an experimental
analysis. This is used for exploratory data analysis as well as polynomial regression analysis
for predicting the mechanical properties of FC. In the current model, cement, fine aggregate,
coarse aggregate, the w/c ratio, and foam content were considered independent variables,
while Compressive strength (CS), Split Tensile Strength (TS), and Flexural Strength (FS)
were the dependent variables. The ANN model is developed for 17 different FC mixtures
to predict the mechanical properties through Multiple Regression Analysis (MRA).

2. Materials and Methodology
2.1. Cement

Cement is a binding material with cohesive and adhesive qualities, enabling it to be
combined with various construction elements to form compact structures. In the current
study, Ordinary Portland Cement (O.P.C) 53-grade was used and investigated for its
physical and chemical properties as per Indian Standards, IS 12269: 1987. The properties
are shown in Tables 1 and 2 [32].

Table 1. Physical Characteristics of Cement.

Test Conducted Results Limiting Value

Consistency (%) 30 25–35%

Initial Setting Time (min) 50 ≥30

Final Setting Time (min) 510 ≤600

Density (g/cc) 3.137 -

Soundness by Le-Chatliers (mm) 3 6>10

Specific Surface (cm2/gm) 2514 6<2250

Table 2. Chemical Characteristics of Cement.

Test Conducted Results Limiting Value

SiO2 21.6 -

Al2O3 4.8 -

Fe2O3 3.7 -

CaO 63.4 -

MgO 2.3 Max 6

Na2O 0.8 -

K2O 0.24 -

Cl 0.04 Max 0.1

P2O5 <0.05 -

Loss of Ignition 2.2 Max 4

Insoluble Residue 0.5 Max 3
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2.2. Fine Aggregate

The low void proportions in FC can be achieved by proper gradation of fine aggregates
that will also make it free from clay, silt, chloride, and other contaminants. River sand
from Zone II was used as per IS 383: 2016 [33]. Table 3 shows the characteristics of the fine
aggregate used in the current study.

Table 3. Physical Characteristics of Fine Aggregate.

Characteristics of Fine Aggregate Test Findings Limiting Value

Specific Gravity 2.65 >2.1

Water Absorption (%) 0.81% <5

Shape Granular -

Aggregate Zone Zone II -

2.3. Coarse Aggregate

Coarse aggregate is the most rigid and durable material in concrete that offers resis-
tance to chemical reactions and possesses less porosity. The selection of coarse aggregate
requires special attention regarding parameters such as crushing strength, durability, maxi-
mum size, gradation, surface texture, and the flakiness index. In accordance with IS 383:
2016, 6.3 mm gravel was used for the current study. The aggregates were analyzed based
on IS 2386: 1963 [34], and the results are shown in Table 4.

Table 4. Physical Characteristics of Coarse Aggregate.

Characteristics of Coarse Aggregate Test Findings I.S. Recommendations

Specific Gravity 2.81 2.5 to 3

Fineness Modulus (%) 4.29 -

Elongation Index (%) 8 6>15%

Shape Granular & Sub Angular -

Flakiness Index (%) 11 6>15%

Impact Resistance (%) 16.22 6>30%

Crushing strength (%) 13.73 6>30%

Abrasion Value (%) 11.72 6>30%

2.4. Portable Water

It is commonly believed that water that is fit for human consumption can also be
used successfully in concrete production. For this study, potable water that meets the
requirements of IS 456: 2000 [35] was used.

2.5. Foaming Agent

From the available foaming agents, a synthetic-based foaming agent was selected
for this study [36]. Synthetic-based foaming agents primarily exhibit solid air bubbles
compared to protein-based foaming agents. Table 5 describes the details of the foaming
agent used. The foaming solution was combined with water in a ratio of 1:20 (i.e., one part
of the foaming solution is mixed with 20 parts of water) [37–39]. The foam produced by the
foaming machine was combined with a cement slurry to produce FC. As the cement and
sand particles were thoroughly mixed together, they formed a grid material that held the
air bubbles and spread the stable foam throughout the mixture.
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Table 5. Details of the Foaming Agent Used.

Description Details

Name Synthetic Foaming Agent (Foam Airen)

Codal Provision IS: 9103:1999, IS: 2185:2008

Mix Ratio 1:20 (Foam Agent: Water)

Percentage of Foam Added (%) 12, 6, 3, 2 & 1

pH 6.5–8.5

Kinematic Viscosity (mm2/s) 11

2.6. Methodology

In the current study, initially, mechanical property testing was carried out. With
the results of experimental data, a test dataset was prepared, which then was used for
Exploratory Data Analysis (EDA) and Polynomial Regression Analysis (PRA). Figure 1
shows the methodology of experimental data and statistical analysis.

Figure 1. Flow Diagram of Methodology.

3. Research Framework

In the current investigation, foam concrete was produced using cement, sand, water,
and foam under controlled conditions. Mechanical properties such as Compressive Strength
(CS), Split Tensile Strength (TS), and Flexural Strength (FS) of FC were then investigated.

3.1. Mix Design and Mix Proportion

A formula that the University of Dundee created is used to determine the design mix
for FC [40]. Cement and fine aggregate quantity should be determined while generating
a mix. The materials’ overall weight should be equal to the casting density to make one
cubic meter of foamed concrete. The equations can be written as:

D = C + A + W (1)

where:



Buildings 2023, 13, 218 5 of 18

D = Design Density of FC. (Kg/m3).
C = Cement (Kg/m3).
A = Aggregate (Kg/m3).
W = Water (liters).

A total of 17 foam concrete mixtures were designed, cast, and tested. Details of batches
are given below:

• Batch 1 consists of three mixed proportions with 12% foam and different cement/sand
(c/s) ratios.

• Batch 2 consists of three mixed proportions with 6% foam and different c/s ratios.
• Batch 3 consists of three mixed proportions with 6% foam, different c/s ratios, and

coarse aggregate (where fine: coarse aggregate is considered 1:1).
• Batch 4 consists of a c/s ratio of 1:1.5 (which showed optimum results in batches 1,

2, and 3), 6% foam, and coarse aggregate (where fine: coarse aggregate is taken as a
percentage basis).

• Batches 5, 6, and 7 consist of 3%, 2%, and 1% foam, respectively. A cement/sand ratio
of 1:1.5 is kept constant along with coarse aggregate (where fine: coarse aggregate is
taken as 50%:50%, which is the optimum percentage in the above batch).

The Cement-to-sand mix ratio is based on the mass proportions of the materials rather
than on a volume basis. Table 6 shows the mixed proportions of FC. Figure 2 represents the
mixture categories in the form of a radial diagram.

Figure 2. Radial Diagram of Mix Compositions.
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Table 6. Foam Concrete Mixing Proportions.

GROUPS BATCHES MIX NO’S
Mix Ratio MATERIALS DESIGN

DENSITY (kg/m3) REMARKS

C:FA FA:CA CEMENT
(kg/m3)

SAND
(kg/m3)

COARSE
(kg/m3) W/C (%) FOAM VOLUME

(kg/m3) ADMIXTURE

G1

B1

M1 1:1 - 625 710 0 0.29 85.2

Adam Plast—1 kg/m3

1600
12% Foam volumeM2 1:1.5 - 500 852 0 0.36 68.16 1600

M3 1:2 - 416 946 0 0.43 56.8 1600

B2

M4 1:1 - 667 710 0 0.27 42.6 1600
6% Foam volumeM5 1:1.5 - 533 852 0 0.34 34.08 1600

M6 1:2 - 445 946 0 0.40 28.4 1600

G2

B3

M7 1:1 1:1 667 355 355 0.27 42.6 1600
6% Foam volume & fine

aggregate: coarse aggregate (1:1)
M8 1:1.5 1:1 533 426 426 0.34 34.08 1600

M9 1:2 1:1 445 473 473 0.40 28.4 1600

B4

M10 1:1.5 50%:50% 533 426 426 0.33 34.08 1600 6% Foam & 50% fine aggregate,
and 50% coarse aggregate

M11 1:1.5 60%:40% 533 511 340 0.33 34.08 1600 6% Foam & 60% fine aggregate,
and 40% coarse aggregate

M12 1:1.5 70%:30% 533 596 255 0.33 34.08 1600 6% Foam & 70% fine aggregate,
and 30% coarse aggregate

M13 1:1.5 80%:20% 533 682 170 0.33 34.08 1600 6% Foam & 80% fine aggregate,
and 20% coarse aggregate

M14 1:1.5 90%:10% 533 766 85.2 0.33 34.08 1600 6% Foam & 90% fine aggregate,
and 10% coarse aggregate

G3

B5 M15 1:1.5 50%:50% 551 426 426 0.33 17.04

Sika 903—2 kg/m3 +
Airen 1%

1600 3% Foam & 50% fine aggregate,
and 50% coarse aggregate

B6 M16 1:1.5 50%:50% 557 426 426 0.32 11.36 1600 2% Foam & 50% fine aggregate,
and 50% coarse aggregate

B7 M17 1:1.5 50%:50% 562 426 426 0.32 5.68 1600 1% Foam & 50% fine aggregate,
and 50% coarse aggregate

Note: C—Cement, FA—Fine Aggregate, CA—Coarse Aggregate, A—Aggregate.
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Radial Diagram of Mix Compositions. Figure 2 is a depiction of different mixtures used
for the current study. Green indicates 12% foam with different cement-to-sand (c/s) ratios.
Red indicates 6% foam with different c/s ratios and Fine aggregate to coarse aggregate
ratios. Blue indicates the mix with 3% foam, 50% CA, and 50% FA. Yellow indicates the
mixture with 2% foam, 50% CA, and 50% FA. Purple indicates the mix with 1% foam, 50%
CA, and 50% FA.

3.2. Experimental Analysis
3.2.1. Preparation of FC

A concrete mixer generates FC by mixing foam and cement slurry. The pre-foaming
method is adopted to create FC as per IS 2185: 2008 (part 4) [36]. Into the homogeneous
mixture of cement slurry made up of Portland cement and fine aggregate, the prefabricated
foam will then be poured, and this process of mixing continues until the bubbles have been
dispersed uniformly [41]. The FC mixture’s wet density should range within ±100 kg/m3.
The preparation of FC and the foam generation process are shown in Figure 3 [42].

Figure 3. Materials used to Produce Foam Concrete.

Three major problems and their causes were encountered during the preparation
of FC:

1. Formation of cement balls due to change of mixing time and low water content in the
mixture, thus impairing its homogeneity.

2. Requirement of additional water due to a change in mix proportion than the quantity
determined to produce the mixture.

3. Variation in mixture density from the predetermined density was identified either
due to a change in temperature or density of foam added or coarse aggregate.

To mitigate the problems mentioned above, the following precautions can
be maintained:
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1. Duration of mixing is to be set between 1.5 min and 3 min to prevent the coagulation
of the dry materials.

2. Adjustment of water–cement ratio based on the flow table test results.
3. Addition of chemical admixture (1% of airen) helps to maintain the density of

the mixture.

3.2.2. Experimental Investigation

Mechanical characteristics of the FC were analyzed and characterized, as mentioned
above in Table 6. Mechanical parameters were tested for several mixes before confirm-
ing the best possible mixture. For the compressive strength test, a cube specimen of
100 × 100 × 100 mm was used. A crushing load was applied steadily on the specimen
during testing. The rate of loading applied on the specimen was 2.29 kN/s. The specimens
were tested every 3, 7, and 28 days. Cubes were kept in the oven drying for ±24 h to
achieve a dryer density. The weight of each specimen was recorded for detailed data
analysis. A compressive test was performed as per (IS 516: 1959) [43]. For the split tensile
strength, a specimen of size 100 × 200 mm was used for the study as per ASTM C 496 [44].
The specimen was placed horizontally within the loading plate and a packing strip was
placed on the top and bottom of the specimen for uniform stress distribution. The sample
was tested for splitting tensile strength at a loading rate of 0.70 kN/s, and the load was
gradually applied until the splitting of the specimen occurred. The flexural strength of
FC for 17 mix ratios was studied using a four-point loading test ASTM C 78–84 [45]. A
specimen of size 100 × 100 × 500 mm was cast and tested for this study. The specimen was
placed in the test setup where the load was applied gradually at a rate of 29.43 kN/mm2

until fracture occurred, and the failure load and fracture point were recorded. Samples of
FC and the test setup are shown in Figure 4.

Figure 4. (a) Cube and Cylinder Specimens of FC., (b) Compressive Testing Machine.

3.3. Statistical Analysis
3.3.1. Artificial Neural Network (ANN)

An Artificial Neural Network, also known as an ANN, simulates how the human
brain interprets and processes information. It gathers samples based on prior observations
to categorize, model, identify, and predict probable problems. The typical ANN has
three layers [46], as represented in Figure 5. Information is taken from the surrounding
environment by neurons located in the input layer, which then passes it along to neurons
located in the hidden layer. After that, the neurons in the hidden layers will process
the information they have received, isolate the key features, and then use those to re-
create the mapping between the input and output domains. At long last, the network’s
predictions will be communicated to the outside world by the neurons that make up the
output layer [47].
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Figure 5. Artificial Neural Network Structure.

3.3.2. Exploratory Data Analysis

Exploratory Data Analysis (EDA) is used to analyze the given data through visual
practice. With the use of statistical summaries and a graphical representation, it is used
to identify trend lines and patterns or verify presumptions. Compared to other statistical
analyses, EDA does not require any model for observations. The data considered are the
batch or list of numbers. The study’s major purpose is to look at the facts from a different
point of view and generate an informal conclusion [48].

In general, several tools are available for EDA, some of which are the median, a
box plot, re-expression, median polish, residuals, the running median, etc. In the current
study, the median is used as a tool for EDA. It uses a small number of parameters to
describe a sample’s characteristics. They are typically regarded in the form of estimations
of the pertinent demographic variables that comprise the sample. These characteristics can
express the spread of the data (variance, standard deviation, interquartile range, maximum
value, and minimum value), as well as the central tendency (arithmetic mean, median, and
mode) and some distributional characteristics (skewness, kurtosis) [48].

3.3.3. Polynomial Regression Analysis

Because of the flexible structure in polynomial regression analysis (PRA), it is suitable
for data fitting. Through PRA, many complex curve forms can be generated by adding
higher-order terms and modifying the signs and magnitudes of the coefficients. A polyno-
mial regression analysis has the following structure [49].

Y = â0 + â1x1 + â2x2 + . . . . . . . . . . . . . . .+ânxn + e (2)

where â1, â2 . . . , and ân are the polynomial regression coefficients, x denotes the input
variable, y represents the output variable, and â0 denotes the intercept. PRA refers to the
addition of multiple variables to polynomial regression. PRA for a system with ‘n’ input
variables is represented by the following formula [49].

y = â0 + ∑n
l1=1 âl1xl1 + ∑n

l1=1 ∑n
l2=l1 âl1l2xl1l2 + . . . . . .

∑n
l1=1 ∑n

l2=l1 . . . . ∑n
lk=lk−1

âl1l2 ......lk xl1l2 ....lk
(3)
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Even though PRA adapts a non-linear model for the data, the multivariate function
(Equation (4)) is linear, with respect to its coefficients. The sum of squared errors between
the expected and actual outcome determines the polynomial regression coefficients.

The metrics used to quantify the errors that occur during the training and testing of
the ANN model include the Root Mean Squared Error (RMSE), Mean Square Error (MSE),
Mean Absolute Error (MAE), and coefficient of determination (R2). The equations for
calculating the errors are presented below [47,49]:

RMSE =

√
1
n ∑n

i=1|ai − pi|
2 (4)

MSE =
1
n ∑n

i=1|ai − pi|
2 (5)

MAE =
1
n ∑n

i=1|pi − ai| (6)

R2 =
∑n

i=1 (a1 − ai avg)
2 −∑n

i=1 (a1 − pi )
2

∑n
i=1 (a1 − ai avg)

2 (7)

Note: ai = Actual Value, ai avg = Average of Actual Value, pi = Predicted Value, and
n = Sample Size.

Polynomial Regression Analysis (PRA) for the given set of seven batches of mixes is
performed in three groups. Batches I and II are considered the Group I category, batches III
and IV are considered the Group II category, and batches V, VI, and VII are considered the
Group III category.

4. Results and Discussion
4.1. Influence of Water-to-Cement (w/c) Ratio on Design Density

Consistency of the FC mix can be achieved with the proper dosage of the w/c ratio.
Variation of the density ratio to the w/c is shown in Figure 6. From the graph, it is observed
that most of the mixes achieved a density ratio of unit one. Additionally, it has been found
that the density ratio is inversely proportional to foam volume and directly proportional to
the w/c ratio.

Figure 6. Density Ratio vs. w/c Ratio of FC.
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4.2. Flow Behaviour

Using a typical flow cone, we can quantify the flow rate and hence learn about the
flow characteristics of different mixtures [7]. The change in flow behavior of mixes with
various w/c ratios and foam volumes has been examined. Figure 7 shows the relationship
between the flow value of FC mixes with varying foam volumes and w/c ratios. From the
graph, it is observed that the mix with 1% foam volume and 0.32% w/c has a lower flow
value of 98.4%. The mix with 12% foam volume has a higher flow value of 140%, which is
primarily due to the reduction of stiffness in FC with the increase in foam volume. A mix
with a lower w/c ratio and low foam volume is generally found to have a low flow value
and vice versa.

Figure 7. Flow vs. Foam Volume vs. w/c Ratio of FC.

4.3. EDA. Results of Experimental Work

EDA was carried out for a total of 17 mix ratios to validate the experimental results
of CS, TS, and FS. Table 7 shows the EDA of the material. The distribution of data is
found to be positively skewed, as 50% of median values are less than the mean value. This
distribution is primarily due to the addition of coarse aggregate and foam volume in the
FC mixes. Additionally, it is noted that the coarse aggregate’s mean, median, and standard
deviation are lower than that of the fine aggregate. This could be due to the fact that coarse
aggregate is used in B3 to B7, whereas fine aggregate is used in B1–B7.

A correlation matrix was drawn between the parameters of the given dataset, and
the results are shown in Figure 8. According to the results from the dataset, CS, TS, and
FS were highly correlated with coarse aggregate (i.e., 0.76, 0.73, and 0.72, respectively).
Moreover, a correlation has been observed between the cement to foam volume (i.e., 0.25),
Fine Aggregate (FA) to foam volume (i.e., 0.33), and FA to w/c ratio (i.e., 0.41). Therefore,
it can be said that the CS, TS, and FS are highly influenced by the addition of foam and
coarse aggregate.
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Table 7. Exploratory Data Analysis of Different Mix Proportions and their Strengths.

Material’s Count Mean Standard Deviation
Median

Minimum 25% 50% 75% Max

Cement (kg/m3) 17 539 68.7 416 533 533 557 667

Sand (kg/m3) 17 624 205.68 355 426 596 797 946

Coarse Aggregate (kg/m3) 17 227 192.7 10 10 255 426 473

w/c (%) 17 0.33 0.04 0.27 0.32 0.33 0.34 0.43

Foam volume (kg/m3) 17 37 19.35 5.68 28.40 34.08 42.60 85.20

Age (days) 17 28 0 28 28 28 28 28

CS (MPa) 17 13.6 10.89 4.01 10.07 11.65 14.53 52.20

Split Tensile Strength (MPa) 17 1.96 0.71 1.03 1.33 1.90 2.23 4.02

Flexural Strength (MPa) 17 2.66 1.41 1.49 1.97 2.14 2.53 7.20

Figure 8. Correlation of Parameters in FC.

4.4. Statistical Analysis and Experimental Results of Compressive Strength of FC

Figure 9 represents the relation between CS, CA, and the w/c ratio. The highest
compressive strength for varying batches B1, B2, B3, B4, B5, B6, and B7 were found to
be 11.45 N/mm2 (M2), 13.18 N/mm2 (M5), 15.99 N/mm2 (M8), 15.82 N/mm2 (M10),
14.5 N/mm2 (M15), 20.4 N/mm2 (M16), and 25.6 N/mm2 (M17), respectively. Rendering
to the findings, an increase in CS of FC was found with the addition of coarse aggregate.
From the results, it has been observed that the CS of FC is higher for mixes with low
foam volume.
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Figure 9. Compressive Strength vs. Coarse Aggregate vs. Foam Volume of FC.

The relationship between the 28-day CS, foam volume, and coarse aggregate is ob-
tained based on the experimental results, where a non-linear curve has been observed in the
results. Therefore, a polynomial regression analysis is performed between CS and the w/c
ratio, and the results regarding the analysis are displayed in Figure 10 and Table 8. A good
correlation is observed, with coefficient of determination (R2) values of 0.98, 0.95, and 0.79
for G1, G2, and G3, respectively. The polynomial regression analysis was carried out by an
ANN, which resulted in a stronger correlation with the experimental data, simultaneously
producing the lowest errors in terms of its ability to forecast the CS of FC.

Figure 10. Actual vs. Predicted Concrete CS Values with Testing Dataset.

Table 8. Compressive Strength Results of the ANN Model.

Batches Multiple R R2 Adjusted R2 RMSE MSE MAE

B1 & 2 0.99 0.98 0.81 3.37 11.35 3.37

B3 & 4 0.98 0.95 0.70 2.24 5.03 2.14

B5, 6 & 7 0.89 0.79 0.58 0.63 0.51 0.61

4.5. Statistical Analysis and Experimental Results of Split Tensile Strength of FC

The tensile strength (TS) of FC was measured at 3, 7, and 28 days using different
c/s ratios and was compared with statistical analysis using the ANN. The experimen-
tal results are depicted in Figure 11. The findings show that the highest TS was deter-
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mined to be 1.95 N/mm2 (M3) for B1, 2.04 N/mm2 (M5) for B2, 2.43 N/mm2 (M9) for
B3, 2.33 N/mm2 (M10) for B4, 2.45 N/mm2 (M15) for B5, 2.43 N/mm2 (M16) for B6, and
2.81 N/mm2 (M17) for B7. According to the results, the TS of FC increased with the addi-
tion of coarse aggregate [50,51]. It is also observed that the CS of FC is higher for mixes
with a low foam volume.

Figure 11. Splitting Tensile Strength vs. Coarse Aggregate vs. Foam Volume of FC.

Based on the experimental observations, the relationship between the 28-day TS, foam
volume, and coarse aggregate is found to be non-linear. Therefore, a polynomial regression
analysis between the CS and the w/c ratio was conducted, and the results of the analysis
are shown in Figure 12 and Table 9. A strong correlation has been found, with coefficient of
determination R2 values for G1, G2, and G3 of 0.96, 0.93, and 0.99, respectively.

Figure 12. Actual vs. Predicted Concrete Split Tensile Strength Values with Testing Dataset.

Table 9. Split Tensile Strength Results of ANN Model.

Batches Multiple R R2 Adjusted R2 RMSE MSE MAE

B1 & 2 0.98 0.96 0.71 0.32 0.1 0.32

B3 & 4 0.96 0.93 0.76 0.36 0.13 0.32

B5, 6 & 7 0.99 0.99 −0.005 0.5 0.25 0.5

4.6. Statistical Analysis and Experimental Results of Flexural Strength of FC

The Flexural Strength (FS) of FC was measured at 3, 7, and 28 days using different
c/s ratios and was compared with statistical analysis using ANN. Figure 13 presents the
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outcomes of the experimental analysis. The findings show that the maximum FS values
were determined to be 2.11 N/mm2 (M3) for B1, 2.26 N/mm2 (M5) for B2, 2.53 N/mm2

(M9) for B3, 3.01 N/mm2 (M10) for B4, 3.92 N/mm2 (M15) for B5, 4.2 N/mm2 (M16) for B6,
and 4.5 N/mm2 (M17) for B7. According to the results, the FS increased with the addition
of coarse aggregate [28,29]. It has been observed that CS is higher for mixes with a low
foam volume.

Figure 13. Flexural Strength vs. Coarse Aggregate vs. Foam Volume of FC.

With the help of experimental results, a polynomial regression analysis was performed
between the FS and the w/c ratio. The analysis was performed in three groups based on
the foam volumes, and the results of the analysis are displayed in Figure 14 and Table 10.
From the results, it is observed that the FS and w/c show a great correlation, with R2 values
of 0.96, 0.95, and 0.99 for G1, G2, and G3, respectively, and minimum error values were
observed for RMSE, MSE, and MAE.

Figure 14. Actual vs. Predicted Concrete Flexural Strength Values with Testing Dataset.

Table 10. Flexural Strength Results of ANN Model.

Batches Multiple R R2 Adjusted R2 RMSE MSE MAE

B1 & 2 0.98 0.96 0.71 0.36 0.13 0.36

B3 & 4 0.97 0.95 0.79 0.29 0.09 0.24

B5, 6 & 7 0.99 0.99 −0.001 0.79 0.62 0.79
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5. Conclusions

The results of the tests show that several aspects need to be observed to improve the
properties of FC. The addition of coarse aggregate and reduction of foam volume shows a
significant increase in strength. The application of ANN has shown reliable results when
compared with the experimental results. Following are some essential observations that
are noted from the study:

1. The rate of flow of FC is in proportion to the foam volume. Hence, it was observed
that the flow value of FC is significantly lower for a low foam value and increases for
a higher foam volume.

2. The density ratio for all mixes was observed to be near unit one, where the mix with
6% foam and a c/s ratio of 1:2 shows the highest density ratio of 1.06.

3. From the results of EDA, a stronger correlation was visualized between the coarse
aggregate and the mechanical properties of the mixes.

4. The density of FC has a significant relationship with strength; as the density of FC,
rises, so does its strength, and vice versa.

5. From the PRA, it is observed that predicted values are closer to the experimental
values with lower R2 values for all the batches. It is also noted that the statistical
errors derived from the ANN model were found to be minimum for all the batches.
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25. Tortum, A.; Yayla, N.; Gökdaǧ, M. The Modeling of Mode Choices of Intercity Freight Transportation with the Artificial Neural
Networks and Adaptive Neuro-Fuzzy Inference System. Expert Syst. Appl. 2009, 36, 6199–6217. [CrossRef]

26. Correia, S.L.; Partala, T.; Loch, F.C.; Segadães, A.M. Factorial Design Used to Model the Compressive Strength of Mortars
Containing Recycled Rubber. Compos. Struct. 2010, 92, 2047–2051. [CrossRef]

27. Yuan, Z.; Wang, L.N.; Ji, X. Prediction of Concrete Compressive Strength: Research on Hybrid Models Genetic Based Algorithms
and ANFIS. Adv. Eng. Softw. 2014, 67, 156–163. [CrossRef]

28. Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling Compressive Strength of Recycled Aggregate Concrete by Artificial Neural
Network, Model Tree and Non-Linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [CrossRef]

29. Topçu, I.B.; Saridemir, M. Prediction of Compressive Strength of Concrete Containing Fly Ash Using Artificial Neural Networks
and Fuzzy Logic. Comput. Mater. Sci. 2008, 41, 305–311. [CrossRef]

30. Chithra, S.; Kumar, S.R.R.S.; Chinnaraju, K.; Alfin Ashmita, F. A Comparative Study on the Compressive Strength Prediction
Models for High Performance Concrete Containing Nano Silica and Copper Slag Using Regression Analysis and Artificial Neural
Networks. Constr. Build. Mater. 2016, 114, 528–535. [CrossRef]

31. Gogtay, N.J.; Deshpande, S.P.; Thatte, U.M. Principles of Regression Analysis. J. Assoc. Physicians India 2017, 65, 48–52.
32. IS 12269:2013; Ordinary Portland Cement, 53 Grade—Specification. Bureau of Indian Standard: New Delhi, India, 2013.
33. IS 383:2016; Coarse and Fine Aggregate for Concrete—Specification. Bureau of Indian Standard: New Delhi, India, 2016.
34. IS 2386; Part III Method of Test for Aggregate for Concrete. Part III-Specific Gravity, Density, Voids, Absorption and Bulking.

Reaffirmed 2002. Bureau of Indian Standard: New Delhi, India, 1963.
35. IS 456; Plain Concrete and Reinforced; Bureau of Indian Standard—Specification. Bureau of Indian Standard: New Delhi, India,

2000; pp. 1–114.
36. IS 2185-4:2008; Concrete Masonry Units, Part 4: Preformed Foam Cellular Concrete Blocks—Specification. Bureau of Indian

Standard: New Delhi, India, 2008.
37. Mukkala, P.; Venkatesh, C.; Habibunnisa, S. Evaluation of Mix Ratios of Light Weight Concrete Using Geopolymer as Binder.

Mater. Today Proc. 2022, 52, 2053–2056. [CrossRef]
38. Yan, M.; Wang, Y.; Shen, X.; Dong, S.; Diao, M.; Zhao, Y.; Zhang, T. Enhanced Foaming Properties of Lactoferrin by Forming

Functional Complexes with Ginsenoside Re and Rb1. Food Hydrocoll. 2022, 123, 107159. [CrossRef]
39. Rastegar, M.M.; Bagheri, A. Effect of Foam Volume on Penetration Parameters of Foamed Concrete. Mag. Concr. Res. 2022, 74,

989–998. [CrossRef]
40. Jones, M.R.; McCarthy, A. Preliminary Views on the Potential of Foamed Concrete as a Structural Material. Mag. Concr. Res. 2005,

57, 21–31. [CrossRef]
41. Sivananda Reddy, Y.; Anandh, S.; Sindhu Nachiar, S.; Ravichandran, P.T. Use of Industrial Wastes as a Filling Materials in Foam

Concrete: A Short Review. Mater. Today Proc. 2022, 68, 2026–2031. [CrossRef]
42. Harith, I.K. Study on Polyurethane Foamed Concrete for Use in Structural Applications. Case Stud. Constr. Mater. 2018, 8, 79–86.

[CrossRef]

http://doi.org/10.1016/j.cemconcomp.2005.12.001
http://doi.org/10.1016/j.jobe.2022.105203
http://doi.org/10.1016/j.cemconcomp.2009.04.006
http://doi.org/10.14359/51664216
http://doi.org/10.1061/(ASCE)MT.1943-5533.0001279
http://doi.org/10.1016/j.eswa.2011.01.156
http://doi.org/10.1016/j.conbuildmat.2013.01.016
http://doi.org/10.1016/j.matdes.2013.05.022
http://doi.org/10.1016/j.compstruc.2010.07.003
http://doi.org/10.1016/j.matdes.2009.01.039
http://doi.org/10.1016/j.commatsci.2011.07.053
http://doi.org/10.1016/j.eswa.2008.07.032
http://doi.org/10.1016/j.compstruct.2009.11.007
http://doi.org/10.1016/j.advengsoft.2013.09.004
http://doi.org/10.1016/j.ijsbe.2014.12.002
http://doi.org/10.1016/j.commatsci.2007.04.009
http://doi.org/10.1016/j.conbuildmat.2016.03.214
http://doi.org/10.1016/j.matpr.2021.12.140
http://doi.org/10.1016/j.foodhyd.2021.107159
http://doi.org/10.1680/jmacr.21.00247
http://doi.org/10.1680/macr.2005.57.1.21
http://doi.org/10.1016/j.matpr.2022.08.354
http://doi.org/10.1016/j.cscm.2017.11.005


Buildings 2023, 13, 218 18 of 18

43. IS 516:2018; Method of Tests for Strength of Concrete. Bureau of Indian Standard: New Delhi, India, 2018.
44. ASTM C 496 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Available online: https:

//www.astm.org/c0496-96.html (accessed on 26 November 2022).
45. ASTM C78-02—Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). Available

online: https://webstore.ansi.org/standards/astm/astmc7802 (accessed on 26 November 2022).
46. Chou, J.S.; Truong, D.N.; Tsai, C.F. Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics.

Mathematics 2021, 9, 686. [CrossRef]
47. Kavya, B.R.; Sureshchandra, H.S.; Prashantha, S.J.; Shrikanth, A.S. Prediction of Mechanical Properties of Glass and Basalt Fiber

Reinforced Concrete Using ANN. Asian J. Civ. Eng. 2022, 23, 877–886. [CrossRef]
48. Morgenthaler, S. Exploratory Data Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 33–44. [CrossRef]
49. Imran, H.; Al-Abdaly, N.M.; Shamsa, M.H.; Shatnawi, A.; Ibrahim, M.; Ostrowski, K.A. Development of Prediction Model to

Predict the CompressiveStrength of Eco-Friendly Concrete Using MultivariatePolynomial Regression Combined with Stepwise
Method. Materials 2022, 15, 317. [CrossRef]

50. Jhatial, A.A.; Inn, G.W.; Mohamad, N.; Johnson Alengaram, U.; Hung Mo, K.; Abdullah, R. Influence of Polypropylene Fibres
on the Tensile Strength and Thermal Properties of Various Densities of Foamed Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2017,
271, 012058. [CrossRef]

51. Tanveer, A.; Jagdeesh, K.; Ahmed, F. Foam Concrete. Int. J. Civ. Eng. Res. 2017, 8, 1–14.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.astm.org/c0496-96.html
https://www.astm.org/c0496-96.html
https://webstore.ansi.org/standards/astm/astmc7802
http://doi.org/10.3390/math9060686
http://doi.org/10.1007/s42107-022-00460-w
http://doi.org/10.1002/wics.2
http://doi.org/10.3390/ma15010317
http://doi.org/10.1088/1757-899X/271/1/012058

	Introduction 
	Materials and Methodology 
	Cement 
	Fine Aggregate 
	Coarse Aggregate 
	Portable Water 
	Foaming Agent 
	Methodology 

	Research Framework 
	Mix Design and Mix Proportion 
	Experimental Analysis 
	Preparation of FC 
	Experimental Investigation 

	Statistical Analysis 
	Artificial Neural Network (ANN) 
	Exploratory Data Analysis 
	Polynomial Regression Analysis 


	Results and Discussion 
	Influence of Water-to-Cement (w/c) Ratio on Design Density 
	Flow Behaviour 
	EDA. Results of Experimental Work 
	Statistical Analysis and Experimental Results of Compressive Strength of FC 
	Statistical Analysis and Experimental Results of Split Tensile Strength of FC 
	Statistical Analysis and Experimental Results of Flexural Strength of FC 

	Conclusions 
	References

